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ABSTRACT 

The introductory simulation course is typically structured 
around a series of exercises designed to successively ex-
pand the students’ repertoire of modeling and analysis 
skills. This paper describes an introductory simulation 
course in which the student exercises, while still providing 
an introduction to simulation modeling and analysis, are 
designed and sequenced to develop understanding and in-
tuition regarding the behavior of stochastic dynamic sys-
tems. These exercises present an opportunity to extend a 
number of simpler analyses typically presented in the in-
troductory Operations Management course. 

1 INTRODUCTION 

Practitioners and teachers of simulation generally recog-
nize the principal advantage of simulation over other forms 
of analysis: Through flexible, incremental model develop-
ment, simulation analysts are able to incorporate the essen-
tial features and dynamics of the system being modeled. 
While valid abstraction and simplification remains a criti-
cal skill in any modeling exercise, simulation generally 
provides great flexibility in representing those system dy-
namics deemed relevant to the problem at hand. Other 
forms of analysis, particularly algebraic characterization 
and numeric optimization, often leave analysts constrained 
by model form and considerations of analytical tractability. 
As a result, algebraically formulated models tend to be 
more susceptible to “reality gaps” between a problem as 
formulated, vs. the problem as it exists in practice. 

Against this backdrop, many introductory Operations 
Management course outlines are focused around a set of 
time-honored models used to introduce a variety of deci-
sion scenarios. These models serve a useful purpose, as 
they introduce students to basic issues and help clarify 
some fundamental relationships. Nonetheless, many of the 
traditional models fall short of providing a comprehensive 
understanding of the most important dynamics underlying 
the problems at hand. In particular, many important dy-
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namics arising due the behavior of stochastic systems are 
either assumed away or entirely overlooked. Unfortunately, 
analytical approaches to dealing with these dynamics lie 
well beyond the abilities of the typical undergraduate stu-
dent. 

One approach to dealing with this problem is to intro-
duce physical demonstrations, games, and computer simu-
lation models into the affected coursework, and much good 
work has been done in this direction. See for example (Ad-
ams, Flatto, and Gardner 2005), (Van Houten et al. 2005), 
and (Hulya 2006). As time is usually constrained, it is gen-
erally difficult to develop the necessary simulation model-
ing techniques and cover the requisite Operations Man-
agement principles all in the same course. As a result, most 
of the computer simulation models used in this approach 
are “canned” in the sense that students use pre-developed 
simulators. Although students can observe the dynamics 
being demonstrated, their lack of exposure to the inner 
workings of the models may leave room for misinterpreta-
tion of what is truly causing the observed responses. In-
deed, students often attribute simulation results to dynam-
ics not actually represented in the model at hand. 

Another approach (the two are certainly not mutually 
exclusive) is to adapt the focus of the introductory Simula-
tion course in this direction. Such a course teaches simula-
tion using a series of exercises designed to develop greater 
understanding and intuition of process dynamics for sto-
chastic systems. In the process, many of the simpler analy-
ses from the introductory Operations Management course 
are extended. Indeed, in many cases a more complete and 
compelling conceptualization of the underlying problem is 
accessible, and simulation is able to correct various mis-
conceptions conveyed by the simpler analyses. 

2 ADVANTAGES AND DISADVANTAGES 

Changing the focus of the course as described above pre-
sents some advantages and disadvantage relative to the 
previous course design. The first and most immediate ad-
vantage is that the students learn the various process dy-
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namics principles, while simultaneously learning simula-
tion modeling and analysis. 

The traditional simulation course outline, in which 
successive modeling efforts are designed to expand stu-
dents’ repertoire of modeling capabilities, tends to imply 
modeling scenarios which incrementally demonstrate the 
capabilities of the software platform in use. In contrast. 
most of the models in the revised course can be developed 
with a basic set of modeling tools, leaving more time for 
experimentation, analysis, and presentation of results. As a 
result, students in the revised class are not exposed to the 
same breadth of domain-specific software capabilities, as 
they would in a course designed more toward that purpose. 
On the other hand, the author’s experience is that students 
develop a deeper understanding of the basic modeling con-
structs, and the course takes on less of a “teaching the soft-
ware” flavor. 

The basic demonstrations in the revised course, more-
over, tend to refer to simple hypothetical scenarios, under 
which general conclusions might be demonstrated. As 
such, the course conveys less of an applied modeling fo-
cus. 

The exercises themselves are designed to present more 
compelling questions to be answered via simulation. In the 
traditional course, development of a model that appropri-
ately mimics a given real-life scenario is often seen as an 
end in itself. In the revised course, model development is 
just the starting point for experimentation and analysis, 
drawing of conclusions, and reporting results. Students 
thus have greater exposure to the entire process of simula-
tion modeling and analysis.  

Finally, the design of the course lends itself to active 
experiential learning, as students experiment with and “dis-
cover” the principles being demonstrated, rather than sim-
ply being “told”. Introducing the students to this type of 
analysis also opens the door to undergraduate stu-
dent/faculty collaborative research, a central initiative on 
the author’s campus. 

3 EXAMPLES 

The course itself is under continual refinement, with new 
exercises introduced each time it is taught. The remainder 
of this paper will outline some of the analyses that have 
been used in the course.  

3.1 Project Management 

In one of the introductory course units, students have de-
veloped a simple Excel spreadsheet generating Monte 
Carlo replications of activity durations for a project net-
work. An ideal introductory modeling effort, this is a sim-
ple exercise in random number generation using inverse 
transformation. The length of each unique path through the 
network can be computed by summing the appropriate ac-
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tivity durations, and the project duration for each replica-
tion is computed as the longest of the unique network 
paths.  

The analysis highlights the fact that the critical path it-
self is random. In contrast most introductory textbooks 
lead students through an exercise of approximating project 
duration with a normal distribution, where the mean and 
variance of the normal approximation are derived as the 
sum of mean activity times, and sum of variances, of the 
single critical path identified by a deterministic analysis. 
Students thus realize the danger of simply “plugging in” 
the results of a deterministic analysis, as a substitute for 
directly modeling stochastic elements of the scenario at 
hand. 

The less intuitive dynamic demonstrated here is that 
even the mean project duration is under-estimated by the 
standard textbook procedure, as the mean project duration 
in a project network with random activity times is greater 
than the mean length of any single network path. (Nota-
tionally, the model demonstrates that E[Max{X1, X2}] > 
Max{E[X1], E[X2]}). This helps to impress on students 
early in the course that randomness can generate behavior 
contradictory to the intuition provided by primarily deter-
ministic thought processes. 

3.2 Utilization vs. Queuing Relationships and the 
Effect of Variability  

After some traditional explanation of modeling frame-
works, event calendar mechanisms, time persistent vs. tally 
statistics, etc, students are introduced to Rockwell’s Arena 
software. The introductory model is that of a simple two 
server queuing system. Experimentation with resource ca-
pacity (number of servers) provides an introduction to the 
basic relationship between resource utilization vs. average 
queue time and average number in queue. (The scenario is 
constructed such that the system is overwhelmed when 
server capacity is equal to one.) 

A subsequent modeling assignment revisits the utiliza-
tion vs. queuing relationship, in a model of a sequential 
two-station work cell. Jobs arrive to the system at constant 
intervals. The job processing time at the first station is ran-
dom, while the processing time at the second station is 
constant. Overall system utilization in this case is manipu-
lated by varying the job arrival rate over three levels. Three 
different distributions with common mean, but increasing 
variability are used for the processing time at the first sta-
tion (e.g. Triangular (6, 9, 12), Triangular (1, 9, 17), and 
Uniform(1, 17)). 

The basic structure of the exercise demonstrates to 
students the utility of the factorial design, (in this case the 
full 3x3) as we are now able to examine the effect of in-
creasing utilization while the station 1 variability is held 
constant, and also see the effect of increasing station 1 
variability holding constant the utilization level. In the end 
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we see the effect of station 1 variability on the basic utili-
zation vs. queuing relationship at both stations, as shown in 
Figures 1 and 2. (Note the first station sees constant time 
between arrivals but variable processing times, while the 
variable processing times at the first station translate into 
variable time between arrivals to the second station, which 
has a constant processing time.) These basic relationships 
provide a fundamental building block for interpreting the 
results seen in much of the remainder of the course.  

Station 1 Queue Time vs. Utilization
Effect of Station 1 Processing Time Variability
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Figure 1: Effect of Station 1 Processing Time Variability 
on Station 1 

 
Station 2 Queue Time vs. Utilization
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Figure 2: Effect of Station 1 Processing Time Variability 
on Station 

3.3 Basic Inventory Control 

With respect to the goal of extending the material covered 
in the introductory Operations Management course, one of 
the most important exercises addresses basic inventory 
control. Here an initial model of a single item (Q, R) inven-
tory system (order quantity, order point) subject to random 
intermittent demand is developed in class. Students then 
experiment with the model using the Arena Process Ana-
lyzer, with the objective of finding the (Q, R) policy that 
provides 99% fill rate with minimal inventory. This analy-
sis addresses interaction between order frequency as ma-
225
nipulated via Q, and stock-outs per order, as manipulated 
via R.  

Most students soon realize that Q =1, coupled with an 
order point R providing 99% fill rate (e.g. a base stock or 
(S-1 S), policy) is the most efficient mechanism in the ab-
sence of any explicit setup cost considerations or setup 
time constraints. (The model used employs a feature in 
which the order quantity is inflated, if necessary, to bring 
logical inventory position to at least the order point R with 
each order placed.) The fundamental principle is that in-
creasing order frequency (decreasing cycle stock inventory 
while increasing safety stock inventory as necessary) is the 
more efficient means of providing a given fill rate in the 
absence of explicit setup cost or setup time concerns. This 
model is subsequently used to demonstrate the effect of 
changing the average lead time and lead time variance, es-
sentially reinforcing concepts often covered in the tradi-
tional inventory control unit. 

The single item model is then converted to a multiple 
item model, with inventory levels of n = 20 different items 
governed by independent (Q, R) inventory ordering sys-
tems. (For simplicity of demonstration, the analysis is con-
ducted with reference to n = 20 items having identical de-
mand characteristics, such that a single (Q, R) policy is 
appropriate for every item. Although the form of the model 
developed could easily accommodate different items hav-
ing different demand characteristics and different ordering 
parameters, this particular simplifying assumption helps to 
structure the analysis, to provide clearer demonstration of 
the point being made.) The order lead time, which has to 
now been of some exogenously determined duration, is re-
placed with a simple sub-model in which production orders 
are released to a single stage production process. Here total 
job processing time consists of a setup time (independent 
of the order quantity) and actual run time (some direct mul-
tiple of the order quantity). With n = 20 different items 
reaching their order points and releasing production orders 
at random points in time, jobs may wait in queue prior to 
being processed. 

The immediate impact of this model is to demonstrate 
the manner in which order lead time is a function of the lot 
size (Q) in use. An Excel spreadsheet is developed to de-
termine a relevant range for experimentation with alterna-
tive lot sizes, as smaller lot sizes and increased setup fre-
quencies result in increasing process utilization as shown 
in Figure 3. Subsequent experimentation with the simula-
tion model demonstrates how queue time and job process-
ing time combine to form the total job lead time, as shown 
in Figure 4.  

The exercise is completed by returning to experimen-
tation over (Q, R), to find the lot size Q that minimizes to-
tal aggregate inventory, while simultaneously adjusting R 
to maintain a constant 99% fill rate. Note that the optimal 
lot size is no longer Q = 1 as provided by the single item 
model with exogenous lead time. As decreasing Q eventu-
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ally increases lead time as demonstrated in Figure 4, safety 
stock requirements increase in order to maintain the 99% 
fill rate as shown in Figure 5. 
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Figure 3: Process Utilization as a Function of Lot Size 

 
Job Queue Time and Lead Time vs. Lot Size
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Figure 4: Job Queue Time and Total Lead Time as a Func-
tion of Lot Size 

 
Aggregate Inventory vs. Lot Size
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Figure 5: Aggregate Inventory vs. Lot Size For (Q, R) 
Policies Providing 99% Fill Rate  

 
This exercise provides an excellent example with 

which to contrast the power of simulation modeling rela-
225
tive to analytical approaches. The traditional analytical 
model presented in the Operations Management course as-
sumes some exogenous order lead time, independent of the 
lot size. Note that a multi-item model, capable of repre-
senting the aggregate effect of all lot sizes on a dynamic 
production queue sub-model, is required to accurately rep-
resent the true critical dynamics at hand. As such, any sin-
gle item lot sizing model (be it EOQ, Wagner Whitin, Part 
Period Balancing, etc.) requires the concept of a setup cost 
in order to introduce trade-offs that limit setup frequency. 
As demonstrated here, it is impossible to assign a single 
“setup cost” parameter that can subsequently be used to de-
termine setup frequency, because the “setup cost” itself 
depends on the process utilization level resulting from the 
setup frequency. Although approximations to this dynamic 
can be formulated analytically (Karmarkar 1987), the re-
quired mathematics are well beyond the reach of the typi-
cal undergraduate student. 

3.4 “Right Sizing” 

A related analysis deals with “right sizing” of machines 
and processes within the context of lean system design. 
The analysis contrasts a system with “one fast machine” 
capable of producing a unit every 15 seconds, vs. a system 
of “five slow machines”, where each machine is capable of 
producing a unit every 75 seconds. Both systems thus have 
a production capacity of 240 units per hour. The initial 
scenario consists of jobs arriving at random intervals, on 
average 4 hours apart. Each job consists of some random 
number of units to be processed, initially averaging 800 
units per batch. We thus have an aggregate workload aver-
aging 200 units per hour, and both systems operate at 
200/240 = 83.33% utilization. (Students are regularly re-
quired to perform off-line calculations of theoretical utili-
zation, when possible, throughout the course. These calcu-
lated utilizations are used for model verification, and also 
help to deepen students’ understanding of the underlying 
determinants of utilization itself.) An initial comparison 
demonstrates that the five slow machines provide shorter 
queue time for the jobs, yet the single fast machine pro-
vides smaller total time in system. The model assumes 
each batch is run on only one of the five slow machines. 

With the arrival process assumed to represent an ongo-
ing stream of production requests for different items, we 
then introduce setup times of 10, 20, 30, and 40 minutes 
per batch into the comparison. The basic result as shown in 
Figure 6 is that a given setup time per batch consumes a 
much greater portion of the processing capacity of the “one 
fast machine”, compared to the system of the “five slow” 
machines. (Intuitively, this result occurs because the entire 
machine capacity of 240 units per hour is forgone when 
setting up the one fast machine, while setting up one of the 
five slow machines consumes only one-fifth of the system 
capacity.) The queue time for the single fast machine thus 
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increases dramatically as setup time increases, eventually 
affording the advantage of shorter mean time in system to 
the five slow machines as shown in Figure 7.  
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Figure 6: Machine Utilization vs. Setup Time for One Fast 
Machine vs. Five Slow Machines.  
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Figure 7: Mean Time in System vs. Setup Time for One 
Fast Machine vs. Five Slow Machines 

 
Mean Time in System vs. Lot Size
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Figure 8: Mean Time in System vs. Lot Size for One Fast 
Machine vs. Five Slow Machines Under 20 Minute Setup 
Time 
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3.5 Overlapped Resource Usage 

A number of alternative scenarios have been used to dem-
onstrate the implications of overlapped resource usage. 
One readily available example, in terms of students identi-
fying with the system being modeled, is that of a restau-
rant. In this exercise, an apparent need for more tables is 
evidenced by long queue times as customers wait to be 
seated at a table, and/or large percentage of customer arri-
vals balking when balking is added to the model.  

Further analysis demonstrates the customer seating 
queue is actually a symptom of a need for more restaurant 
personnel. The basic dynamic is that total “busy” time for 
the table due to a customer arrival in this model consists 
partly of queue times for other resources, as the dining 
party waits for waiter or waitress at various stages of ser-
vice, and the table waits for bus personnel subsequent to 
customer departure. Actual food preparation is modeled as 
an exogenous sub-system, but a more complex demonstra-
tion could be created in which food preparation is also ex-
plicitly modeled.  

In one instance of the model, the critical constraining 
resource is the number of bus personnel. As capacity of 
this resource is increased, the table queue time (waiting to 
be cleared in order to seat a new dining party) decreases, in 
turn decreasing overall utilization of the tables, thus de-
creasing customer queue time waiting to be seated. Note 
this supplements more basic exercises in “bottleneck iden-
tification”, in which all resources are used in a purely se-
quential manner. In the more complex overlapping re-
sources scenario, there is in fact more than one resource by 
which system capacity can be expanded. Experimentation 
is then required to determine the most efficient or cost ef-
fective manner in which to manage system capacity. Simi-
lar examples include the case of a customer call center with 
insufficient operator staffing, as well as “one 
worker/multiple machine” centers requiring both a ma-
chine and setup personnel in order to run a job.  
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