
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

WIRELESS NETWORK SIMULATION EXTENSIONS IN SIDE/SMURPH

Pawel Gburzynski

Ioanis Nikolaidis

Computing Science Department

University of Alberta

Edmonton, AB T6G 2E8, CANADA
ABSTRACT

We describe the most recent step in the evolution of

SIDE/SMURPH and, specifically, a generic model of a

wireless channel, which enables to use the package for

accurately modeling wireless networks, especially ad–hoc

networks consisting of a potentially large number of possi-

bly mobile nodes. The generic nature of the channel model

allows the user to introduce functions describing the prop-

agation characteristics of the actual wireless medium, e.g.,

the impact of distance on signal level and interference, as

well as the relationship between the signal-to-interference

ratio and the probability of a successful packet reception.

To illustrate the capabilities of the supported extensions, we

review an example of a shadowing channel model.

1 INTRODUCTION

Producing high fidelity simulations of wireless networks,

such as mobile wireless ad hoc networks or wireless sensor

networks is a concern of many researchers. Yet, as (Kotz et

al. 2004) pointed out, the vast majority of simulations adopt

dangerously simplifying “axioms” when modeling wireless

environments. The end result is that the research community,

instead of using simulations to express realistic scenarios,

routinely uses simplifications of the kind one would expect

in analytical studies. The approach is quite contrary to the

philosophy of why simulations are supposed to be built in

the first place, i.e., to study a rich set of realistic scenarios,

often well beyond what analytical techniques can capture.

In addition, it was also noted (Haq and Kunz 2005) that

significant discrepancy between results from two popular

simulators (ns-2 and GlomoSim) exists against each other as

well as against an emulated network. Thus, there is evidence

that simulators are still not always capturing accurately the

physical layer, and equally importantly, the network–wide

performance results are not insensitive to the precision of

the wireless channel model.
2221-4244-0501-7/06/$20.00 ©2006 IEEE
While it is true that our understanding of physical chan-

nels evolves, it does not remove the burden for simulators to

provide suitable “hooks” where a user can easily tinker and

correct the simulated physical model and bring it as close as

possible to the behavior of the real system. To make matters

worse, recent advances in wireless network in the area of

cross–layer protocol designs have further compounded the

demands put on wireless network simulations. Cross–layer

designs relax, or even dissolve, the layered model in the

hope of better performance by trying to capitalize on the

opportunities afforded by the physical layer.

Clearly, simulation environments that separate the lay-

ers, either in the interest of reducing programming com-

plexity, or just for the sake of modularity, are an unnatural

match for cross–layer design. The physical layer is no

longer a simple “bit pipe”, and needs to be accounted for

as a time– and space–variable, possibly “intelligent”, sub–

system that deserves to be explicitly modeled. In fact the

dynamics of the physical channel can interact with tem-

poral aspects of higher layer protocol (e.g., transmissions

of control messages) and hence the entire system’s perfor-

mance is determined by interactions that could not have

been expressed by simple models where the physical layer

is represented as a sequence of random coin flips to express

a certain bit error rate.

This is not to say that cross–layer design is the only

reason why better wireless channel simulations are needed.

Consider for example the case of Hybrid ARQ (HARQ)

schemes. For example, certain Type–II HARQ schemes

combine the received “soft” values per symbol over suc-

cessive (re)transmissions of a frame (each one subjected to

different fading) and using an algorithm, such as Maximum

Ratio Combining (MRC), to extract the correct “hard” data.

Contrary to what most simulators would be able to express,

multiple packet (re)transmissions are combined into form-

ing one packet arrival at the receiver. Other examples of

diversity (spatial or temporal) exist where the finer study of

the physical layer is significant, e.g., Multiple Input Mul-
5

Gburzynski and Nikolaidis
tiple Output (MIMO) systems, collaborative interference

cancellation schemes, etc.

The rest of the paper presents the wireless extensions re-

cently incorporated into SIDE/SMURPH and the rationale

behind them. SIDE/SMURPH has been described in detail

elsewhere (Gburzynski 1996) and follows a long evolution

since the 80s (under various names: LANSF, SMURPH,

SIDE). It is a discrete event simulation environment and

in its current form it includes a generic model for wire-

less channel support. In principle, all extensible simulation

environments can be extended to eventually include better

support for wireless simulations. What we hope is achieved

with the SIDE/SMURPH extensions is that the right kind

of abstractions have been selected, to encourage the incor-

poration of more accurate physical channel models without

unduly hurting the ability to develop simulations quickly.

In other simulation packages, e.g., ns-2, the reluctance of

researchers to tailor the physical layer models, suggests that

the task is perceived as being rather cumbersome. Similar

concerns appear to hold for other systems, even if some of

them, e.g., GloMoSim, incorporated more refined wireless

models to begin with.

The chosen abstractions express what we believe are

useful features for describing the behavior of the wireless

channel. Certainly, only time will tell whether the presented

extensions are successful, and in fact they may need to evolve

even further. We believe that providing the right abstractions

is instrumental to encouraging users to think in particular

terms about the problem at hand. To make the point that

the presented extensions are not onerous to use, we provide

a short example of a shadowing channel model.

The remainder of the paper is organized as follows:

Section 2 outlines the two basic abstractions used in the

modeling extensions implemented in SIDE/SMURPH for

wireless network simulation support. Certain basic concepts

(the “interference histogram”, and the “activity assessment”)

used by the model are also introduced. Section 3 is a short

example illustrating the expressive power of the extensions.

Section 4 concludes the paper.

2 THE DESIGN OF WIRELESS EXTENSIONS

2.1 Concepts

SIDE/SMURPH already supports abstractions for links

and ports, describing, respectively, (broadcast) transmis-

sion media and points of attachments of nodes/stations to

such media. Transmissions are received via ports after a

certain propagation delay. The use of the same abstractions

for wireless environments presented several shortcomings.

First, in a wireless environment, nodes/interfaces attached,

in a logical sense, to a link vary over time with changing

distances due to mobility and physical phenomena, e.g.,

fading, thus forming time–varying “neighborhoods”. The
222
temptation to use one single link connecting all nodes and

to, post–facto, i.e., after delivering the events to the nodes,

decide which events (such as the beginning of a packet

reception) would be visible to which nodes would result

in significant scalability problems. Many events would

have had to be ignored after having already burdened the

simulator with overhead for their processing.

We introduce to SIDE/SMURPH a new abstraction,

called an RFChannel, to model wireless links. RFChannel

influences which events (if any) will be delivered to each

node. It models the channel and hence the events it generates

depend on the exact conditions of the channel, including of

course distances between transmitting and receiving node

but also arbitrary functions that influence the signal strength

that can describe position- and time–dependent phenomena,

such as fading and shadowing.

The original port abstraction presented also limited

flexibility, especially when deciding whether a received

signal would eventually morph into a received packet or

not. Again, one could entertain the idea of post–facto

calculation of whether particular conditions were met during

the reception of a packet to decide if it was really received

or not, but at the detriment of expressiveness, generality,

and most of all, efficiency.

As an alternative to ports, we introduce the

Transceiver abstraction which essentially defines a point

in space (2D or 3D) at which the combined received sig-

nal of one or more transmissions could trigger events that

signify packet activity. There is no guarantee that events

at the transceiver will eventually result in a packet being

received at a node. Hence, it becomes possible to express

complicated conditions that govern the acceptability of a

packet, for example how many symbol errors in sequence

could render the received signal undecodable. In essence,

transceivers introduce the potential to express relative mer-

its of wireless receiver structures, beyond just the detection

threshold (which is also modeled).

From the viewpoint of a receiver, the potential to re-

ceive and correctly decode a packet is being re-assessed, at

least in principle, at any point in time. However, the per–

symbol simulation of a channel would have been extremely

inefficient for a large network. Instead we opted to separate

the early (crucial) preamble part of a packet (without its

acquisition a receiver cannot “follow” through the rest of

the transmission) and the latter part which incorporates the

payload. A separation between a preamble and main body

is found in all wireless transmission protocols and it is a

requirement for receiver synchronization. In addition to

noticing the preamble separate and earlier than the rest of

the packet (and applying to it different criteria to determine

if it is acceptable), we also retain the history of what was

the impact of other signals on the received signal in order

to re–assess the quality of the reception as needed. That is,

even when the events related to the preamble and to the rest
6

Gburzynski and Nikolaidis
of the packet are delivered, the history of what interference

occurred during the preamble and during the main body of

the packet are still accessible to the programmer.

In summary, at a receiver, the events resulting from a

transmission are not at an exhausting level (one event per

transmitted symbol per packet) but just enough to relate to

the basic functions expected of a receiver, i.e., the decision

to acquire or not a transmission based on received preamble

and (if it decides to acquire the signal) the process of

following through with the reception until either the end

of the transmission or up to a point where a particular

condition, such as low signal strength, is met that forces

aborting the reception. The transceiver is of course capable

of inspecting the interference histogram and deciding on

even more specific issues, for example whether the error

correction scheme could be applied successfully or not, etc.,

which is useful if interested in collecting relevant statistics.

2.2 RFChannel

A user of RFChannel needs to define a collection of vir-

tual methods describing the channel properties. The most

important functions are listed here. (For the sake of brevity,

the arguments and the return data types are not presented.):

• RFC_att() describes signal attenuation depending

on the distance and possibly other attributes that

can be extracted from the source and destination

transceivers.

• RFC_act() is used to tell whether the transceiver

senses any signal at all (carrier sense) based on

the total combined signal level arriving at it at

the moment. A parameter specifies the receiver

sensitivity, which is one of settable parameters of

a transceiver. The sole purpose of this method is to

determine when the channel is perceived busy or

idle (and when to trigger the corresponding events

ACTIVITY and SILENCE).

• RFC_bot() is responsible of assessing whether

the beginning of a packet arriving at a transceiver

is recognizable as such, i.e., the packet stands

a chance of being received. Its arguments are

the transmission rate (at which the packet was

transmitted), the received signal level (the Received

Signal Strength Indication, RSSI) of the packet, the

current setting of receiver sensitivity, and pointer

to the special data structure for the interference

histogram (Section 2.2.1), which stores the history

of interference suffered by the packet’s preamble.

• RFC_eot() determines whether the end of a packet

arriving at a transceiver may trigger a successful

reception of the packet. The arguments are exactly

as for RFC_bot, except that the interference his-
222
togram the method can access applies to the main

body of the packet rather than the preamble.

• RFC_erb() returns the randomized number of er-

ror bits within a specified sequence length of bits

received, for a given received signal level, receiver

sensitivity, and interference level. Its role is to de-

scribe the distribution of bit errors as a function of

the signal to interference (SIR) ratio. The method

is optional and needed only if the protocol program

calls errors or error which force the flagging

of actual “hard” errors.

• RFC_erd() returns the randomized number of re-

ceived bits (under the conditions described by four

of its arguments that are the same as in RFC_erb

preceding the occurrence of a user-defineable “spe-

cial” configuration of bits described by an addi-

tional argument. Typically, that configuration (the

timing of its occurrence described as a bit inter-

val) is strongly related to the distribution of bit

errors (thus, RFC_erd is closely correlated with

RFC_erb). For example, the method may return

the number of bits preceding the nearest occur-

rence of a run consisting of a given number of

consecutive bit errors. The method is used solely

for triggering BERROR events, whose interpreta-

tion is up to the protocol program. In particular, if

the program is not interested in perceiving those

events, the method need not be provided.

• RFC_add() is the centerpiece of calculating the

aggregation of multiple signals arriving at the re-

ceiver at the same time. Contrary to its mnemonic

name, the method does not sum the signals, but

is free to combine them in whichever fashion best

describes the physical medium. An argument spec-

ifies the number of signal level entries, which are

in turn provided as an array of simple structures

storing the signal levels of all individual activities

perceivable by the transceiver. This operation is

also used in calculating the total level of inter-

ference affecting one selected signal; in such a

case, the signal in question is excluded from the

calculation.

The default definitions of the above methods provide

a complete but naive functionality. The default (function-

ally void) stubs for RFC_erb and RFC_erd raise errors

when called, but it is possible to have a fully functional

and non–trivial channel model that makes no reference to

those methods. For example, one that retains “soft” signal

values. Furthermore, the structure describing a signal level,

SLEntry (Section 2.3.1, includes a tag, which can be used

to associate user–defined properties with the signals, e.g.,

codes for CDMA–type channels. Signal tags are accessible

to, and can be interpreted by, RFC_add and can therefore
7

Gburzynski and Nikolaidis
affect the way the multiple signals are combined, e.g., taking

into account more properties than the sheer signal strength

at the receiver.

2.2.1 Interference Histogram

The interference histogram passed as the last argument to

RFC bot concerns solely the preamble component of the

packet. On the other hand, the histogram passed to RFC eot

applies to the packet proper, excluding the preamble. In

both cases, the histogram describes the complete interference

history of the respective component as a list of different

interference levels suffered by it within specific intervals.

The interference histogram is a class comprising several

useful methods and two public attributes:

int NEntries;

IHEntry *History;

where History is an array of size NEntries. Each entry

in the History array is a simple record that looks like this:

typedef struct {

TIME Interval;

double Value;

} IHEntry;

The sum of all Intervals in History is equal to total

duration of the activity being assessed. The corresponding

Value attribute of the History entry gives the interference

level (as calculated by RFC_add) suffered by the activity

within that interval. The complete History covers as many

intervals as many different interference levels have happened

during the perception of the assessed activity. If the pream-

ble or packet has suffered absolutely no interference, its

History consists of a single entry whose Interval spans

its entire duration and whose Value is 0.0. Finally, addi-

tional methods are also provided to examine the interference

history, as well as to extract the average, and the maximum

values of the interference histogram over the entire time

period, or of particular time fragments of the monitored

activity.

2.3 Transceiver

The transmission functionality related to Transceiver is

less interesting from the reception aspects, so we will fo-

cus exclusively on reception–oriented events for which a

transceiver can wait:

• BOT (Beginning of Transmission) occurs as soon as

the transceiver perceives the beginning of packet

following a preamble, and RFC_bot returns YES

for that packet. The interpretation of this event

is that the preamble has been recognized by the
222
transceiver, which can now begin to try to receive

a packet.

• EOT (End of Transmission) occurs as soon as the

following three conditions hold simultaneously:

1) the transceiver perceives the end of packet, 2)

RFC_bot returned (earlier) YES for that packet, 3)

RFC_eot returns YES for the packet in the current

stage. The interpretation of this event is that a

packet has been successfully received.

• BMP (Beginning of My Packet) occurs under the

same conditions as BOT with one added necessary

condition: the packet must be addressed to the

station running the process that has issued the wait

request. Formally, it means that a helper function

isMy() returns YES for the packet (this also covers

broadcast scenarios in which the current station is

one of possibly multiple recipients).

• EMP (End of My Packet) differs from EOT in the

same fashion that BMP differs from BOT, that is, the

packet must be addressed to the station running the

process that has issued the wait request. This is

the most natural way of receiving packets at their

proper destinations.

• ANYEVENT occurs whenever the transceiver per-

ceives anything of potential merit (any change

in the configuration of perceived activities), e.g.,

when any of the preceding events would be trig-

gered, if it were awaited. Beginnings and ends of

all packets not necessarily positively assessed by

RFC_bot/RFC_eot, also trigger ANYEVENT. If any

activity boundary or stage occurs at the moment

when the wait request for ANYEVENT is issued, the

event is triggered within the current time unit.

It is possible to directly monitor the level of interference

suffered by a selected activity, typically a packet being in

some partial stage of reception. The transceiver method

follow() allows the program to declare the activity to be

monitored (followed). If a non-NULL argument is present,

it should point to a packet being carried by one of the

activities currently perceived by the transceiver. Such a

packet pointer can be obtained, e.g., via ThePacket by

receiving a packet–related event BOT or BMP, or through

explicit inquiries addressed to the transceiver about ongoing

activity. If the argument is absent (or NULL), it implies the

activity last examined by a transceiver inquiry. The method

returns OK, if the argument (or the last transceiver inquiry)

identifies an activity currently perceived by the transceiver

(in which case the activity whose interference level is to

be monitored has been successfully specified), or ERROR

otherwise. Whether a packet will be followed or not is a

matter of course left to the implementation. The point here is

that a receiver may not “magically” know that a transmitter

is sending something to it. It has to extract meaning out of
8

Gburzynski and Nikolaidis
the current level of channel activity and decide whether it

is reasonable to expect that it could conceivably receive a

packet. It may, for all practical purposes, decide to follow

a packet only to identify, after the corresponding EOT that

it was not really addressed to it. The example in Section 3

illustrates one such case.

Finally, Trasceivers can wait on additional events

available to them: SILENCE, and ACTIVITY, as defined

earlier as well as BOP, and EOP which allow one to access

the preamble activity (if necessary) independently of the

assessment provided by RFC_bot and RFC_eot. Additional

useful events are SIGLOW, SIGHIGH, INTLOW, and INTHIGH

that identify when certain thresholds related to the received

signal or to the interference are crossed.

2.3.1 Event Assessment

At any moment, a given transceiver may perceive a number

of packets arriving from different neighbors and being at

different stages. The role of the assessment procedure at a

receiving transceiver is to determine whether any of those

packets should be received or, more specifically, whether it

should trigger the events that will conceptually amount to

its reception. The decisions are arrived at by the collective

interaction of the user-exchangeable assessment methods.

First, RFC_att determines the signal level of the packet

at the perceiving port, based on transmission power and

distance between the sender and the perceiving transceiver.

These two arguments may be sufficient to determine the

packet’s received power—in those propagation models in

which attenuation depends solely on distance, but RFC_att

receives two additional arguments pointing to the source and

destination transceivers. Based on their identity, the user is

able to implement arbitrary attenuation criteria, including

ones that have nothing to do with distance. For example,

it could identify whether (currently) there is an obstacle

between them.

The signal level returned by RFC_att is associated with

the packet at its perceiving transceiver. Suppose that some

transceiver v perceives n packets denoted p0, . . . , pn−1 with

r0, . . . ,rn−1 standing for their received signal levels. The

interference level suffered by one of those packets, say pk is

determined by a combination of all signals of the remaining

packets. Method RFC_add is responsible for calculating

this combination. Generally, the method takes a collection

of signal levels and returns their combined signal level. A

single signal is described by the following structure:

typedef struct {

double Level;

Long Tag;

} SLEntry;

where Level is the received level of the signal as calculated

by RFC_att, and Tag is the Tag attribute used by the
2229
transmitter when the packet was transmitted. The third

argument of RFC_add is an array of such records; its size

is determined by the first argument.

If the second argument of RFC_add is nonnegative,

it is viewed as the index of one entry in the signal array

that must be ignored. This is exactly what happens when

the method is called to calculate the interference suffered

by one packet. The collection of signals passed to the

method in the third argument always covers the complete

population of signals perceived by the transceiver. Thus,

the indicated exception refers to the one signal for which

the interference produced by the other signals is to be

determined. Sometimes RFC_add is invoked to calculate

the global signal level caused by all perceived packets with

no exception. In such a case, the second argument is NONE,

i.e., –1.

It may happen that the perceiving transceiver is trans-

mitting a packet of its own at the moment when some

external packets are being perceived. In such a case, the

method should take into account the interference caused

by the transmitter (in many realistic cases it will make

any reception impossible). This is where the last argument

of RFC_add comes into play. If not NULL, it points to a

signal record (SLEntry) describing the transmission of the

transceiver’s own transmitter. If NULL, it means that the

transmitter is silent. The Level attribute of that entry is

just the transmission power level (XPower), and the Tag

reflects the current setting of the transceiver’s Tag.

The standard version of RFC_add built into RFChannel

performs simple addition of all the signal levels and ignores

the tags. This should be OK for simple wireless channels;

however, some channels (notably CDMA) may want to

diversify the impact of different signals on the total level of

interference suffered by a packet, e.g., based on the code

(which can be represented by the tag).

The actual decision regarding a packet’s reception is

made by RFC_bot and RFC_eot. Their meaning is sim-

ilar, but they are called at different stages of the packet’s

perception. RFC_bot is invoked at the end of preamble

and before the first bit of the actual packet. In physical

terms, it determines whether the receiver has been able to

recognize that a packet is arriving and, based on the quality

of preamble, clock itself to the packet. If the decision is NO,

the packet will not be received. In particular, its next stage

(main body) will not be subjected to another assessment, and

the packet will trigger no reception events. If the method

returns YES, the packet will undergo another assessment,

RFC_eot, which is invoked immediately after the last bit

of the packet. Note that regardless of whether the earlier

assessment by RFC_bot has been negative or positive, the

packet will continue contributing its signal to the population

of activities perceived by the transceiver until it is heard no

more.

Gburzynski and Nikolaidis
3 EXAMPLE: A SHADOWING CHANNEL MODEL

Let us have a look at a complete model of a shadowing

channel. The primary objective of the model is to prescribe

the probability that the arrival of a packet at a transceiver

will result in its positive assessment at the stages of reception

relevant from the viewpoint of the receiver program. To

see what the low-level protocol program expects from the

model, we shall start from the SMURPH code of the three

processes implementing that protocol. For simplicity, we

shall skip the description of the complete layouts of those

processes, which, in addition to the code presented below,

includes the data area, i.e., private and external attributes

accessible to the process. We assume that the meaning

and role of such attributes is obvious from the context. In

particular, IF (for InterFace) stands for a pointer to the

transceiver object, which formally belongs to the station

running the process. That station, in turn, is represented by

the standard attribute S.

3.1 The Protocol

The transmitter process is as follows:

Xmitter::perform {

state XM_LOOP:

if (!S->ready (MinPl, MaxPl, Frame)) {

Client->wait (ARRIVAL, XM_LOOP);

sleep;

}

if (S->Receiving) {

Rcv->wait (SIGNAL, XM_LOOP);

sleep;

}

RSSI->signal (START);

Timer->wait (LBTDelay, XM_LBS);

state XM_LBS:

RSSI->signal (STOP);

if (RSSI->sigLevel() >= LBT_THRESHOLD) {

Timer->wait (genBackoff (), XM_LOOP);

sleep;

}

IF->transmit (Buffer, XM_DONE);

state XM_DONE:

IF->stop ();

Buffer->release ();

proceed XM_LOOP;

}

At the top of its main loop (state XM_LOOP), the pro-

cess checks if there is a packet to transmit (method ready

belonging to the process’s owning station) and, if it is not

the case (ready returns false), it idles awaiting a packet’s

arrival (the wait request issued to the Client). Having ac-

quired a packet, the transmitter makes sure that the receiver

process is not currently in the middle of a packet reception
2230
(flag Receiving), in which the process will avoid interfer-

ing until it receives a “go” signal from the other process.

As a rudimentary technique of collision avoidance, before

commencing the actual transmission, the transmitter wants

to monitor the wireless channel for a certain amount of

time (LBTDelay) to detect a possible ongoing activity in

its neighborhood. This is accomplished with the assistance

of an auxiliary process (of type ADC) pointed to by RSSI.

ADC::perform {

double DT, NA;

state ADC_WAIT:

this->wait (SIGNAL, ADC_RESUME);

state ADC_RESUME:

ATime = 0.0;

Average = 0.0;

Last = Time;

CLevel = IF->sigLevel ();

IF->wait (ANYEVENT, ADC_UPDATE);

this->wait (SIGNAL, ADC_STOP);

state ADC_UPDATE:

DT = (double)(Time - Last);

NA = ATime + DT;

Average = ((Average * ATime) / NA) +

(CLevel * DT) / NA;

CLevel = IF->sigLevel ();

Last = Time;

ATime = NA;

IF->wait (ANYEVENT, ADC_UPDATE);

this->wait (SIGNAL, ADC_WAIT);

}

The process does nothing until it receives a signal

(START from the transmitter), which will force it to state

ADC_RESUME. There the process initializes variables for the

calculation of average signal level and updates them in

response to any change in the configuration of activities

perceived by the transceiver (ANYEVENT). This procedure

stops when the transmitter notifies the process that the

monitoring period is over (the STOP signal).

At the end of the monitoring period, the transmitter

calls the sigLevel method of the ADC process to return the

calculated average signal level perceived by the transceiver.

If the signal is above the threshold, the process concludes

that the channel is busy and backs off for a randomized

amount of time (prescribed by genBackoff). Otherwise,

the channel is assumed idle, and the transmission begins.

When completed (in state XM_DONE), the process terminates

the transmission and marks the packet buffer as empty.

At this stage, the semantics of the channel model are

manifest in the values returned by IF->sigLevel() in the

ADC process. Those values reflect the combined signal level

perceived by the transceiver at any instant of the monitoring

interval, after accounting for the possibly multiple points of

origin of its components, including their attenuation. The

Gburzynski and Nikolaidis
receiver process expects a bit more functionality from the

channel model:

Receiver::perform {

state RCV_WAIT:

S->Receiving = NO;

this->signal (GO);

IF->wait (BOT, RCV_START);

state RCV_START:

S->Receiving = YES;

IF->follow (ThePacket);

skipto RCV_RECEIVE;

state RCV_RECEIVE:

IF->wait (EOT, RCV_GOTIT);

IF->wait (BERROR, RCV_WAIT);

IF->wait (BOT, RCV_START);

state RCV_GOTIT:

if (ThePacket->isMy ())

Client->receive (ThePacket,

TheTransceiver);

proceed RCV_WAIT;

}

As most of the complexity of the reception model is

hidden in the implementation of the wireless channel, the

receiver structure is deceptively simple. The process wakes

up on the BOT event triggered on the transceiver. Note

that this event captures the assessment of the first impor-

tant reception stage, i.e., the moment when the transceiver

recognizes a packet beginning. Following that event, in

state RC_START, the process executes follow, to indicate

that the packet’s fate should now be traced, and moves

to state RCV_RECEIVE with one time unit delay to ensure

that the BOT event is no longer present on the transceiver.

Then, in state RCV_RECEIVE, the receiver awaits the first

of three possible outcomes: 1) an EOT event (which will

mark the positively assessed reception of the packet’s last

bit), 2) BERROR, which will indicate a lost reception, and 3)

another BOT event, meaning that another receivable packet,

possibly arriving at a stronger signal than the first one, has

taken over (normally, such an event should be preceded by

a lost reception). Upon EOT, the process moves to state

RCV_GOTIT where the packet is formally received, if it turns

out to be addressed to the node running the process (isMy

returns true).

3.2 The Channel

The channel model is declared this way:

rfchannel RFShadow {
double NBeta, Sigma, LFac, BNoise, RDist,

CDist;

Long MinPr;

...

private methods
223
assessment method

void setup (...) ...

};

where the non-method attributes represent the parameters

and are set by the standard setup method. According

to the shadowing propagation model, signal attenuation is

described by the following formula:

Pd

Pd0

= −10β log(d/d0)+σ

where Pd is the power level of the received signal at distance

d, Pd0
is the power level at some reference distance d0,

β is the loss exponent and σ is a lognormal (Gaussian)

random component with a given standard deviation. To

facilitate the calculation of Pd at the destination, NBeta is

set to −β , RDist is set to d0, and LFac is precomputed

as RDist
β /l0, where l0 is the power loss at distance d0,

specifically, l0 = Px/Pd0
, where Px is the transmit power at

the source. Then, the following assessment method takes

care of calculating the signal loss:

double RFC_att (double xp, double d,

Transceiver *src, Transceiver *des) {

return (d > RDist) ?

xp * LFac *

dBToLin (dRndGauss (0.0, Sigma)) *

pow (d, NBeta) : xp;

};

where Sigma stands for the standard deviation of the σ
component. Note that this component is log-normalized

by dBToLin, which converts decibels to linear. This is

because the model requires power levels and their ratios to

be expressed linearly. Also, it is assumed that nodes never

get closer than the reference distance RDist, which thus

becomes the minimum separation distance.

The model does not redefine the default RFC add

method, which assumes that multiple signals at the re-

ceiver combine additively. Here we see how the first stage

of packet reception is assessed:

Boolean RFC_bot(RATE r, double sl,

double sn, const IHist *h) {

return h->bits(r) >= MinPr &&

!error(r, sl, sn, h, -1, MinPr);

};

The interference histogram (type IHist), whose pointer is

passed as the last argument to RFC bot, stores the interfer-

ence history of the packet as received so far. To be deemed

receivable, a packet must be preceded by at least MinPr

bits of preamble, and none of those bits must have been

received in error. The argument list of error includes: the

transmission rate r (needed to transform time intervals into
1

Gburzynski and Nikolaidis
bits and vice versa), the received signal level sl, the re-

ceiver sensitivty sn (ignored in out model), the interference

histogram h, and the specification of the packet fragment

(from-to expressed in bits) to be examined. The present

arguments describe the last MinPr bits of the packet portion

received so far, i.e., the last MinPr bits of the preamble.

The end-of-packet assessment is even simpler:

Boolean RFC_eot(RATE r, double sl,

double sn, const IHist *h) {

return !error(r, sl, sn, h);

};

This method simply says that to be correctly received a

packet must have no bit errors. Note that the interference

histogram at this stage excludes the preamble, which must

have been positively assessed by RFC bot for the present

assessment to take place at all. The actual fate of individual

bits is determined by this method:

Long RFC_erb (RATE tr, double sl, double rs,

double ir, Long nb) {

return lRndBinomial(ber(sl/(ir + BNoise)),

nb);

};

which returns the randomized number of bits within a run

of nb bits received at the signal level sl and interference

level ir. Argument rs, representing the receiver sensitivity,

is ignored in our model (all receivers operate at the same

fixed sensitivity level).

Note that method ber is one component of the model

that must be supplied by the user. Its simple role is to

transform the signal-to-noise ratio (SNR) into the probability

that a single bit is received in error. The important feature of

the assessment strategy is that the actual error rate applied

to a packet component depends on the SNR of this particular

component, and may differ depending on the varying level

of interference during the packet’s reception. For example,

the standard error method referenced in RFC bot and

RFC eot, which is applicable to arbitrary chunks of received

bits, properly accounts for the fact that different runs of

those bits may have suffered different interference levels

(according to the interference histogram) and thus have been

subjected to different error rates. The noise level used as

the denominator in the argument to ber includes a fixed

background noise component, which is also a parameter of

the model.

The role of the BERROR event (intercepted by the trans-

mitter process in state RECEIVE) is to represent custom con-

ditions occurring at randomized intervals during a packet

reception and possibly depending on the momentary bit

error rate. A typical example of such a condition is the loss

of synchronization to the received packet, which will abort

the reception. For example, in balanced encoding, whereby
223
four-bit (logical) nibbles are represented by six-bit (physi-

cal) symbols, the reception of an illegal symbol amounts to

such a scenario. Given a (dynamic) bit error rate, it is the

role of this method to calculate such randomized intervals:

Long RFC_erd (RATE tr, double sl, double rs,

double ir, Long ver) {

double er = ber (sl/(ir + BNoise));

return (er = dRndPoisson (1.0/(er*er))) >

(double) MAX_Long ?

MAX_long : (Long) er;

};

In this intentionally simplified case, the method returns a

randomized interval (expressed in bits) until the first occur-

rence of a double-bit error, i.e., two consecutive incorrectly

received bits. Similar to other assessment methods, it is

correctly applied to chunks consisting of fragments received

at different levels of interference (and thus different error

rates). Once a process issues a wait request for BERROR,

the system takes care of all this automatically by monitor-

ing different levels of interference suffered by the received

packet, and dynamically recalculating the interval until the

awaited configuration of bits “occurs by chance.” The last

argument of RFC erd (ignored in this case) can be used to

select among different scenarios of interesting events.

4 CONCLUSIONS

We introduced extensions to SIDE/SMURPH with the

specific intent to support the accurate simulation of wire-

less channels, and wireless networks with potentially large

number of nodes. The abstractions introduced were tailored

to express advanced wireless channel models, within rea-

sonable overhead and user effort demands. An advanced

wireless channel model cannot be simply a bit pipe with

random independent bit errors. Therefore, we pushed the

level of detail to a level where it is possible to capture and

examine the variations of signals as they are perceived at

transceiver endpoints. The signal strength of several com-

bined transmissions, and the interference of such combined

transmissions against a specific signal, are exposed to the

simulation programmer and allow one to plug-in realistic

channel models describing the space– and time–variable

aspects of the channel.

REFERENCES

Kotz, K., C. Newport, R. S. Gray, J. Liu, Y. Yuan, and

C. Elliott. 2004. Experimental evaluation of wireless

simulation assumptions. In Proceedings of the 7th ACM

International Symposium on Modeling, Analysis and

Simulation of Wireless and Mobile Systems (MSWiM

2004), 78–82.
2

Gburzynski and Nikolaidis
Haq, F. and T. Kunz. 2005. Simulation vs. em-

ulation: Evaluating mobile ad hoc network rout-

ing protocols. In Proceedings of the International

Workshop on Wireless Ad-hoc Networks (IWWAN

2005), London, England, May 2005. Avail-

able online via <http://www.ctr.kcl.ac.uk/

iwwan2005/papers/56.pdf> [accessed June 5th,

2006].

Gburzynski, P. 1996. Protocol design for local and

metropolitan area networks. New Jersey: Prentice

Hall.

AUTHOR BIOGRAPHIES

PAWEL GBURZYNSKI is a professor at the Comput-

ing Science Department of the University of Alberta. He

received his M.Sc. and Ph.D. from the University of

Warsaw in 1976 and 1982 respectively. He is a mem-

ber of the editorial board for the International Journal of

Communication Systems (Wiley). His e-mail address is

<pawel@cs.ualberta.ca>.

IOANIS NIKOLAIDIS is an associate professor at the

Computing Science Department of the University of Alberta.

He received his M.Sc. and Ph.D. from Georgia Teach in

1991 and 1994 respectively. He is a member of the editorial

board for Computer Networks (Elsevier) and for the IEEE

Network Magazine. His e-mail address is <yannis@cs.

ualberta.ca>.
2233

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

