
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

DISCRETE-EVENT SIMULATION OF QUEUES WITH SPREADSHEETS: A TEACHING CASE

Marco Aurélio de Mesquita

Dept. of Production Engineering
Escola Politécnica - Universidade de São Paulo

Av. Prof. Almeida Prado, 531
05508-900, São Paulo, SP, BRAZIL

 Alvaro Euzebio Hernandez

Dept. of Production Engineering
Escola Politécnica - Universidade de São Paulo

Av. Prof. Almeida Prado, 531
05508-900, São Paulo, SP, BRAZIL

ABSTRACT

This paper describes the use of spreadsheets combined
with simple VBA code as a tool for teaching queuing the-
ory and discrete-event simulation. Four different cases are
considered: single server, parallel servers, tandem queuing,
and closed queuing system. The data obtained in the simu-
lation run are conveniently stored in spreadsheets for sub-
sequent statistical analysis. This approach was successfully
deployed in a second one-semester course on management
science for industrial engineers undergraduate students.

1 INTRODUCTION

Two common topics in a survey course on management
science are queuing theory and discrete-event-simulation.
Queuing theory generally refers to the development and
implementation of analytical, closed-form models of wait-
ing lines. Discrete-event simulation is usually taught by
means of some dedicated simulation software.

Both approaches have been criticized. The former
would be very mathematical and “closed-form models
would not be able to analyze most of the complex systems
that are encountered in practice” (Banks 1998). The latter
would be prone to emphasize specific simulation software
features instead of discrete-event simulation core concepts
(Schriber and Brunner 1998).

In order to improve the learning experience on these
subjects, discrete-event simulation of four simple queuing
systems were deployed through the combined use of native
spreadsheet functions and simple VBA code.

This paper presents the results of such process in the
following order:

• Background.
• Multi-server queuing model.
• Two-Stage tandem queuing model.
• Cyclic queuing model.
• Discussion of the teaching experience.
• Conclusion.

2271-4244-0501-7/06/$20.00 ©2006 IEEE
2 BACKGROUND

Centeno (1996) explains the two main approaches for dis-
crete simulation (event-driven and process driven): “Under
event driven discrete simulation, the modeler has to think
in terms of the events that may change the status of the sys-
tem to describe the model. […] On the other hand, under
the process driven approach, the modeler thinks in terms of
the processes that the dynamic entity will experience as it
moves through the system”.

Several authors have written about the use of the proc-
ess-driven approach based on spreadsheets to teach queu-
ing theory (Grossman 1999, Evans 2000, Ingolfsson and
Grossman 2002, and Hora 2003).

Banks (1998), employing a process-driven approach,
generates a table, called “ad hoc simulation table”, contain-
ing the relevant information about each customer in an sin-
gle-server queuing system (e.g. arrival time, waiting time
in queue, and total time in the system). Nonetheless, if one
is interested in analyzing other variables, such as the total
number of customers in the system at a given time, the “ad
hoc simulation table” alone does not suffice. In such cases,
a more elaborated table has to be constructed, placing the
arrival and departure times in their proper chronological
order, such as the example provided by Pritsker (1998),
which is referred to as an “event calendar”.

Chase et al. (1998) and Grossman (1999), also using
process-driven approaches, implement queuing systems us-
ing only native spreadsheet functions, obtaining the respec-
tive “ad hoc simulation” tables. The former simulates tan-
dem queues, the latter a multi-server queuing system.
Ingolfsson and Grossman (2002), building on the previous
work of Grossman, provides graphical interface in addition
to basic tables, displaying the customers and servers
statuses. An interesting feature of such approach is the pos-
sibility of replicating the simulation through the recalculat-
ing feature of MS Excel and observing the resulting
changes. The graphical interface obtained in their imple-
mentation, in conjunction with the recalculating function,

7

Mesquita and Hernandez

does provide “a richer understanding of queues”, as stated
by these authors.

On the other hand, an instance of the event-driven ap-
proach to simulate single queuing systems can be found in
Winston (2004). Albright (2001) presents a discrete-event
simulator of multi-server queuing systems through the use
of spreadsheet as interfaces by which the analyst can easily
input system parameters and read system performance
measures. In such implementation, the simulation and
evaluation of performance measures are undertaken by
pure VBA programming, which increases the complexity
of the code.

We felt that a proper understanding of queuing sys-
tems and an even deeper understanding of discrete-event
simulation could be attained if an event-driven simulation
of queuing systems were implemented through some easy
VBA programming in conjunction with spreadsheet func-
tions, mainly when compared to the more complex logic of
the spreadsheet modeling proposed by Ingolfsson and
Grossman (2002).

3 MULTI-SERVER QUEUING MODEL

In order to model a multi-server queuing system, one has
to take into consideration two main events: the arrival and
the departure of each customer. The basic logic involved is
to check which event occurs first as shown bellow. The
simulation runs until the following conditions are both sat-
isfied: the closing time is reached and there are no custom-
ers left in the system.

Sub MMc()
 Call Initialize
 Do
 Call FindNextEvent(Type, Server)
 Select Case Type
 Case 1
 Call Arrival
 Case 2
 Call Departure(Server)
 End Select
 Loop Until ClockTime > CloseTime
 And NumInSystem = 0
End Sub

The initialization process includes reading the parame-

ters set-up (Table 1) and the generation of the first event
(i.e., the arrival time of the first customer). The procedure
FindNextEvent determines which event will occur next: ei-
ther type 1, for an arrival, or type 2, for a departure. In the
case of a departure, the server from which it takes place is
also determined.

Table 1: Input Data
Arrival rate (customers per hour) 25
Mean service time (min) 5
Number of servers 3
227
Upon an arrival (during office hours), the customer ei-
ther joins the queue or seizes the server, depending on
server availability. In case there is more than one idle
server, the customer picks one of them randomly. The last
step is to define the next arrival time. The code for the ar-
rival procedure is shown bellow.

Sub Arrival()
 ClockTime = NextArrival
 NumInSystem = NumInSystem + 1
 If NextArrival > CloseTime Then
 NextArrival = Infinite
 Exit Sub
 End If
 If NumInSystem > NumServer Then
 NumInQueue = NumInQueue + 1
 Else
 Server = ChooseServerIdle
 ServerBusy(Server) = True
 NextDeparture = ClockTime + INVEXP(Mu)
 End If
 NextArrival = ClockTime + INVEXP(Lambda)
End Sub

After a service completion, there are two possibilities:

either the line is empty, in this case the server becomes
idle, or there is at least one customer in line, in such case
the customer who arrived first is picked up by the server.

Sub Departure(Server)
 ClockTime = NextDeparture(Server)
 NumInSystem = NumInSystem - 1
 If NumInQueue = 0 Then
 ServerBusy(Server) = False
 NextDeparture = Infinite
 Else
 ServerBusy(Server) = True
 NumInQueue = NumInQueue - 1
 NextDeparture = ClockTime + INVEXP(Mu)
 End If
End Sub

Despite the fact that in the current implementation the

inter-arrival and service time are modeled by exponential
random variates (which are easily generated), other distri-
butions may be used.

The values taken on by the state-variables during the
simulation run are written directly to the spreadsheets.
There are three main tables: event table, customer table,
and server table. These tables allow further statistical
analysis through spreadsheet functions.

Although any table alone completely describes the
simulation run, the way the information is displayed allows
different views of the queuing phenomenon. Table 2 shows
the event table for a given run. Besides the event calendar,
it shows the main state-variables. Its purpose is to highlight
the underlying discrete-event logic. Table 3 displays what
happens to each customer (the usual output of the process-
driven approach). Table 4 gives information about the
server status throughout the simulation run (due to column
width limitations, only data regarding one server is shown).
8

Mesquita and Hernandez

Table 2: Events
Next Departure Time Event N(t) Next

Arrival Serv. 1 Serv. 2 Serv. 3
9:00:00 Open 0 9:02:21 0:00:00 0:00:00 0:00:00
9:02:21 0 1 9:08:32 0:00:00 9:02:43 0:00:00
9:02:43 2 0 9:08:32 0:00:00 0:00:00 0:00:00
9:08:32 0 1 9:14:21 0:00:00 9:15:45 0:00:00
9:14:21 0 2 9:14:31 0:00:00 9:15:45 9:18:01
9:14:31 0 3 9:17:46 9:16:09 9:15:45 9:18:01
9:15:45 2 2 9:17:46 9:16:09 0:00:00 9:18:01
9:16:09 1 1 9:17:46 0:00:00 0:00:00 9:18:01
9:17:46 0 2 9:23:14 0:00:00 9:21:20 9:18:01
9:18:01 3 1 9:23:14 0:00:00 9:21:20 0:00:00
9:21:20 2 0 9:23:14 0:00:00 0:00:00 0:00:00
Key for event column: 0 - arrival; i – departure from server i (i > 0).

Table 3: Customers

Customer Arrival
Time

Service
Starting

Time
Server

Service
Finishing

Time
Open 9:00:00 --- --- ---

1 9:02:21 9:02:21 2 9:02:43
2 9:08:32 9:08:32 2 9:15:45
3 9:14:21 9:14:21 3 9:18:01
4 9:14:31 9:14:31 1 9:16:09
5 9:17:46 9:17:46 2 9:21:20
6 9:23:14 9:23:14 3 9:26:03
7 9:23:40 9:23:40 1 9:29:56
8 9:27:13 9:27:13 2 9:28:40
9 9:27:27 9:27:27 3 9:34:06

10 9:28:09 9:28:40 2 9:31:37

Table 4: Server 1
Time Status Customer

9:00:00 Idle ---
9:14:31 Busy 4
9:16:09 Idle ---
9:23:40 Busy 7
9:29:56 Busy 11
9:35:30 Busy 15
9:38:52 Idle ---
9:42:52 Busy 19
9:43:58 Idle ---
9:44:38 Busy 22
9:54:33 Idle ---

227
Data from Table 2 and 3 are shown as Gantt charts in
Figure 1 and 2 respectively. Usual performance measures
(e.g. average time in system, percent idle time, and maxi-
mum queue length) can be easily calculated from these ta-
bles with the statistical spreadsheet functions.

09:00 09:05 09:10 09:15 09:20 09:25

1

2

3

4

5

6

7

8

9

10

Waiting Time Service Time

Figure 1: First Ten Customers Waiting and Service Times

09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 11:00

Server 1

Server 2

Server 3

Busy Idle

Figure 2: Status of Servers

In addition to the previous charts, it is possible and in-
teresting to show the students how the number of custom-
ers in the system evolves over time, as exhibited in Fig-
ure 3.
9

Mesquita and Hernandez

0

1

2

3

4

5

6

7

8

9

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

Figure 3: Number of Customers in the Queuing System

4 TANDEM SINGLE-SERVER QUEUING MODEL

The tandem queuing model presented in this section con-
sists of two single servers. The main code below is very
similar to the previous one. The arrival process is basically
the same. However, the departure process should be han-
dled differently on each server.

Sub TandemMM1()
 Call Initialize
 Do
 Call FindNextEvent(Type)
 Select Case Type
 Case 1
 Call Arrival
 Case 2
 Call DepartureFromServer1
 Case 3
 Call DepartureFromServer2
 End Select
 Loop Until ClockTime > CloseTime
 And NumInSystem = 0
End Sub

The departure process from server one and from server

two are given next. The customer leaving server one goes
to the second server. At this time, he can either joins the
queue or seizes server 2 in case it is idle. At the same time,
server one begins servicing a customer waiting in line or, if
the line is empty, remains idle until a new customer arrives
in the system. The departure process at server two is simi-
lar to the case of the previous multi-server model.

228
Sub DepartureFromServer_1
 ClockTime = NextDeparture(1)
 NumInStation(1) = NumInStation(1) - 1
 NumInStation(2) = NumInStation(2) + 1
 If ServerBusy(2) Then
 NumInQueue(2) = NumInQueue(2) + 1
 Else
 ServerBusy(2) = True
 NextDeparture(2) = ClockTime +
 INVEXP(Mu2)
 If NumInQueue(1) = 0 Then
 ServerBusy(1) = False
 NextDeparture(1) = Infinite
 Else
 NumInQueue(1) = NumInQueue(1) - 1
 ServerBusy(1) = True
 NextDeparture(1) = ClockTime +
 INVEXP(Mu1)
 End If
End Sub

Sub DepartureFromServer_2
 ClockTime = NextDeparture(2)
 NumInStation(2) = NumInStation(2) - 1
 If NumInQueue(2) = 0 Then
 ServerBusy(2) = False
 NextDeparture(2) = Infinite
 Else
 NumInQueue(2) = NumInQueue(2) - 1
 ServerBusy(2) = True
 NextDeparture(2) = ClockTime +
 INVEXP(Mu2)
 End If
End Sub

Tables 7, 8, and 9 are event, customer and server ta-

bles similar to those obtained in the previous model. Figure
4 presents the waiting and service time of the first ten cus-
tomers on each server.

This model can be easily extended to any given num-
ber of servers. In order to accomplish such extension, one
has to add intermediate servers, which will be all handled
in the same way, but differently from the first and the last
server in the tandem system.

Table 5: Events

Next Departure Time Event N1(t) N2(t)
Next

Arrival Serv. 1 Serv. 2
9:00:00 Open 0 0 9:06:00 0:00:00 0:00:00
9:06:00 0 1 0 9:19:10 9:08:46 0:00:00
9:08:46 1 0 1 9:19:10 0:00:00 9:10:53
9:10:53 2 0 0 9:19:10 0:00:00 0:00:00
9:19:10 0 1 0 9:26:24 9:27:13 0:00:00
9:26:24 0 2 0 9:47:39 9:27:13 0:00:00
9:27:13 1 1 1 9:47:39 9:32:26 9:31:52
9:31:52 2 1 0 9:47:39 9:32:26 0:00:00
9:32:26 1 0 1 9:47:39 0:00:00 9:34:22
9:34:22 2 0 0 9:47:39 0:00:00 0:00:00
9:47:39 0 1 0 9:52:50 9:51:11 0:00:00

0

Mesquita and Hernandez

Table 6: Customers
Server 1 Server 2 Cus-

tomer Arrival Start Finish Start Finish
Open

1
2
3
4
5
6
7
8
9

10

9:00:00
9:06:00
9:19:10
9:26:24
9:47:39
9:52:50
9:58:49
9:59:37
10:07:33
10:25:37
10:28:43

9:06:00
9:19:10
9:27:13
9:47:39
9:52:50
9:58:49
10:01:26
10:07:33
10:25:37
10:35:41

9:08:46
9:27:13
9:32:26
9:51:11
9:53:28
10:01:26
10:03:14
10:11:22
10:35:41
10:56:02

9:08:46
9:27:13
9:32:26
9:51:11
9:56:23
10:01:26
10:03:14
10:11:22
10:35:41
10:56:02

9:10:53
9:31:52
9:34:22
9:56:23
9:59:03
10:01:40
10:10:53
10:11:23
10:35:41
11:01:35

Table 7: Servers
Server 1 Server 2

Time Status Time Status
9:00:00
9:06:00
9:08:46
9:19:10
9:27:13
9:32:26
9:47:39
9:51:11
9:52:50
9:53:28
9:58:49

10:01:26

Idle
Busy
Idle

Busy
Busy
Idle

Busy
Idle

Busy
Idle

Busy
Idle

9:00:00
9:08:46
9:10:53
9:27:13
9:31:52
9:32:26
9:34:22
9:51:11
9:56:23
9:59:03

10:01:26
10:01:40

Idle
Busy
Idle

Busy
Idle

Busy
Idle

Busy
Busy
Idle

Busy
Idle

09:00 09:10 09:20 09:30 09:40 09:50 10:00

1

3

5

7

9

Waiting T ime Service T ime

Figure 4: First Ten Customers Waiting and Service Time
228
5 CYCLIC QUEUING MODEL

Building up from the model presented in section 4, it is
possible to model a closed queuing system in which a con-
stant number of customers remains indefinitely in the sys-
tem, moving sequentially from one station to the next and
back to the first again (Kleinrock 1975).

Such model can be used to analyze pull production
systems such as the CONWIP (Constant Work-in-Process).
In this system, jobs flow sequentially through m working
stations. Upon process completion at station m, the job ex-
its the system and triggers a new job release at station one
(Spearman et al. 1990).

A four-station assembly line, with identical patterns of
process times (deterministic, normal and exponential dis-
tributions) and different numbers of jobs (or work-in-
process level), was simulated.

Initially, it was considered a balanced line (i.e., all sta-
tions with the same average process time of 5 minutes).
Figure 5 shows the throughput of the system (average
number of jobs exiting the system per hour) as a function
of the work-in-process level. One can easily grasp from
this chart the corrupting influence of the variability of the
process time over the throughput.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - Deterministic
2 - Normal, σ=0,5
3 - Normal, σ=1,0
4 - Normal, σ=1,5
5 - Exponential

1 2 3

4

5

Figure 5: Throughput vs. WIP (m=4, μ=5min)

Figure 6 shows that the average lead time (i.e. the time

it takes for the job to cross the system) increases as a func-
tion of the work-in-process level. Once again, the worst
case takes place when the process time is exponentially
distributed.

When simulating the case of unbalanced lines, with
average process times of 5, 6, 5, and 4 minutes, the maxi-
mum throughput drops from 12 to 10 jobs/hour, which cor-
responds to the expected throughput of the second station
(the bottleneck).
1

Mesquita and Hernandez

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - Deterministic
2 - Normal, σ=0,5
3 - Normal, σ=1,0
4 - Normal, σ=1,5
5 - Exponential1 2

3

4

5

Figure 6:Lead Time vs. WIP (m=4, μ=5 min)

6 TEACHING EXPERIENCE

The authors teach the second one-semester management
science survey course (out of two) in a production engi-
neering curriculum comprising probabilistic modeling and
discrete-event simulation.

The first third of the course is used to teach classic
concepts on Markov chain and on queuing theory using
regular text books like Winston (2004). The second third of
the course is dedicated to teaching discrete-event simula-
tion. The last part of the course comprises dynamic pro-
gramming and decision analysis.

The discrete-event simulation module begins with the
simulation of the classic M/M/1. The very first approach
adopted is a conceptual, by hand process-driven simulation
(the so-called “ad hoc simulation”). In the next step, the
students are required to simulate the same M/M/1, this time
using an event-driven approach, as suggested by Winston
(2004), and implemented on an Excel/VBA workbook pro-
vided by the instructors.

Following these activities, the students are required to
develop and implement the multi-server and tandem queu-
ing models.

An interesting result is achieved when the exponential
service time distribution is replaced by other types of dis-
tributions. For instance, through the use of normal distribu-
tions, the effect of the service time variance on perform-
ance measures can be easily shown.

The tandem queuing model, presented in section 4, is
useful to show the effect of unbalanced workstations on
customers waiting time.

By the same token, queuing networks are introduced.
An instance of a cyclic queuing model is studied. The re-
sults achieved by its simulation (throughput and the cycle
time) can be used to better analyze and design the work-in-
process level.

The discrete-event simulation module is concluded
with the introduction of a professional simulation software.
228
This software is used in tutorial lectures where the students
have the opportunity to implement the same models stud-
ied before. After that, more complex models using such
software are demonstrated. Such experience reveals the
great potential of the simulation technique in the analysis
of real-world productive systems.

7 CONCLUSIONS

The widespread use of spreadsheets programs such as Mi-
crosoft Excel, either as a didactical or as a professional tool
in the management science, is an indisputable fact. How-
ever, most authors, when referring to spreadsheet model-
ing, limit themselves to native spreadsheet functions, rul-
ing out the implementation of macros through the use of
some programming language. Nonetheless, we found out
that it is to the students’ advantage to blend simple VBA
code (to handle the simulation itself) with spreadsheets na-
tive functions (for output data analysis).

In view of our previous teaching experience, the ap-
proach proposed in this paper allows not only a better un-
derstanding of queuing theory but also a better introduction
to discrete-event simulation.

REFERENCES

Albright, S.C. 2001. VBA for Modelers. Pacific Grove:
Duxbury.

Banks, J. 1998. Principles of Simulation. In Handbook of
Simulation: principles, methodology, advances, appli-
cations, and practice. Ed. J. Banks. New York: John
Wiley.

Centeno, M.A. 1996. An Introduction to Simulation Mod-
eling. In Proceedings of the 1996 Winter Simulation
Conference, ed. J.M. Charnes, D.J. Morrice, D.T.
Brunner, and J.J. Swain, 15-22. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers.

Chase, R.B., N. J. Aquilano, F. R. Jacobs. 1998. Produc-
tion and Operations Management: manufacturing and
services. 8th ed. Boston: Irwin/McGraw-Hill.

Evans, J.R. 2000. Spreadsheets as a Tool for Teaching
Simulation. Informs Transactions on Educations. 1(1),
p.27-37.

Grossman, T.A. 1999. Teachers’ Forum: spreadsheet mod-
eling and simulation improves understanding of
queues. Interfaces. 29(3), p.88-103.

Hora, S.C. 2003. Spreadsheet Modeling of the G/G/c
Queuing System without Macros or Add-Ins. Informs
Transactions on Educations. 3(3), p.86-89.

Ingolfsson, A.; T. A. Grossman. 2002. Graphical Spread-
sheet Simulation of Queues. Informs Transactions on
Educations, 2(2), p.27-39.

Kleinrock, L. 1975. Queuing Systems. New York: John
Wiley.
2

Mesquita and Hernandez

Pritsker, A. A. B. 1998. Principles of Simulation Modeling.

In Handbook of Simulation: principles, methodology,
advances, applications, and practice. Ed. J. Banks.
New York: John Wiley.

Schriber, T.J.; and D. T. Brunner. 1998. How Discrete-
Event Simulation Software Works. In Handbook of
Simulation: principles, methodology, advances, appli-
cations, and practice. Ed. J. Banks. New York: John
Wiley.

Spearman, M.L.; D. L. Woodruff; and W. J. Hopp. 1990.
CONWIP: a pull alternative to kanban. International
Journal of Production Research. 28(5), p.879-894.

Winston, W. L. 2004. Operations Research, 4th ed. Bel-
mont: Thomson Learning.

AUTHOR BIOGRAPHIES

MARCO AURÉLIO DE MESQUITA is Assistant Pro-
fessor of Operations Management at Polytechnic School of
the University of São Paulo (USP), in Brazil. He holds a
B.S. degree in Naval Engineering, an M.S. and a Ph.D. de-
gree in Production Engineering from the Polytechnic
School of the University of São Paulo. His research inter-
ests include modeling and simulation of production sys-
tems, inventory management and production scheduling.
He is a member of the ABEPRO (The Brazilian Associa-
tion for Production Engineering) and of the INFORMS.
His e-mail is <marco.mesquita@poli.usp.br>.

ALVARO EUZEBIO HERNANDEZ holds a B.S. degree
in Electrical Engineering, an M.S. and a Ph.D. degree in
Industrial Engineering from the University of São Paulo.
He also holds an M.S. degree in Engineering-Economic
Systems and an MS degree in Operations Research from
Stanford University. In addition, he holds an MBA
from the Getulio Vargas Foundation and a JD from the
University of Sao Paulo. He is an assistant professor at the
Industrial Engineering Department at the Polytechnic
School of the University of São Paulo. His e-mail is
<alvarohernandez@usp.br>.
2283

mailto:marco.mesquita@poli.usp.br
mailto:alvarohernandez@usp.br

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

