
Proceedings of the 2007 Winter Simulation Conference

S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

INTRODUCTION TO SIMULATION

David Goldsman

H. Milton Stewart School of

Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.
ABSTRACT

This is an introductory tutorial on the statistical aspects of

computer simulation, and is intended to serve as a spring-

board to many of the other introductory tutorials that appear

elsewhere in the Proceedings. We present a number of moti-

vational examples, followed by material on random number

and random variate generation, input analysis of the random

variables that drive a simulation, and output analysis of the

random observations that a simulation produces.

1 INTRODUCTION

One of the most useful tools in the arsenal of an operations

research / industrial engineering / management science an-

alyst is that of computer simulation. A simulation is simply

an imitation of the operation of a real-world system for pur-

poses of evaluating that system. Over the last thirty years,

computer simulation has enjoyed a great deal of popularity

in the manufacturing, production, logistics, service, and fi-

nancial industries, just to name a few areas of application.

Simulations are often used to analyze systems that are too

complicated to attack via analytic methods such as calculus,

standard probability and statistics, or queueing theory.

The simulations that we are primarily interested in here

are usually

• dynamic — i.e., the system state changes over time

• discrete — i.e., the system state changes as the

result of discrete events such as customer arrivals

or departures

• stochastic (as opposed to deterministic).

The stochastic nature of simulation prompts our ensuing

discussion.

This tutorial is organized as follows. It begins in Sec-

tion 2 with some simple motivational examples designed to

show how one can apply simulation to answer interesting

questions about stochastic systems. These examples invari-
261-4244-1306-0/07/$25.00 ©2007 IEEE
ably involve the generation of random variables to drive

the simulation, e.g., customer interarrival times and service

times. The subject of Section 3 is the development of tech-

niques to generate the necessary random variables. One

must take great care when selecting the specific probability

distributions to represent the random variables that drive

the simulation. For example, a poor choice of distribution

for customer interarrival times may render the simulation

worthless. Therefore, we discuss the problem of simula-

tion input analysis in Section 4. After a simulation run is

completed, the experimenter ought to conduct a rigorous

analysis of the resulting output, a task made difficult since

simulation output observations — for example, customer

waiting times — are almost never independent or identically

distributed. Issues related to output analysis are studied in

Section 5. A particularly attractive feature of computer

simulation is its ability to allow the experimenter to ana-

lyze and compare certain scenarios quickly and efficiently.

Section 6 discusses methods for reducing the variance of

estimators arising from a single scenario, thus resulting in

more-precise statements about system performance, at no

additional cost in simulation run time. We also extend this

work by mentioning methods for selecting the best of a

number of competing scenarios.

We point out here that excellent general references for

the topic of stochastic simulation are Banks, et al. (2005)

and Law (2007). In addition, parts of the current paper

appeared in Hines et al. (2003).

2 MOTIVATIONAL EXAMPLES

This section illustrates the use of simulation through a series

of simple, motivational examples. The goal is to show how

one uses random variables within a simulation to answer

questions about the underlying stochastic system.

Example 1 Coin Flipping. We are interested in simu-

lating independent flips of a fair coin. Of course, this is a

trivial sequence of Bernoulli trials with success probability

Goldsman
p = 1/2, but this example serves to show how one can use

simulation to analyze such a system. First of all, we need to

generate realizations of heads (H) and tails (T), each with

probability 1/2. Assuming that the simulation can somehow

produce a sequence of independent uniform (0,1) random

numbers, U1,U2, . . ., we will arbitrarily designate flip i as

H if we observe Ui < 0.5, and a flip as T if we observe

Ui ≥ 0.5. How one generates independent uniforms is the

subject of Section 3. In any case, suppose that the following

uniforms are observed.

0.32 0.41 0.06 0.93 0.82

0.49 0.21 0.77 0.71 0.08

This sequence of uniforms corresponds to the outcomes

H H H T T H H T T H.

This type of “static” simulation, in which we simply repeat

the same type of trials over and over has come to be known

as Monte Carlo simulation, in honor of the European city-

state, where gambling is apparently a popular recreational

activity. 2

Example 2 Estimate π . In this example, we will

estimate π using Monte Carlo simulation in conjunction

with a simple geometric relation. Referring to Figure 1,

consider a unit square with an inscribed circle, both centered

at (1/2,1/2). If one were to throw darts randomly at the

square, the probability that a particular dart will land in the

circle is π/4, the ratio of the circle’s area to that of the

square.

Figure 1: Depiction of dart tosses to estimate π from

Example 2.

How can we use this simple fact to estimate π?

We shall use Monte Carlo simulation to throw many

darts at the square. Specifically, generate independent

pairs of independent uniform (0,1) random variables,

(U11,U12),(U21,U22),(U31,U32), These pairs will fall
27
randomly on the square. If, for pair i, it happens that

(Ui1−1/2)2 +(Ui2−1/2)2 ≤ 1/4, (1)

then that pair will fall within the circle. Suppose we run the

experiment for n pairs (darts). Let Xi = 1 if pair i satisfies

inequality (1), i.e., if the ith dart falls in the circle; otherwise,

let Xi = 0. Now count up the number of darts Y = ∑n
i=1 Xi

falling in the circle. Clearly, Y has the binomial distribution

with parameters n and p = π/4. Then the proportion p̂ =Y/n

is the maximum likelihood estimate for p = π/4; and so

the maximum likelihood estimator for π is just π̂ = 4p̂. If,

for instance, we conducted n = 1000 trials and observed

Y = 753 darts in the circle, our estimate would be π̂ = 3.12.

2

Example 3 Monte Carlo Integration. Another inter-

esting use of computer simulation involves Monte Carlo

integration. Usually, the method becomes efficacious only

for high-dimensional integrals, but we will fall back to the

basic one-dimensional case for ease of exposition. To this

end, consider the integral

I =
∫ b

a
f (x)dx = (b−a)

∫ 1

0
f (a+(b−a)u)du. (2)

As in Figure 2, we shall estimate the value of this integral by

summing up n rectangles, each of width (b−a)/n centered

randomly at point Ui on [0,1], and of height f (a+(b−a)Ui).
Then an estimate for I is

În =
b−a

n

n

∑
i=1

f (a+(b−a)Ui). (3)

One can show that În is an unbiased estimator for I, i.e.,

E[În] = I for all n. This makes În an intuitive and attractive

estimator.

Figure 2: Monte Carlo integration from Example 3.

Goldsman
To illustrate, suppose that we want to estimate the

integral

I =
∫ 1

0
[1+ cos(πx)]dx,

and the following n = 4 numbers are a uniform (0,1) sample:

0.419 0.109 0.732 0.893

Plugging into Equation (3), we obtain

Î4 =
1−0

4

4

∑
i=1

[1+ cos(π(0+(1−0)Ui))] = 0.896,

which is “close” to the actual answer of 1. 2

Example 4 A Single-Server Queue. Now the goal is to

simulate the behavior of a single-server queueing system.

Suppose that six customers arrive at a bank at the following

times, which have been generated from some appropriate

probability distribution.

3 4 6 10 15 20

Upon arrival, customers queue up in front of a single teller,

and are processed sequentially, in a first-come-first-served

manner. The service times corresponding to the arriving

customers are

7 6 4 6 1 2

For this example, we assume that the bank opens at time

0, and closes its doors at time 20 (just after customer 6

arrives), serving any remaining customers.

Table 1 and Figure 3 trace the evolution of the system

as time progresses. The table keeps track of the times at

which customers arrive, begin service, and leave. Figure

3 graphs the status of the queue as a function of time; in

particular, it graphs L(t), the number of customers in the

system (queue + service) at time t.

Table 1: Tracking customers in the single-server queueing

system of Example 4.

arrival begin service depart

customer time service time time wait

i Ai Bi Si Di Wi

1 3 3 7 10 0

2 4 10 6 16 6

3 6 16 4 20 10

4 10 20 6 26 10

5 15 26 1 27 11

6 20 27 2 29 7
28

 L(t)

 5

 Queue

 customer

 3 4 4 5 6

 2 2 3 3 4 5 6

 in 1 1 1 2 2 3 4 5 6

 service t

 3 4 6 10 15 16 20 26 27 29

Figure 3: Status of the single-server queueing system of

Example 4.

Note that customer i can begin service only at time

max(Ai,Di−1), that is, the maximum of his arrival time and

the previous customer’s departure time. The table and figure

are quite easy to interpret. For instance, the system is empty

until time 3, when customer 1 arrives. At time 4, customer

2 arrives, but must wait in line until customer 1 finishes

service at time 10. We see from the figure that between

times 20–26, customer 4 is in service, while customers

5 and 6 wait in the queue. From the table, the average

waiting time for the six customers is ∑6
i=1 Wi/6 = 44/6.

Further, the average number of customers in the system

is
∫ 29

0 L(t)dt/29 = 70/29, where we have computed the

integral by adding up the rectangles in Figure 3. Many

simulation software packages provide simple ways to model

and analyze more-complicated queueing networks. 2

Example 5 (s,S) Inventory Policy. Customer orders

for a particular good arrive at a store every day. During a

certain one-week period, the quantities ordered are

10 6 11 3 20 6 8

The store starts the week off with an initial stock of 20.

If the stock falls to 5 or below, the owner orders enough

from a central warehouse to replenish the stock to 20. Such

replenishment orders are placed only at the end of the day

and are received before the store opens the next day. There

are no customer back orders, so any customer orders that

are not filled immediately are lost. This is called an (s,S)

inventory system, where the inventory is replenished to

S = 20 whenever it hits level s = 5 (or below).

Table 2 gives a history for this system. We see that at

the end of days 2 and 5, replenishment orders were made.

In particular, on day 5, the store ran out of stock and lost

14 orders as a result. 2

Goldsman
Table 2: A history of the (s,S) inventory system of Exam-

ple 5.

initial customer end lost

day stock order stock reorder? orders

1 20 10 10 no 0

2 10 6 4 yes 0

3 20 11 9 no 0

4 9 3 6 no 0

5 6 20 0 yes 14

6 20 6 14 no 0

7 14 8 6 no 0

3 GENERATING RANDOM VARIABLES

All of the examples described in Section 2 required random

variables to drive the respective simulations. In Examples

1 through 3, we needed uniform (0,1) random variables;

Examples 4 and 5 used more-complicated random variables

to model customer arrivals, service times, and order

quantities. This section discusses methods to generate such

random variables automatically. The generation of uniform

(0,1)’s is a good place to start, especially since it turns out

that uniform (0,1)’s form the basis for the generation of all

other random variables.

3.1 Generating Uniform (0,1) Random Variables

There are a variety of methods for generating uniform (0,1)

random variables, among them:

• sample from certain physical devices such as an

atomic clock

• look up pre-determined random numbers from a

table

• generate pseudo-random numbers (PRN’s) from a

deterministic algorithm

The most widely used techniques in practice all employ

the latter strategy of generating PRN’s from a deterministic

algorithm. Although, by definition, PRN’s are not truly

random, there are many algorithms available that produce

PRN’s that appear to be perfectly random. Further, these

algorithms have the advantages of being computationally

fast and repeatable — speed is a good property to have

for the obvious reasons, while repeatability is desirable for

experimenters who want to be able to replicate their simu-

lation results when the runs are conducted under identical

conditions.

Perhaps the most popular method for obtaining PRN’s is

the linear congruential generator (LCG). Here, we start with
29
a non-negative “seed” integer, X0, use the seed to generate

a sequence of non-negative integers, X1,X2, . . ., and then

convert the Xi’s to PRN’s, U1,U2, The algorithm is

simple.

1. Specify a non-negative seed integer, X0.

2. For i = 1,2, . . ., let Xi = (aXi−1 +c)mod(m), where

a, c, and m are appropriately chosen integer con-

stants, and “mod” denotes the modulus function,

e.g., 17mod(5) = 2 and −1mod(5) = 4.

3. For i = 1,2, . . ., let Ui = Xi/m.

Example 6 Consider the “toy” generator Xi = (5Xi−1 +
1)mod(8), with seed X0 = 0. This produces the integer

sequence X1 = 1, X2 = 6, X3 = 7, X4 = 4, X5 = 5, X6 =
2, X7 = 3, X8 = 0, whereupon things start repeating, or

“cycling.” The PRN’s corresponding to the sequence starting

with seed X0 = 0 are thereforeU1 = 1/8, U2 = 6/8, U3 = 7/8,

U4 = 4/8, U5 = 5/8, U6 = 2/8, U7 = 3/8, U8 = 0. Since

any seed eventually produces all of the integers 0,1, . . . ,7,

we say that this is a full-cycle (or full-period) generator.

2

Example 7 Not all generators are full-period. Consider

another “toy” generator Xi = (3Xi−1 +1)mod(7), with seed

X0 = 0. This produces the integer sequence X1 = 1, X2 = 4,

X3 = 6, X4 = 5, X5 = 2, X6 = 0, whereupon cycling ensues.

Further, notice that for this generator, a seed of X0 = 3

produces the sequence X1 = 3 = X2 = X3 = · · · , not very

random looking! 2

The cycle length of the generator from Example 7

obviously depends on the seed chosen, a disadvantage.

Full-period generators, such as that studied in Example 6,

obviously avoid this problem. A full-period generator with

a long cycle-length is given in the following example.

Example 8 The generator Xi = 16807Xi−1 mod(231−
1) is full-period. Since c = 0, this generator is termed a

multiplicative LCG, and must be used with a seed X0 6= 0.

Although there are better generators available, this generator

has been used in real-world applications, and passes most

statistical tests for uniformity and randomness. In order to

avoid integer overflow and real-arithmetic round-off prob-

lems, Bratley, Fox, and Schrage (1987) offer the following

Fortran implementation scheme for this algorithm.

FUNCTION UNIF(IX)

K1 = IX/127773

IX = 16807*(IX - K1*127773) - K1*2836

IF(IX.LT.0)IX = IX + 2147483647

UNIF = IX * 4.656612875E-10

RETURN

END

Goldsman
In the above program, we input an integer seedIX and receive

a PRN UNIF. The seed IX is automatically updated for

the next call. Note that, in Fortran, integer division results

in truncation, e.g., 15/4 = 3; thus, K1 is an integer. 2

3.2 Generating Non-Uniform Random Variables

The goal now is to generate random variables from

distributions other than the uniform. The methods we will

use to do so always start with a PRN, and then apply

an appropriate transformation to the PRN that gives the

desired non-uniform random variable. Such non-uniform

random variables are important in simulation for a number

of reasons. For example, customer arrivals to a service

facility often follow a Poisson process; service times may

be normal; and routing decisions are usually characterized

by Bernoulli random variables.

Inverse Transform Method The most basic technique for

generating random variables from a uniform PRN relies on

the remarkable Inverse Transform Theorem.

Theorem 1 If X is a random variable with continuous

cumulative distribution function (CDF) F(x), then the ran-

dom variable Y = F(X) has the uniform (0,1) distribution.

Proof: For ease of exposition, suppose that X is a continuous

random variable. Then the CDF of Y is

G(y) = Pr(Y ≤ y)

= Pr(F(X)≤ y)

= Pr(X ≤ F−1(y))

(the inverse exists since F(x) is continuous)

= F(F−1(y))

= y.

Since G(y) = y is the CDF of the uniform (0,1) distribution,

we are done. 2

With Theorem 1 in hand, it is easy to generate certain

random variables. All one has to do is to

1. Find the CDF of X , say F(x).
2. Set F(X) = U , where U is a uniform (0,1) PRN.

3. Solve for X = F−1(U).

We illustrate this technique with a series of examples,

both for continuous and discrete distributions.

Example 9 Here we generate an exponential random

variable with rate λ . Following the recipe outlined above,

1. The CDF is F(x) = 1− e−λx.

2. Set F(X) = 1− e−λX = U .
30
3. Solving for X , we obtain

X = F−1(U) =−
1

λ
ℓn(1−U).

Thus, if one supplies a uniform (0,1) PRN U , we see that

X = −(1/λ)ℓn(1−U) is an exponential random variable

with parameter λ . 2

Example 10 Now we try to generate a standard normal

random variable, call it Z. Using the special notation Φ(·)
for the standard normal (0,1) CDF, we set Φ(Z) = U , so

that Z = Φ−1(U). Unfortunately, the inverse CDF does

not exist in closed form, so one must resort to the use

of standard normal tables (or other approximations). For

instance, if we have U = 0.72, then a standard normal table

yields Z = Φ−1(0.72)≈ 0.583. 2

Example 11 We can extend the previous example

to generate any normal random variable, i.e., one with

arbitrary mean and variance. This follows easily, since if Z

is standard normal, then X = µ +σZ is normal with mean

µ and variance σ2. For instance, suppose we are interested

in generating a normal variate X with mean µ = 3 and

variance σ2 = 4. Then if, as in the previous example,

U = 0.72, we obtain Z ≈ 0.583, and, as a consequence,

X ≈ 3+2(0.583) = 4.166. 2

Example 12 We can also use the ideas from Theorem

1 to generate realizations from discrete random variables.

Suppose that the discrete random variable X has probability

mass function

p(x) =















0.3 if x =−1

0.6 if x = 2.3
0.1 if x = 7

0 otherwise

To generate variates from this distribution, we set up Table 3,

where F(x) is the associated CDF and U denotes the set of

uniform (0,1)’s corresponding to each x-value. To generate

Table 3: Values needed to generate variates in Example 12.

x p(x) F(x) U

−1 0.3 0.3 [0, 0.3)

2.3 0.6 0.9 [0.3, 0.9)

7 0.1 1.0 [0.9, 1.0)

a realization of X , we first generate a PRN U , and then read

the corresponding x-value from the table. For instance, if

U = 0.43, then X = 2.3. 2

Although the inverse transform method is intuitively

pleasing to use, it may sometimes be difficult to apply

in practice. For instance, closed-form expressions for

Goldsman
the inverse CDF, F−1(U), might not exist, as is the case

for the normal distribution; or application of the method

might be unnecessarily tedious. We now present a small

potpourri of interesting methods to generate a variety of

random variables.

Box–Muller method. The Box–Muller (1958) method is an

exact technique for generating independent and identically

distributed (IID) standard normal (0,1) random variables.

The appropriate theorem, stated without proof, is

Theorem 2 Suppose that U1 and U2 are IID uniform

(0,1) random variables. Then

Z1 =
√

−2ℓn(U1) cos(2πU2)

and

Z2 =
√

−2ℓn(U1) sin(2πU2)

are IID standard normal random variates. (Note that the

sine and cosine evaluations must be carried out in radians.)

Example 13 Suppose that U1 = 0.35 and U2 = 0.65 are

two IID PRN’s. Using the Box–Muller method to generate

two normal (0,1)’s, we obtain

Z1 =
√

−2ℓn(0.35) cos(2π(0.65)) = −0.852

and

Z2 =
√

−2ℓn(0.35) sin(2π(0.65)) = −1.172. 2

Central Limit Theorem. One can also use the Central

Limit Theorem (CLT) to generate “quick-and-dirty” ran-

dom variables that are approximately normal. Suppose that

U1,U2, . . . ,Un are IID PRN’s. Then for large enough n, the

CLT says that

∑n
i=1 Ui−E [∑n

i=1 Ui]
√

Var(∑n
i=1 Ui)

=
∑n

i=1 Ui−∑n
i=1 E[Ui]

√

∑n
i=1 Var(Ui)

=
∑n

i=1 Ui− (n/2)
√

n/12

≈ normal (0,1).

In particular, the choice n = 12 (which turns out to be “large

enough”) yields the crude but effective approximation,

12

∑
i=1

Ui−6 ≈ normal (0,1).
31
Example 14 Suppose we have the following PRN’s

0.28 0.87 0.44 0.49 0.10 0.76

0.65 0.98 0.24 0.29 0.77 0.90

Then

12

∑
i=1

Ui−6 = 0.77

is a realization from a distribution that is approximately

standard normal. 2

Convolution. Another popular trick involves the generation

of random variables via convolution, indicating that some

sort of sum is involved.

Example 15 Suppose that X1,X2, . . . ,Xn are IID expo-

nential random variables with rate λ . Then Y = ∑n
i=1 Xi is

said to have an Erlang distribution with parameters n and

λ . It turns out that this distribution has probability density

function

f (y) =

{

λ ne−λyyn−1/(n−1)! if y > 0

0 otherwise
(4)

which readers may recognize as a special case of the gamma

distribution.

This distribution’s CDF is too difficult to invert directly.

One way that comes to mind to generate a realization

from the Erlang is simply to generate and then add up

n IID exponential(λ) random variables. The following

scheme is an efficient way to do precisely that. Suppose

that U1,U2, . . . ,Un are IID PRN’s. By Example 9, we

know that Xi = −(1/λ)ℓn(1−Ui), i = 1,2, . . . ,n, are IID

exponential(λ) random variables. Therefore, we can write

Y =
n

∑
i=1

Xi =
n

∑
i=1

[

−
1

λ
ℓn(1−Ui)

]

= −
1

λ
ℓn

(

n

∏
i=1

(1−Ui)

)

.

This implementation is quite efficient, since it requires only

one execution of a natural log operation. In fact, we can

even do slightly better from an efficiency point of view —

simply note that both Ui and (1−Ui) are uniform (0,1).

Then

Y = −
1

λ
ℓn

(

n

∏
i=1

Ui

)

is also Erlang.

To illustrate, suppose that we have three IID PRN’s

at our disposal, U1 = 0.23, U2 = 0.97, and U3 = 0.48. To

Goldsman
generate an Erlang realization with parameters n = 3 and

λ = 2, we simply take Y = −(1/λ)ℓn(U1U2U3) = 1.117.

2

Acceptance-Rejection. One of the most popular classes of

random variate generation procedures proceeds by sampling

PRN’s until some appropriate “acceptance” criterion is met.

Example 16 An easy example of the acceptance-

rejection technique involves the generation of a geometric

random variable with success probability p. To this end,

consider a sequence of PRN’s U1,U2, Our aim is to gen-

erate a geometric realization X , i.e., one that has probability

function

p(x) =

{

(1− p)x−1 p if x = 1,2, . . .
0 otherwise

In words, X represents the number of Bernoulli trials until

the first success is observed. This English characterization

immediately suggests an elementary acceptance-rejection

algorithm,

1. Initialize i← 0.

2. Let i← i+1.

3. Take a Bernoulli(p) observation,

Yi =

{

1 if Ui < p

0 otherwise

4. If Yi = 1, then we have our first success, and we

stop, in which case we accept X = i. Otherwise,

if Yi = 0, then we reject, and go back to step 2.

To illustrate, let us generate a geometric variate having

success probability p = 0.3. Suppose we have the following

PRN’s are at our disposal.

0.38 0.67 0.24 0.89 0.10 0.71

Since U1 = 0.38≥ p, we have Y1 = 0, so we reject X = 1.

Since U2 = 0.67≥ p, we have Y2 = 0, so we reject X = 2.

Since U3 = 0.24 < p, we have Y3 = 1, so we finally accept

X = 3. 2

4 INPUT ANALYSIS

A fundamental problem in simulation modeling is that of

determining the proper input random variables to drive the

simulation. For example, how are the interarrivals of cus-

tomers distributed? What random variables are appropriate

to model service times? Machine breakdown times? Such

questions underline the critical nature of correct input analy-

sis. In fact, if we misspecify a particular distribution, the
32
resulting model and any subsequent output we obtain from

it could be misleading — garbage-in-garbage-out.

Although an experimenter can never specify the “per-

fect” model, there are steps that one can take to try to do

the best job possible. For instance, a basic game-plan might

be as follows:

• Assess what input variables will be needed —

arrival times, service times, breakdown times? In

addition, are the variables independent of each

other?

• Try to collect as much good data as possible, and

assess their value. For instance, are the data “hard”

or are they simply someone’s best guess?

• Make reasonable assumptions about the underlying

observations that are obtained. Are they coming

from discrete or continuous random variables? Are

they independent? Make preliminary guesses about

their underlying distributions; or at least construct

appropriate empirical distributions.

• If a parametric univariate distribution has been as-

sumed (e.g., exponential, normal, etc.), estimate

the relevant unknown parameters. For example,

one could use standard maximum likelihood meth-

ods to estimate an exponential distribution’s rate

parameter.

• Conduct a formal goodness-of-fit test (such as a

χ2 or Kolmogorov-Smirnov test) to check whether

or not the fitted distribution is reasonable.

• Try to determine whether more-sophisticated mod-

els (e.g., nonhomogeneous Poisson processes or

autoregressive-moving average time series) are ap-

propriate.

Input modeling is both an art and a science, and can have

a significant impact on the viability of the entire simulation

study.

5 OUTPUT ANALYSIS

Simulation output analysis is one of the most important

aspects of any proper and complete simulation study. Since

the input processes driving a simulation are usually ran-

dom variables (e.g., interarrival times, service times, and

breakdown times), we must also regard the output from

the simulation as random. Thus, runs of the simulation

only yield estimates of measures of system performance

(e.g., the mean customer waiting time). These estimators

are themselves random variables, and are therefore subject

to sampling error — and sampling error must be taken

into account to make valid inferences concerning system

performance.

The problem is that simulations almost never produce

convenient raw output that is IID normal data. For exam-

Goldsman
ple, consecutive customer waiting times from a queueing

system. . .

• Are not independent — typically, they are serially

correlated. If one customer at the post office waits

in line a long time, then the next customer is also

likely to wait a long time.

• Are not identically distributed. Customers showing

up early in the morning might have a much shorter

wait than those who show up just before closing

time.

• Are not normally distributed — they are usually

skewed to the right (and are certainly never less

than zero).

The point is that it is difficult to apply “classical” statis-

tical techniques to the analysis of simulation output. Thus,

our purpose here is to give methods to perform statistical

analysis of output from discrete-event computer simulations

that bypass the difficulties encountered when applying stan-

dard statistical methods. To facilitate the presentation, we

identify two types of simulations with respect to output

analysis: terminating and steady-state simulations.

1. Terminating (or transient) simulations. Here, the

nature of the problem explicitly defines the length

of the simulation run. For instance, we might be

interested in simulating a bank that closes at a

specific time each day.

2. Nonterminating (steady-state) simulations. Here,

the long-run behavior of the system is studied.

Presumedly this “steady-state” behavior is inde-

pendent of the simulation’s initial conditions. An

example is that of a continuously running produc-

tion line for which the experimenter is interested

in some long-run performance measure.

Techniques to analyze output from terminating simula-

tions are based on the method of independent replications,

discussed in Section 5.1. Additional problems arise for

steady-state simulations. For instance, we must now worry

about the problem of starting the simulation — how should

it be initialized at time zero, and how long must it be

run before data representative of steady state can be col-

lected? Initialization problems are considered in Section

5.2. Finally, Section 5.3 deals with point and confidence

interval estimation for steady-state simulation performance

parameters.

5.1 Terminating Simulation Analysis

Here we are interested in simulating some system of interest

over a finite time horizon. For now, assume we obtain

discrete simulation output Y1,Y2, . . . ,Ym, where the number
33
of observations m can be a constant or a random variable.

For example, the experimenter can specify the number m

of customer waiting times Y1,Y2, . . . ,Ym to be taken from a

queueing simulation. Or m could denote the random number

of customers observed during a specified time period [0,T].
Alternatively, we might observe continuous simulation

output {Y (t)|0≤ t ≤ T} over a specified interval [0,T]. For

instance, if we are interested in estimating the time-averaged

number of customers waiting in a queue during [0,T], the

quantity Y (t) would be the number of customers in the

queue at time t.

The easiest goal is to estimate the expected value of

the sample mean of the observations,

θ ≡ E[Ȳm],

where the sample mean in the discrete case is

Ȳm ≡
1

m

m

∑
i=1

Yi

(with a similar expression for the continuous case). For

example, we might be interested in estimating the expected

average waiting time of all customers at a shopping center

during the period 10 a.m. to 2 p.m.

Although Ȳm is an unbiased estimator for θ , a proper

statistical analysis requires that we also provide an estimate

of Var(Ȳm). Since the Yi’s are not necessarily IID random

variables, it is may be that Var(Ȳm) 6= Var(Yi)/m for any i,

a case not covered in elementary statistics courses.

For this reason, the familiar sample variance,

S2 ≡
1

m−1

m

∑
i=1

(Yi− Ȳm)2,

is likely to be highly biased as an estimator of mVar(Ȳm).
Thus, one should not use S2/m to estimate Var(Ȳm).

One way around the problem is via the method of

independent replications (IR). IR estimates Var(Ȳm) by

conducting b independent simulation runs (replications) of

the system under study, where each replication consists

of m observations. It is easy to make the replications

independent — simply re-initialize each replication with a

different pseudo-random number seed.

To proceed, denote the sample mean from replication

i by

Zi ≡
1

m

m

∑
j=1

Yi, j,

where Yi, j is observation j from replication i, for i =
1,2, . . . ,b and j = 1,2, . . . ,m.

If each run is started under the same operating conditions

(e.g., all queues empty and idle), then the replication sample

Goldsman
means Z1,Z2, . . . ,Zb are IID random variables. Then the

obvious point estimator for Var(Ȳm) = Var(Zi) is the sample

variance of the Zi’s,

V̂R ≡
1

b−1

b

∑
i=1

(Zi− Z̄b)
2,

where the grand mean is defined as Z̄b ≡∑b
i=1 Zi/b. Notice

how closely the forms of V̂R and S2/m resemble each other.

But since the replicate sample means are IID, V̂R is usually

much less biased for Var(Ȳm) than is S2/m.

In light of the above discussion, we see that V̂R/b is a

reasonable estimator for Var(Z̄b). Further, if the number of

observations per replication, m, is large enough, the Central

Limit Theorem tells us that the replicate sample means are

approximately IID normal.

Then basic statistics yields an approximate 100(1−α)%
two-sided confidence interval (CI) for θ ,

θ ∈ Z̄b± tα/2,b−1

√

V̂R/b , (5)

where tα/2,b−1 is the 1−α/2 quantile of the t-distribution

with b−1 degrees of freedom.

Example 17 Suppose we want to estimate the expected

average waiting time for the first 5000 customers in a

certain queueing system. We will make five independent

replications of the system, with each run initialized empty

and idle and consisting of 5000 waiting times. The resulting

replicate means are given in Table 4. Then Z̄5 = 4.28 and

Table 4: Five replicate means in a certain queueing system.

i 1 2 3 4 5

Zi 3.2 4.3 5.1 4.2 4.6

V̂R = 0.487. For level α = 0.05, we have t0.025,4 = 2.78, and

Equation (5) gives [3.41,5.15] as a 95% CI for the expected

average waiting time for the first 5000 customers. 2

Independent replications can be used to calculate vari-

ance estimates for statistics other than sample means. Then

the method can be used to obtain CI’s for quantities other

than E[Ȳm], e.g., quantiles. See any of the standard simu-

lation texts for additional uses of independent replications.

5.2 Initialization Problems

Before a simulation can be run, one must provide initial

values for all of the simulation’s state variables. Since

the experimenter may not know what initial values are

appropriate for the state variables, these values might be

chosen somewhat arbitrarily. For instance, we might decide
34
that it is “most convenient” to initialize a queue as empty

and idle. Such a choice of initial conditions can have a

significant but unrecognized impact on the simulation run’s

outcome. Thus, the initialization bias problem can lead to

errors, particularly in steady-state output analysis.

Some examples of problems concerning simulation ini-

tialization are as follows.

• Visual detection of initialization effects is some-

times difficult — especially in the case of stochas-

tic processes having high intrinsic variance such

as queueing systems.

• How should the simulation be initialized? Suppose

that a machine shop closes at a certain time each

day, even if there are jobs waiting to be served.

One must therefore be careful to start each day

with a demand that depends on the number of jobs

remaining from the previous day.

• Initialization bias can lead to point estimators for

steady-state parameters having high mean squared

error, as well as CI’s having poor coverage.

Since initialization bias raises important concerns, how

do we detect and deal with it? We first list methods to

detect it.

• Attempt to detect the bias visually by scanning a

realization of the simulated process. This might

not be easy, since visual analysis can miss bias.

Further, a visual scan can be tedious. To make the

visual analysis more efficient, one might transform

the data (e.g., take logs or square roots), smooth it,

average it across several independent replications,

or construct moving average plots.

• Conduct statistical tests for initialization bias.

Steiger et al. (2005) give an intuitively appeal-

ing sequential procedure to detect bias. Various

other tests check to see whether the initial portion

of the simulation output contains more variation

than latter portions.

If initialization bias is detected, one may want to do

something about it. Two simple methods for dealing with

bias are:

• Truncate the output by allowing the simulation

to “warm up” before data are retained for

analysis. The experimenter would then hope

that the remaining data are representative of

the steady-state system. Output truncation is

probably the most popular method for dealing

with initialization bias; and all of the major simu-

lation languages have built-in truncation functions.

Goldsman
But how can one find a good truncation point?

If the output is truncated “too early,” signif-

icant bias might still exist in the remaining

data. If it is truncated “too late,” then good

observations might be wasted. Unfortunately,

all simple rules to determine truncation points

do not perform well in general. A common

practice is to average observations across several

replications, and then visually choose a truncation

point based on the averaged run. See Welch

(1983) for a good visual/graphical approach and

Steiger et al. (2005) for a more-rigorous algorithm.

• Make a very long run to overwhelm the effects

of initialization bias. This method of bias control

is conceptually simple to carry out and may yield

point estimators having lower mean squared errors

than the analogous estimators from truncated data

(see, e.g., Fishman 1978). However, a problem

with this approach is that it can be wasteful with

observations; for some systems, an excessive run

length might be required before the initialization

effects are rendered negligible.

5.3 Steady-State Simulation Analysis

Now assume that we have on hand stationary (steady-state)

simulation output, Y1,Y2, . . . ,Yn. Our goal is to estimate some

parameter of interest, possibly the mean customer waiting

time or the expected profit produced by a certain factory

configuration. As in the case of terminating simulations, a

good statistical analysis must accompany the value of any

point estimator with a measure of its variance.

A number of methodologies have been proposed in the

literature for conducting steady-state output analysis: batch

means, independent replications, standardized time series,

spectral analysis, regeneration, and time series modeling,

as well as a host of others. We will examine the two

most popular: batch means and independent replications.

(Recall: As discussed earlier, the output analysis method

of choice for terminating simulations usually involves

independent replications.)

Batch Means. The method of batch means (BM) is often

used to estimate Var(Ȳn) or calculate CI’s for the steady-state

process mean µ . The idea is to divide one long simulation

run into a number of contiguous batches, and then appeal

to a central limit theorem to assume that the resulting batch

sample means are approximately IID normal.

In particular, suppose that we partition Y1,Y2, . . . ,Yn into

b nonoverlapping, contiguous batches, each consisting of

m observations (assume that n = bm). Thus, the ith batch,

i = 1,2, . . . ,b, consists of the random variables

Y(i−1)m+1,Y(i−1)m+2, . . . ,Yim.
35
The ith batch mean is simply the sample mean of the m

observations from batch i, i = 1,2, . . . ,b,

Zi ≡
1

m

m

∑
j=1

Y(i−1)m+ j.

Similar to independent replications, we define the BM

estimator for Var(Zi) as

V̂B ≡
1

b−1

b

∑
i=1

(Zi− Z̄b)
2,

where

Ȳn ≡ Z̄b ≡
1

b

b

∑
i=1

Zi

is the grand sample mean. If m is large, then the batch

means are approximately IID normal, and (as for IR) we

obtain an approximate 100(1−α)% CI for µ ,

µ ∈ Z̄b± tα/2,b−1

√

V̂B/b.

This equation is very similar to Equation (5). Of course,

the difference here is that the method of batch means divides

one long run into a number of batches, whereas independent

replications uses a number of independent shorter runs.

Indeed, consider the old IR example from Section 5.1 with

the understanding that the Zi’s are now regarded as batch

means (instead of replicate means); then the same numbers

carry through the example.

The technique of BM is intuitively appealing and easy

to understand. But problems can come up if the Yj’s are not

stationary (e.g., if significant initialization bias is present),

if the batch means are not normal, or if the batch means

are not independent. If any of these assumption viola-

tions exist, poor confidence interval coverage may result —

unbeknownst to the analyst.

To ameliorate the initialization bias problem, the

user can truncate some of the data or make a long run

as discussed in Section 5.2. In addition, the lack of

independence or normality of the batch means can be

countered by increasing the batch size m.

Independent Replications. Of the difficulties encountered

when using BM, the possibility of correlation among the

batch means might be the most troublesome. This problem

is explicitly avoided by the method of IR, described in

the context of terminating simulations in Section 5.1. In

fact, the replicate sample means are independent by their

construction. Unfortunately, since each of the b replications

has to be started properly, initialization bias presents more

trouble when using IR than when using BM. The usual

recommendation, in the context of steady-state analysis, is

Goldsman
to use BM over IR because of the possible initialization

bias in each of the replications.

6 COMPARISON OF SYSTEMS

One of the fundamental uses of simulation output analysis

regards the comparison of competing systems or alternative

system configurations. For example, suppose we wish to

evaluate two different “re-start” strategies that an airline

can evoke following a major traffic disruption such as a

snowstorm in the Northeast — which policy minimizes a

certain cost function associated with the re-start? Simulation

is uniquely equipped to help the experimenter conduct this

type of comparison analysis.

There are many techniques available for comparing sys-

tems, among them: (i) classical statistical CI’s, (ii) common

random numbers, (iii) antithetic variates, (iv) and ranking

and selection procedures. The following sections discuss

each general technique in turn.

6.1 Classical Confidence Intervals

With our airline example in mind, let Zi, j be the cost

from the jth simulation replication of strategy i, i = 1,2,

j = 1,2, . . . ,bi. For fixed i = 1,2, suppose Zi,1,Zi,2, . . . ,Zi,bi

are IID normal with unknown mean µi and unknown variance

— an assumption that can be justified by arguing that we

can

• Get independent data by controlling the random

numbers between replications.

• Get identically distributed costs between replica-

tions by performing the replications under identical

conditions.

• Get approximately normal data by adding up (or

averaging) many sub-costs to obtain overall costs

for both strategies.

The goal here is to calculate a 100(1−α)% CI for the

difference µ1−µ2. To this end, suppose that the Z1, j’s are

independent of the Z2, j’s and define

Z̄i,bi
≡

1

bi

bi

∑
j=1

Zi, j, i = 1,2,

and

S2
i ≡

1

bi−1

bi

∑
j=1

(Zi, j− Z̄i,bi
)2, i = 1,2.

An approximate 100(1−α)% CI is

µ1−µ2 ∈ Z̄1,b1
− Z̄2,b2

± tα/2,ν

√

S2
1

b1
+

S2
2

b2
36
where the approximate degrees of freedom ν (a function of

the sample variances) is given by (cf. Hines et al. 2003)

ν ≡

(

S2
1

b1
+

S2
2

b2

)2

(S2
1/b1)2

b1+1
+

(S2
2/b2)2

b2+1

−2.

Suppose (as in the airline example) that small cost is

good. If the interval lies entirely to the left [right] of zero,

then system 1 [2] is better; if the interval contains zero, then

the two systems must be regarded, in a statistical sense, as

about the same.

An alternative classical strategy is to use a CI that

is analogous to a paired-t hypothesis test. Here we take

b replications from both strategies and set the differences

D j ≡ Z1, j−Z2, j for j = 1,2, . . . ,b. Then we calculate the

sample mean and sample variance of the differences:

D̄b ≡
1

b

b

∑
j=1

D j and S2
D ≡

1

b−1

b

∑
j=1

(D j− D̄b)
2.

The resulting 100(1−α)% CI is

µ1−µ2 ∈ D̄b± tα/2,b−1

√

S2
D/b. (6)

These paired-t intervals are very efficient if

Corr(Z1, j,Z2, j) > 0, j = 1,2, . . . ,b (where we still assume

that Z1,1,Z1,2, . . . ,Z1,b are IID and Z2,1,Z2,2, . . . ,Z2,b are IID).

In that case, it turns out that

Var(D̄b) <
Var(Z1, j)+Var(Z2, j)

b
. (7)

If Z1, j and Z2, j had been simulated independently, then we

would have had equality in expression (7). Thus, our trick

may result in relatively small S2
D and, hence, small CI length

for (6). So how do we evoke the trick?

6.2 Common Random Numbers

The idea behind the above trick is to use common random

numbers (CRN), i.e., use the same pseudo-random numbers

in exactly the same ways for corresponding runs of each of

the competing systems. For example, we might use precisely

the same customer arrival times when simulating different

proposed configurations of a job shop. By subjecting the

alternative systems to identical experimental conditions, we

hope to make it easy to distinguish which systems are best

even though the respective estimators are subject to sampling

error.

Consider the case in which we compare two queueing

systems, A and B, on the basis of their expected customer

transit times, θA and θB — the smaller θ -value corresponds

Goldsman
to the better system. Suppose we have estimators θ̂A and θ̂B

for θA and θB, respectively. We will declare A as the better

system if θ̂A < θ̂B. If θ̂A and θ̂B are simulated independently,

then the variance of their difference,

Var(θ̂A− θ̂B) = Var(θ̂A)+Var(θ̂B),

could be very large, in which case our declaration might

lack conviction. If we could reduce Var(θ̂A− θ̂B), then we

could be much more confident about our declaration.

CRN sometimes induces a high positive correlation

between the point estimators θ̂A and θ̂B. Then we have

Var(θ̂A− θ̂B) = Var(θ̂A)+Var(θ̂B)−2Cov(θ̂A, θ̂B)

< Var(θ̂A)+Var(θ̂B),

and we obtain a savings in variance.

6.3 Antithetic Random Numbers

Alternatively, if we can induce negative correlation between

two unbiased estimators, θ̂1 and θ̂2, for some parameter θ ,

then the unbiased estimator (θ̂1 + θ̂2)/2 might have low

variance.

Most simulation texts give advice on how to run the

simulations of the competing systems so as to induce positive

or negative correlation between them. The consensus is

that, if conducted properly, common and antithetic random

numbers can lead to tremendous variance reductions.

6.4 Selecting the Best System

Ranking, selection, and multiple comparisons methods form

another class of statistical techniques used to compare al-

ternative systems. Here, the experimenter is interested in

selecting the best of a number of competing processes.

Typically, one specifies the desired probability of correctly

selecting the best process, especially if the best process

is significantly better than its competitors. These methods

are simple to use, fairly general, and intuitively appeal-

ing. See Bechhofer, Santner, and Goldsman (1995) as well

as previous Winter Simulation Conference Proceedings for

synopses of the most popular procedures.

7 SUMMARY

This tutorial began with some simple motivational exam-

ples illustrating various simulation concepts. After this, the

exposition turned to the generation of pseudo-random num-

bers and general random variables. PRN’s are numbers that

appear to be IID uniform (0,1), and are important because

they are used to generate all other random variables, e.g.,

normal, exponential, and Erlang. We then briefly discussed

simulation input analysis — what are appropriate random
37
variables to drive the simulation? We also spent a great

deal of time on simulation output analysis — simulation

output is almost never IID, so special care must be taken

if we are to make statistically valid conclusions about the

simulation’s results. We concentrated on output analysis

for both terminating and steady-state simulations.

Armed with our tutorial’s material, the interested reader

can now move on to the more-sophisticated tutorials found

elsewhere in this Proceedings.

ACKNOWLEDGMENT

This material was supported by the National Science Foun-

dation under Grant Number DMI-0400260.

REFERENCES

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol.

2005. Discrete-Event System Simulation, 4th edition,

Upper Saddle River, New Jersey: Prentice-Hall.

Bechhofer, R. E., T. J. Santner, and D. M. Goldsman. 1995.

Design and Analysis of Experiments for Statistical Se-

lection, Screening, and Multiple Comparisons. New

York: John Wiley and Sons.

Box, G. E. P., and M. F. Muller. 1958. A note on the

generation of normal random deviates. Annals of Math-

ematical Statistics, 29:610–611.

Bratley, P., B. L. Fox, and L. E. Schrage. 1987. A Guide to

Simulation, 2nd edition. New York: Springer-Verlag.

Fishman, G. S. 1978. Principles of Discrete Event Simu-

lation. New York: John Wiley and Sons.

Hines, W. W., D. C. Montgomery, D. Goldsman, and C. M.

Borror. 2003. Probability and Statistics in Engineering,

4th edition. New York: John Wiley and Sons.

Law, A. M. 2007. Simulation Modeling and Analysis, 4th

edition. New York: McGraw-Hill.

Steiger, N. M., E. K. Lada, J. R. Wilson, J. A. Joines,

C. Alexopoulos, and D. Goldsman. 2005. ASAP3:

A batch means procedure for steady-state simulation

analysis. ACM TOMACS, 15:39–73.

Welch, P. D. 1983. The statistical analysis of simulation

results, in The Computer Performance Modeling Hand-

book, ed. S. Lavenberg. Orlando: Academic Press.

AUTHOR BIOGRAPHY

DAVID GOLDSMAN is a Professor in the School of ISyE

at Georgia Tech. His research interests include simula-

tion output analysis and ranking and selection. He is an

active participant in the Winter Simulation Conference,

having been Program Chair in 1995, and having served

on the WSC Board of Directors since 2002. His e-mail

address is 〈sman@gatech.edu〉, and his web page is

〈www.isye.gatech.edu/∼sman/〉.

mailto:sman@gatech.edu
http://www.isye.gatech.edu/~sman/

	INTRODUCTION
	MOTIVATIONAL EXAMPLES
	GENERATING RANDOM VARIABLES
	Generating Uniform (0,1) Random Variables
	Generating Non-Uniform Random Variables

	INPUT ANALYSIS
	OUTPUT ANALYSIS
	Terminating Simulation Analysis
	Initialization Problems
	Steady-State Simulation Analysis

	COMPARISON OF SYSTEMS
	Classical Confidence Intervals
	Common Random Numbers
	Antithetic Random Numbers
	Selecting the Best System

	SUMMARY

