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ABSTRACT 

We present the results of coverage tests performed to vali-
date our preliminary analysis indicating that determining 
‘appropriate’ run length is more important for obtaining 
coverage than performing ‘proper’ transient analysis. Our 
preliminary experiment was designed with the intention of 
showing students the pitfalls of performing ‘bad’ transient 
analysis when estimating steady-state parameters. How-
ever, we found that for short run lengths any transient trun-
cation diminishes coverage; and it is only beneficial to de-
lete transient data when long runs of the output data are 
available. As with the preliminary analysis, two types of 
systems are analyzed (M/M/1/GD/∞/∞ systems and an 
M/M/s/GD/∞/∞); additionally, coverage tests are also con-
ducted on 3-stage M/M/1/GD/∞/∞ queuing systems. The 
coverage analysis supports our preliminary conclusion: 
when first exposing students to the subject of output analy-
sis on non-terminating systems, strong emphasis should be 
placed on choosing proper run length and the time devoted 
to transient analysis can be reduced. 

1 INTRODUCTION 

Estimating steady-state parameters for non-terminating 
systems often requires the identification and elimination of 
transient data from the output response. Most of the tech-
niques available for identifying transient data (transient 
analysis) are too ad-hoc or mathematically too difficult to 
be understood by the typical undergraduate student. As 
documented by Court, Pittman and Pham (2005a) there are 
several issues a student must face when trying to learn how 
to identify the ‘proper’ transient deletion point. In addition 
to the basic issues of not generating ‘enough’ steady-state 
data in the output response and/or not deleting ‘enough’ 
transient data to avoid initialization bias; there are no sci-
entific means for the student to validate their decisions 
unless the simulated system is simple enough to have 
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closed-form solutions available for the system parameters. 
However, when the student becomes a simulation practi-
tioner, simulation studies are usually not performed when 
closed-form solutions exist. Thus, there are no means for 
the practitioner to guarantee that the confidence intervals 
generated will cover the true mean, regardless of how 
much care was taken to determine the truncation point. 

In (Court, Pittman and Pham 2005b), we conducted an 
experiment with the intention of showing undergraduate 
students that transient analysis should not be ignored. We 
explored two types of queuing systems (M/M/1/GD/∞/∞ 
systems and an M/M/s/GD/∞/∞) at various levels of ρ; 
where the parameter of interest is Wq – the average waiting 
time in queue. The cases were chosen since these systems 
are typically introduced in an undergraduate stochastic op-
erations research course and well-known queuing theory 
results exist; so students are able to determine if a confi-
dence interval contains the true mean. The method of inde-
pendent replications was used to generate 95% confidence 
intervals on Wq, and a cumulative average approach was 
utilized for transient analysis.  

The methodology followed in our paper required us to 
introduce two key concepts:  
 

1. Perfect transient analysis can be achieved when 
in the output data, a ‘perfect transient point’ 
(PTP) exists such that from that point to the end 
of the simulation run, the average of the remain-
ing data equals the true mean of the unknown pa-
rameter of interest.  

2. Worst-case-transient analysis occurs when the 
student/practitioner ignores (either intentionally or 
unintentionally) transient analysis altogether. In 
other words, no initial data is deleted from the 
simulation runs and hence, the method of inde-
pendent replications will see its worst case of ini-
tialization bias. 
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We found that the worst-case transient analysis cases 
(those cases that left transient data in the output response) 
not only generated valid confidence intervals but were of-
ten more precise than the confidence intervals generated 
with ‘perfect transient’ data deleted, hence, the title, 
“Should transient analysis be taught?” (Court, Pittman and 
Pham 2005b). However, our preliminary results lack the 
coverage tests to validate our findings. This paper now an-
swers the question of, “Should transient analysis be 
taught?”, by providing the coverage tests to validate our 
preliminary findings. The next section outlines the meth-
odology we followed for conducting the coverage tests, our 
analysis and our results. 

2 METHODOLOGY, RESULTS AND ANALYSIS 

As with the preliminary analysis (Court, Pittman and Pham 
2005b), two types of queuing systems cases (Case 1 and 
Case 2) are analyzed and here, we add an additional set of 
queues-in-series (Case 3), defined as follows: 
 

• Case 1: M/M/1/GD/∞/∞ systems at three levels of 
ρ (=0.50, 0.75, 0.90). 

• Case 2: An M/M/s/GD/∞/∞ optimization problem 
with λ=2/minute, µ=0.5/minute, a per server cost 
of $9/hour and a delay cost to the customer of 
$0.05/minute, at s=5 and s=6. 

• Case 3: Three M/M/1/GD/∞/∞ systems in series 
(tandem queues without blocking) at three levels 
of ρ (=0.50, 0.75, 0.90). 

 
As before, these cases are chosen since well-known 

queuing theory results exist, and these systems are typi-
cally introduced in an undergraduate stochastic operations 
research course. The parameter of interest is the average 
waiting time in queue, Wq. Note, the Case 2 system types 
are characteristically used to introduce the formulation re-
quired to solve queuing optimization problems. Since the 
waiting cost to the customer and the per server costs are 
fixed, to solve the problem through simulation analysis is 
equivalent to determining a parameter estimate for the av-
erage waiting time in queue (Wq—the only unknown pa-
rameter). As with our preliminary analysis all cases were 
simulated via the Arena 7.01 software (Kelton, Sadowski 
and Sturrock 2004) and analyzed via Arena 7.01 and Mi-
crosoft Excel.  

For our 95% coverage analysis, we use 25 sets of 95% 
confidence intervals on Wq obtained via the method of in-
dependent replications with 20 replications. Our methodol-
ogy for all cases is illustrated through the Case 1 systems 
(as seen in Figure 1) and outlined below: 

 
1. At a minimum, run lengths of 6,000; 20,000; 

50,000; 100,000 and 1,000,000 time units are util-
ized for all cases to identify the perfect transient 
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point at various run lengths and to allow the 
worst-case transient analysis (no deletion of 
transient) at various run lengths to be explored. 
For the worst-case transient analysis, all data gen-
erated by the simulated system are utilized in the 
confidence intervals. These cases will see the 
method of independent replications suffer its 
worst-case initialization bias and thus, should re-
sult in poor coverage. Tables 1-3 contain the esti-
mated coverage for Cases 1-3, respectively, under 
the worst-case transient analysis condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Methodology Diagram for Case 1 Systems 
 
2. A pilot run for the cases is conducted at the run 

lengths of (1), to identify where in the output data 
the average of the output data first equals the 
theoretical value. This process can be called a 
“reverse cumulative average” approach, where 
the first observation is dropped from the cumula-
tive average until the remaining data, when aver-
aged, equals the theoretical value. The point after 
which the data’s average equals the theoretical 
value is noted as the perfect transient point 
(PTP). 

3. If a PTP can be found for a particular run length, 
two more sets of confidence intervals are gener-

M/M/1/GD/∞/∞ 
ρ = 0.50, 0.75 and 0.90 

Perfect Transient 
Analysis (PTA) 

RL = 6,000; 
20,000; 50,000; 

100,000; and 
1,000,000 time 

units 

Perfect Transient 
Point (PTP) 

Identified (if found) 

Worst Case 
Analysis  

(No Transient 
Deleted) 

Run Length (RL) = 
6,000; 20,000; 

50,000; 100,000; 
and 1,000,000 time 

units  

Pilot Run 

PTA with Original 
RL 

Data Collected Length 
= Original RL - PTP 

 PTA with Original  
RL + PTP 

Data Collected Length = 
Original RL 

Yes 

Method of Independence 
Replication 

Confidence Interval Generated 
with 20 replications 

Coverage Analysis 
25 cases of 20 replications 

Stop 

LEGEND 

      -  “Equivalent” 
Run Lengths 

No
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ated via the method of independent replications. 
Tables 4-6 contain the 95% coverage tests of 
these two situations (a) and (b), described below, 
for Case 1-Case 3, respectively. 

 
(a) First, the replications have the perfect tran-

sient deleted but the total run length is termi-
nated at the original run length’s time unit. 
For example, if the run length is 20,000 time 
units (Original RL) and the perfect transient 
point is found to occur at 12,000 time units 
(PTP), each replication will have a total of 
8,000 time units (Original RL – PTP) worth 
of data available to calculate each replica-
tion’s sample mean. 

 
(b) Secondly, perfect transient is deleted from the 

replications and the total run length is modi-
fied to equal that of the perfect transient’s 
time units plus the original run length’s time 
units. Following the same example in (a), the 
new run length is 32,000 time units (Original 
RL + PTP) for each of the replications, where 
the first 12,000 time units are specified as 
‘warm-up’ and the remaining 20,000 time 
units of data are available for calculating each 
replication’s sample mean. 

 
Table 1: Estimated Coverage for Worst-Case Transient 
Analysis for Case 1 Systems 

ρ=0.50 ρ=0.75 ρ=0.90 M/M/1 
Wq 

Run Length 0.500 2.250 8.100 

6,000 84.00%+/-
14.37% 

80.00%+/- 
15.68% 

88.00%+/- 
12.74% 

20,000 100.00%+
/-0.00% 

92.00%+/- 
10.63% 

76.00%+/- 
16.74% 

50,000 96.00%+/- 
7.68% 

96.00%+/- 
7.68% 

96.00%+/- 
7.68% 

100,000 96.00%+/- 
7.68% 

92.00%+/ 
10.63%- 

92.00%+/- 
10.63% 

1,000,000 80.00%+/- 
15.68% 

88.00%+/- 
12.74% 

92.00%+/- 
10.63% 

 
Table 2: Estimated Coverage for Worst-Case Transient 
Analysis for Case 2 Systems 

s=5 s=6 M/M/s 
Wq 

Run Length 1.108 0.285 

6,000 84.00%+/-14.37% 96.00%+/-7.68% 
20,000 92.00%+/-10.63% 96.00%+/-7.68% 
50,000 96.00%+/- 7.68% 96.00%+/-7.68% 
100,000 92.00%+/-10.63% 100.00%+/-0.00% 
500,000   96.00%+/-7.68% 
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Table 3: Estimated Coverage for Worst-Case Transient 
Analysis for Case 3 Systems 

ρ=0.50 ρ=0.75 ρ=0.90 3-M/M/1
Wq 

Run Length 1.500 6.750 24.300 

6,000 96.00%+/-
7.68% 

100.00%+/-
0.00% 

100.00%+
/-0.00% 

20000 92.00%+/-
10.63% 

100.00%+/-
0.00% 

100.00%+
/-0.00% 

50,000 100.00%+
/-0.00% 

92.00%+/-
10.63% 

84.00%+/-
14.37% 

100,000 96.00%+/-
7.68% 

88.00%+/-
12.74% 

88.00%+/-
12.74% 

1,000,000 100.00%+
/-0.00% 

96.00%+/-
7.68% 

100.00%+
/-0.00% 

 
For Case 1 systems under worst-case transient analysis 

conditions, except for the estimated coverage at the 20,000 
run length when ρ=0.90 (the upper bound on true coverage 
is 92.74%), the remaining 17 cases achieve 95% true cov-
erage (see Table 1). Table 4 shows the remaining systems 
of Case 1; (a) is run at the original run length with a warm-
up period set at the perfect transient point and (b) is run 
with the total simulated time equal to the original run 
length plus the perfect transient point; except for ρ=0.90 at 
a 6,000 run length, all other scenarios attain 95% coverage. 
 
Table 4: Estimated Coverage for Two Run Lengths for 
Case 1 Systems 

M/M/1 
 

Run Length 
ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (a) 94.44%+/-
10.58% 

100.00%+/
-0.00%   

6,000 (b) 94.44%+/-
10.58% 

100.00%+/
-0.00%   

20,000 (a) 95.24%+/-
9.11% 

100.00%+/
-0.00% 

100.00%+/-
0.00% 

20,000 (b) 95.24%+/-
9.11% 

100.00%+/
-0.00% 

100.00%+/-
0.00% 

50,000 (a) 100.00%+
/-0.00% 

94.44%+/-
10.58% 

92.31%+/-
14.49% 

50,000 (b) 100.00%+
/-0.00% 

94.44%+/-
10.58% 

100.00%+/-
0.00% 

100,000 (a) 100.00%+
/-0.00% 

95.24%+/-
9.11% 

95.24%+/-
9.11% 

100,000 (b) 96.00%+/-
7.68% 

100.00%+/
-0.00% 

95.24%+/-
9.11% 

1,000,000 (a) 84.00%+/- 
14.37% 

92.00%+/- 
10.63% 

91.67%+/-
11.06% 

1,000,000 (b) 96.00%+/- 
7.68% 

96.00%+/- 
7.68% 

95.83%+/-
7.99% 
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Table 5: Estimated Coverage for Two Run Lengths for 
Case 2 Systems 

M/M/s 

 
Run Length 

s=5 s=6 

6,000 (a) 100.00%+/-0.00% 100.00%+/-0.00% 
6,000 (b) 80.00%+/-24.79% 100.00%+/-0.00% 
20,000 (a) 95.45%+/-8.70% 100.00%+/-0.00% 
20,000 (b) 100.00%+/-0.00% 100.00%+/-0.00% 
50,000 (a) 95.45%+/-8.70% 94.74%+/-10.04% 
50,000 (b) 90.91%+/-12.01% 94.74%+/-10.04% 
100,000 (a) 95.00%+/-9.55% 100.00%+/-0.00% 
100,000 (b) 95.00%+/-9.55% 100.00%+/-0.00% 
500,000 (a)  92.00%+/-10.63% 
500,000 (b)  100.00%+/-0.00% 

 
Table 6: Estimated Coverage for Two Run Lengths for 
Case 3 Systems 

3-M/M/1 

 
Run Length 

ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (a) 100.00%+
/-0.00% 

77.78%+/-
27.16% 

100.00%+/-
0.00% 

6,000 (b) 100.00%+
/-0.00% 

88.89%+/-
20.53% 

100.00%+/-
0.00% 

20,000 (a) 100.00%+
/-0.00% 

100.00%+/
-0.00%  

20,000 (b) 100.00%+
/-0.00% 

80.00%+/-
35.06%  

50,000 (a) 100.00%+
/-0.00% 

100.00%+/
-0.00% 

81.82%+/-
22.79% 

50,000 (b) 95.65%+/-
8.33% 

91.67%+/-
15.64% 

81.82%+/-
22.79% 

100,000 (a) 100.00%+
/-0.00% 

92.86%+/-
13.49% 

91.67%+/-
15.64% 

100,000 (b) 100.00%+
/-0.00% 

92.86%+/-
13.49% 

91.67%+/-
15.64% 

1,000,000 (a) 100.00%+
/-0.00% 

89.47%+/-
13.80% 

92.86%+/-
13.49% 

1,000,000 (b) 95.83%+/-
7.99% 

89.47%+/-
13.80% 

85.71%+/-
18.33% 

 
Additionally, when precision for coverage is investi-

gated for the Case 1 systems under the worst-case transient 
analysis conditions (see Table 7), we found that for all lev-
els of ρ, the precision improves when the run length in-
creases and the best precision is always attained at the 
longest run length. As with our preliminary analysis 
(Court, Pittman, and Pham 2005b), these results indicate 
that as the run length increases, the precision of the confi-
dence interval improves even though transient data is con-
tained within the output response. 
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We also found that for all levels of ρ, the precision of 
the (b) confidence intervals is the same or better than the 
precision of the (a) confidence intervals (see Table 8). 
And, in keeping with prior results on run length, precision 
improves as run length increases. So here one sees that 
there does seem to be an advantage to increasing run length 
for data collection once perfect transient is deleted. 
 
Table 7: Precision for Coverage for Worst-Case Transient 
Analysis for Case 1 Systems 

M/M/1

 
Run Length 

ρ=0.50 ρ=0.75 ρ=0.90 

6,000 0.0307 0.0518 0.1125 
20,000 0.0169 0.0281 0.0646 
50,000 0.0114 0.0193 0.0440 
100,000 0.0081 0.0133 0.0268 
1,000,000 0.0025 0.0043 0.0101 

 
Table 8: Precision for Coverage at Two Run Lengths for 
Case 1 Systems 

M/M/1
 

Run Length 
ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (a) 0.0523 0.1241 0.0990 
6,000 (b) 0.0312 0.0554 0.0954 
20,000 (a) 0.0318 0.0482 0.1221 
20,000 (b) 0.0166 0.0298 0.0613 
50,000 (a) 0.0230 0.0262 0.0624 
50,000 (b) 0.0117 0.0177 0.0396 
100,000 (a) 0.0174 0.0323 0.0645 
100,000 (b) 0.0076 0.0134 0.0310 

1,000,000 (a) 0.0034 0.0058 0.0143 
1,000,000 (b) 0.0025 0.0041 0.0103 

 
Returning to the issue of coverage, one can compare 

‘equivalent run lengths’. The worst-case transient analysis 
run lengths can be compared against ‘equivalent’ run 
lengths of the (b) systems of Table 4. 

Table 9 reveals the number of 95% confidence inter-
vals that contain the true means of both the worst-case 
transient analysis run lengths (w) and the corresponding 
‘equivalent’ run lengths (b) of the Case 1 systems. In gen-
eral, the worst-case transient analysis runs generated more 
‘valid’ (Wq is within the confidence interval) confidence 
intervals at shorter run lengths than (b) (since some perfect 
transient points could not be found at the shorter run 
lengths). So, the runs with no transient deleted generated a 
total of 337 ‘valid’ confidence intervals, while the (b) runs 
only generated a total of 260 ‘valid’ confidence intervals. 
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Table 10 contains the precision of confidence intervals 
generated by the worst-case transient analysis run lengths 
(w) and the ‘equivalent’ run lengths (b) of the Case 1 sys-
tems. The runs with no transient deleted (worst-case tran-
sient analysis condition) generated confidence intervals 
with better precision 8 out of 15 times. 

As with the Case 1 systems, the same trends exist for 
the Case 2 systems’ coverage analysis:  
 

• For the worst-case scenario (see Table 2), as  
the run length increases, the precision of the con-
fidence interval improves (see Table 11). 

• For the perfect transient runs, there seems to be an 
advantage to increasing the run length for ‘steady- 
state’ data collection once perfect transient is de-
leted; and, as with all previous results, precision 
improves as run length increases (see Tables 5 
and 12). 

 
 Under ‘equivalent’ run lengths, the worst-case tran-
sient analysis runs generated more valid and precise confi-
dence intervals at shorter run lengths than (b) (see Tables 
13 and 14). 
 Likewise, as with the Case 1 and Case 2 systems, the 
same results are observed for the Case 3 systems:  
 

• For the worst-case scenario (see Table 3), as  
the run length increases, the precision of the con-
fidence interval improves (see Table 15). 

• For the perfect transient runs, there seems to be an 
advantage to increasing the run length for ‘steady-
state’ data collection once perfect transient is de-
leted; and, as with all previous results, precision 
improves as run length increases (see Tables 6 
and 16). 

• Under ‘equivalent’ run length conditions, the 
worst-case transient analysis runs generated more 
valid and precise confidence intervals at shorter 
run lengths than (b) (see Tables 17 and 18). 

 
Table 9: Number of 95% Confidence Intervals Containing 
the True Means for Case 1 Systems 

M/M/1 
 

Run Length 
ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (w) 21 20 22 
6,000 (b) 17 9 1 

20,000 (w) 25 23 19 
20,000 (b) 20 19 6 
50,000 (w) 24 24 24 
50,000 (b) 22 17 13 

100,000 (w) 24 23 23 
100,000 (b) 24 21 20 

1,000,000 (w) 20 22 23 
1,000,000 (b) 24 24 23 
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Table 10: Precision of 95% Confidence Intervals for Case 
1 Systems 

M/M/1 
 

Run Length 
ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (w) 0.0307 0.0523 0.1184 
6,000 (b) 0.0312 0.0554 0.0954 

20,000 (w) 0.0169 0.0281 0.0642 
20,000 (b) 0.0166 0.0298 0.0613 
50,000 (w) 0.0114 0.0193 0.0424 
50,000 (b) 0.0117 0.0177 0.0396 

100,000 (w) 0.0081 0.0133 0.0267 
100,000 (b) 0.0076 0.0134 0.0310 

1,000,000 (w) 0.0025 0.0043 0.0101 
1,000,000 (b) 0.0025 0.0041 0.0103 

 
Table 11: Precision for Coverage for Worst-Case Transient 
Analysis for Case 2 Systems 

M/M/s 
 

Run Length 
s=5 s=6 

6,000 0.0636 0.0571 
20,000 0.0330 0.0294 
50,000 0.0213 0.0197 
100,000 0.0152 0.0140 
500,000   0.0065 

 
Table 12: Precision for Coverage at Two Run Lengths for 
Case 2 Systems 

M/M/s 
 
Run Length 

s=5 s=6 

6,000 (a) 0.1265 0.1065 
6,000 (b) 0.0593 0.0542 
20,000 (a) 0.0490 0.0399 
20,000 (b) 0.0340 0.0291 
50,000 (a) 0.0358 0.0426 
50,000 (b) 0.0213 0.0195 
100,000 (a) 0.0532 0.0547 
100,000 (b) 0.0162 0.0140 
500,000 (a)  0.0109 
500,000 (b)  0.0062 

 
Table 13: Number of 95% Confidence Intervals Containing 
the True Means for Case 2 Systems 

M/M/s 
 
Run Length 

s=5 s=6 

6,000 (w) 21 24 
6,000 (b) 8 16 

20,000 (w) 23 24 
20,000 (b) 22 23 
50,000 (w) 24 24 
4
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50,000 (b) 20 18 
100,000 (w) 23 25 
100,000 (b) 19 24 
500,000 (w)  24 
500,000 (b)  25 

 
Table 14: Precision of 95% Confidence Intervals for Case 
2 Systems 

M/M/s 
 
Run Length 

S=5 s=6 

6,000 (w) 0.0636 0.0571 
6,000 (b) 0.0593 0.0542 

20,000 (w) 0.0328 0.0297 
20,000 (b) 0.0340 0.0291 
50,000 (w) 0.0210 0.0194 
50,000 (b) 0.0213 0.0195 

100,000 (w) 0.0151 0.0140 
100,000 (b) 0.0162 0.0140 
500,000 (w)  0.0065 
500,000 (b)  0.0062 

 
Table 15: Precision for Coverage for Worst-Case Transient 
Analysis for Case 3 Systems 

3-M/M/1 

 
Run Length 

ρ=0.50 ρ=0.75 ρ=0.90 

6,000 0.0251 0.0455 0.0974 
20,000 0.0129 0.0235 0.0500 
50,000 0.0081 0.0140 0.0302 
100,000 0.0061 0.0103 0.0237 
1,000,000 0.0016 0.0028 0.0064 

 
Table 16: Precision for Coverage at Two Run Lengths for 
Case 3 Systems 

3-M/M/1 
 

Run Length 
ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (a) 0.0270 0.0653 0.0961 
6,000 (b) 0.0253 0.0418 0.1017 
20,000 (a) 0.0248 0.0286  
20,000 (b) 0.0123 0.0200  
50,000 (a) 0.0189 0.0243 0.0480 
50,000 (b) 0.0076 0.0161 0.0304 
100,000 (a) 0.0160 0.0190 0.0435 
100,000 (b) 0.0052 0.0088 0.0223 

1,000,000 (a) 0.0065 0.0212 0.0243 
1,000,000 (b) 0.0018 0.0029 0.0070 
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Table 17: Number of 95% Confidence Intervals Containing 
the True Means for Case 3 Systems 

3-M/M/1 
 

Run Length 
ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (w) 24 25 25 
6,000 (b) 11 8 2 

20,000 (w) 23 25 25 
20,000 (b) 23 4 0 
50,000 (w) 25 23 21 
50,000 (b) 22 11 9 

100,000 (w) 24 22 22 
100,000 (b) 23 13 11 

1,000,000 (w) 25 24 25 
1,000,000 (b) 23 17 12 

 
Table 18: Precision of 95% Confidence Intervals for Case 
3 Systems 

3-M/M/1 
 

Run Length 
ρ=0.50 ρ=0.75 ρ=0.90 

6,000 (w) 0.0251 0.0453 0.1000 
6,000 (b) 0.0253 0.0418 0.1017 

20,000 (w) 0.0129 0.0235 0.0495 
20,000 (b) 0.0123 0.0200  
50,000 (w) 0.0081 0.0140 0.0303 
50,000 (b) 0.0076 0.0161 0.0304 

100,000 (w) 0.0061 0.0103 0.0236 
100,000 (b) 0.0052 0.0088 0.0223 

1,000,000 (w) 0.0016 0.0028 0.0064 
1,000,000 (b) 0.0018 0.0029 0.0070 

3 CONCLUSIONS AND FUTURE RESEARCH 

Three types of queuing systems were analyzed to investi-
gate the impact coverage analysis has on transient analysis 
decisions: single server queues, a multiple server queue 
and several tandem queues with three servers in series. The 
coverage tests support the preliminary results in that per-
forming transient analysis does not guarantee that the ana-
lyst/student will obtain ‘better’ confidence intervals.  

In particular, the coverage tests reveal: 
 
• As congestion in a system increases, the ability to 

find a perfect transient point decreases. 
• There is no advantage to eliminating perfect tran-

sient for data collection if a perfect transient point 
can be found. That is, under ‘equivalent’ run 
lengths, confidence intervals generated with the 
perfect transient point deleted have less ‘valid’ 
confidence intervals compared to confidence in-
tervals with no transient deleted (worst-case tran-
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sient analysis). Additionally, the confidence inter-
vals from the worst-case transient analysis have 
greater precision more than 50% of the time. 

 
However, while in the preliminary research the run 

length is concluded to be the most important factor to ob-
tain the ‘valid’ confidence intervals (confidence intervals 
that contain the true mean), the coverage tests show that 
the run length is only important when trying to achieve the 
perfect transient point. In fact, the run length has to be in-
creased so that a perfect transient point can exist. So, in 
general, it still can be concluded that strong emphasis 
should be placed on determining run length. Additionally 
for long run lengths, the precision analysis shows that it is 
worth the effort to do transient analysis so as to improve 
the accuracy of the confidence intervals’ coverage. 

Thus, this work supports the conclusion that in simula-
tion education for undergraduate students, when introduc-
ing parameter estimation for non-terminating systems via 
the method of independent replications, strong emphasis 
should be placed on deciding the proper run length and 
transient analysis can be de-emphasized or even elimi-
nated. The topic of transient analysis may be more suitable 
for graduate-level simulation analysis courses.  

In addition, only simple queuing systems were ana-
lyzed since they represent the set of systems typically 
simulated in an undergraduate operations research course, 
and our conclusion to emphasize run length over transient 
analysis is only for those types of queuing systems. Future 
research can be aimed at examining other systems, such as 
networks to evaluate the generalization of our conclusion. 
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