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ABSTRACT 
 
In this paper we describe a new simulation tool used to 
study the creation and optimization of propagation maps 
for Node State Routing protocols within wireless and mo-
bile ad hoc networks. The simulation is developed in 
MATLAB and interfaces with DLL libraries for network 
data management support. These DLL libraries also have 
applications within OPNET for other Node State Routing 
studies. 

1 INTRODUCTION 

Propagation maps are used in the mobile ad hoc network-
ing (MANET) routing protocol Node State Routing (NSR) 
to capture how well a node can hear its neighbors. Our 
simulation tool, Single Hop Propagation Map Evaluation 
Tool (SHOPMET), supports the study of the optimization 
of propagation map size and the longevity of propagation 
map relevance.  

We start this paper by describing ad hoc networks and 
our motivation for using propagation maps. We then de-
scribe the constituent problems in creating propagation 
maps before proceeding into a discussion of the simulation 
tool used for our study on propagation maps. 

1.1 Background - What are Ad Hoc Networks 

Mobile ad hoc networks (MANETs) are wireless networks 
without infrastructure. Rather than connecting to a base 
station as in wireless telephony or an access point as in 
wireless local area networks, user radios collaborate to cre-
ate their own network. When a user turns on his radio, that 
radio follows a protocol to announce its own existence and 
to discover other radios. The collective objective of the ra-
dios is to discover a topology that allows them to route 
communications amongst themselves. This approach to 
networking is necessary for tactical networks that cannot 
rely on infrastructure such as those used by military and 
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disaster relief organizations. It is also appropriate for sen-
sor networks and inter-vehicular networks. 

MANETs present many challenges to networking pro-
tocols. In the absence of the central control performed by 
base stations and access points, protocols must provide dis-
tributed solutions. The mobility of nodes causes those solu-
tions to be fleeting and so inter-radio communications for 
network maintenance persists throughout the lifetime of 
the network. This is no where more important than in the 
routing protocols that track network topology. The plethora 
of routing protocols proposed for MANETs attests to the 
challenge of this task. There is a direct correlation between 
the effectiveness of a protocol to track topology and the 
quantity of administrative traffic and this quantity in-
creases as either the size or volatility of the network in-
creases. However, wireless networks are capacity con-
strained. As a result, the bulk of the research in routing is 
directed towards reducing the overhead burden of dissemi-
nating topology data. 

A major contributor to the quantity of overhead that is 
required to track topology can be attributed to the use of 
links to define topology. All MANET routing protocols 
that we are aware articulate the connectivity between pairs 
of nodes as links (Murthy and Manoj 2004). These proto-
cols use the observation of past connectivity to infer con-
nectivity in the future. In a typical proactive protocol, 
nodes periodically announce their existence and those that 
hear these signals assume a directed link between them. 
Next, nodes announce information on which nodes they 
can hear which supports determining bidirectional connec-
tivity. Finally, nodes disseminate a comprehensive list of 
links, perhaps with a quality metric. Each node in the net-
work takes the collective set of the observations of links 
and calculates its routing table. If a node discovers a link 
failure, it needs to resend a new list of links and all nodes 
that receive this information must purge the old list and re-
place it with the new followed by a recalculation of their 
routing table. The movement of a single node can cause it 
and multiple neighboring nodes to change their lists of 
links and then these lists must be disseminated throughout 
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the network. In a typical reactive protocol, nodes needing 
to send packets to a destination send out a broadcast probe 
to discover the route. When the destination receives one of 
these probes it sends a reply back to the source. This reply 
either captures the route taken or specifies the next of the 
series of nodes that know the route to the destination. Here, 
not only are the links assumed because of past observations 
but also the whole path is assumed because it was observed 
in the past. If one link in the path fails because of move-
ment or other reasons, a new path must be discovered, and 
the whole discovery process may need to be repeated. 
Since discovery often requires network-wide broadcasts it 
can be quite costly.  

1.2 Node State Routing 

Node State Routing (NSR) is the alternative to the link 
driven protocols described above. It uses a paradigm that 
more closely matches the physics of wireless networking. 
Rather than disseminating link states, nodes disseminate 
node states. A node’s state is a set of observations made by 
a node of itself and its environment. Two pieces of infor-
mation in the node state support the determination of con-
nectivity in the network, the location of the node and a 
propagation map. The propagation map articulates how 
well a node can hear by direction and ultimately defines a 
space from which it can hear other nodes. Routers use a 
collection of node states to determine connectivity. Links 
are inferred between two nodes when they are within each 
other’s listening space.  

Similar to link driven protocols, nodes periodically 
send hello messages. These messages include the power at 
which the node transmits and the node’s location. Distant 
nodes that hear the transmission record the location of the 
distant node, its own location, the time of the observation, 
and the observed path loss. Then, periodically or when the 
existing propagation map becomes incorrect, it generates a 
new propagation map from the collection of these meas-
urements. The advantages of using NSR are that node 
states and propagation maps are concise when compared to 
lists of links, are unlikely to change for neighbors when a 
node moves thus reducing update volume, and they pro-
vide substantially more information than link states which 
can be used to support quality of service, energy conserva-
tion, and network management, and to anticipate not just 
track connectivity. 

1.3 Propagation Maps  

Nodes within an MANET communicate there connectivity 
through sending propagation maps inside their node state 
packets. These maps are transmitted in vector form re-
ferred to as a propagation vector. The structure of the 
propagation vector involves 8 bit words, which specify 256 
different path loss exponents n ranging from 1.9 to 7.0 in 
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increments that provide equidistant changes in propagation 
range. The propagation vector structure also divides a 
node’s encompassing sphere representing connectivity 
range into 256 longitudes θ  and 180 latitudes φ.  

To understand the notation, consider each sector of the 
map to represent a specific path loss exponent n. If all sec-
tors were explicitly defined by the propagation map, it 
would have the form (0, 0, n00, θ01, n01, …, θ0x, 255, φ1, θ11, 
n11, …, θ1x, 255, 180). Each sector covers the φ values 
ranging from the adjacent and previous φ from its n to the 
adjacent and following φ. Likewise, each sector covers the 
θ  values ranging from the adjacent and previous θ from its 
n to the adjacent and following θ within the vector. How-
ever, if the previous θ is 255 then the range of θ values be-
gins at 0. Also, the ranges of the θ and φ values for the first 
sector begin at 0. 

Visually, the smaller n is for a sector within the map, 
the more connectivity there is, and the more outward the 
map extends those directions. To illustrate, an example of a 
propagation map is provided below.  

 
Figure 1: Illustration of Sample Propagation Map 
 
Since 0φ = , 0θ = , 255θ = , and 180φ = occur pre-

dictably, most of these elements can be dropped from the 
vector to obtain a more efficient structure. This is best de-
scribed through an example. Consider the corresponding 
propagation vector to the above map in Figure 1, which is 
[2 255 69 4.5 100 3.1 255 100 2.7 255 110 4.7 0]. In this case, a 
path loss exponent n = 2 is assigned in directions contain-
ing a [0, 255]θ ∈  and [0, 69]φ ∈ . A path loss exponent n = 
4.5 is assigned in directions containing a [0,100]θ ∈  and a 

[70,100]φ ∈ . A path loss exponent n = 3.1 is assigned in 
directions containing a [100, 255]θ ∈  and a [70,100]φ ∈ . A 
path loss exponent n = 2.7 is assigned in directions con-
taining a [0, 255]θ ∈  and a [101,110]φ ∈ . Finally, a path 
loss exponent n of 4.7 is assigned in directions from con-
taining a [0, 255]θ ∈ and a [111,180]φ ∈ . This notation is 
an efficient way for a node to convey its own information 
concerning connectivity. Of course, the fewer of bits re-
quired to define connectivity, the less network capacity re-
quired for sharing propagation maps among nodes in NSR. 
0
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That is the motivation for developing and studying the op-
timization algorithms to minimize vector length.  

Using propagation maps has three constituent prob-
lems: collecting and pruning propagation observations in a 
manner that tracks the environment; building and then op-
timizing the size of the propagation maps; and disseminat-
ing the propagation maps in a manner that balances over-
head with enabling a reasonable effective and reliable 
routing solution.  

Five algorithms have been created to optimize the size 
of the propagation map. They involve a combination of 
brute force heuristics, linear programming, and genetic al-
gorithms. A primary issue to determine is which algorithm 
provides the most optimal maps in a reasonable amount of 
time. 

The simulation tool SHOPMET has been designed to 
investigate the best algorithm to deploy for NSR as well as 
the methodology for collecting propagation observations 
that best suits NSR. The rest of this paper is devoted to 
discussing the development and usage of the simulation 
tool SHOPMET.  

2 SIMULATION ENVIRONMENT 

SHOPMET simulates the generation of propagation maps 
for a single node in the network, which we will refer to as 
the center node in this paper. However, this still requires 
simulation of an entire MANET scenario. Simulating 
propagation map generation within a MANET for our 
study involves executing intensive algorithms requiring a 
Linear Programming solver and a genetic algorithm solver. 
These requirements make it difficult for a single software 
package to execute the entire simulation. Furthermore, we 
wish to display 3-D surface plots of the propagation maps, 
such as what is displayed in Figure 1 in the simulation out-
puts for visual demonstration and validation. SHOPMET 
contains three components to achieve these simulation 
goals. Two components are written in MATLAB and one 
component is written in C for use in OPNET.  

2.1 Component Simulations 

To begin we present an outline of the complete simulation 
environment. The first component, called Propmap Stimu-
lus is responsible for node movement, the conduction of 
path loss measurements, and the sending of node state 
packets between nodes. Node movement is modeled 
through Brownian motion. There are parameter settings to 
define the frequency of sending node state packets and as 
well as collecting measurements from other nodes.  

Propmap Stimulus has many other parameter settings 
to give the user flexibility in the network scenario he/she 
wants to replicate. The user can select an urban or rural en-
vironment. The urban environment consists of buildings, 
which effect path loss where as the rural environments 
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contains fewer obstructions that increase path loss. If se-
lecting an urban environment, the user can then select how 
many buildings and the dimensions and locations of each 
building in a scenario. The user can select the velocity of 
the nodes as well as specific parameters of the optimization 
algorithm among other parameter settings.  

Inferring connectivity between two nodes in the simu-
lation consists of determining if the estimated path loss is 
below a threshold for connectivity. It is not crucial to pre-
dict path loss with precision to infer connectivity (Stine 
and Veciana 2004). An estimate, such as, a log-distance 
path loss model is suitable. In SHOPMET, the model PL = 
PL(1 m) + 10n log(d) is used (Rappaport 1996) where 
PL(1m) is the path loss of the first meter, n is the path loss 
exponent, and d is the distance between the two nodes. 
Then an additional path loss is added for each meter that 
the signal traverses through an obstruction based upon the 
predefined coefficient of path loss for that object. This pa-
rameter can also be set by the user in SHOPMET. 

In NSR nodes disseminate information about their 
propagation maps, locations, and other states in node state 
packets. SHOPMET simulates the distribution of node 
state packets. The transfer of these packets between nodes 
is contingent upon the existence of connectivity between 
two nodes. Likewise, path loss measurements from other 
nodes are contingent upon connectivity in SHOPMET.  

When generating its propagation map, the center node 
also considers the location other nodes in the network that 
it doesn’t have direct connectivity with through informa-
tion contained in node state packets. These nodes are re-
ferred to as occlusions. The threshold for connectivity is 
set to 100 db in SHOPMET. When the center node learns 
about a new node for which it has no path loss measure-
ment for, it assigns the path loss exponent in that node’s 
direction to be .1 + the path loss exponent which would re-
sult in the threshold path loss of 100 db between the two 
nodes.  

A screen shot of Propmap Stimulus is provided in Fig-
ure 2. Note that the unit distance on the screen is 10 me-
ters. The yellow blocks represent the two buildings, which 
are present in this scenario. 

 
Figure 2: Screen Shot of Propmap Stimulus 
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Propmap Stimulus is then responsible for sending 
measurements repeatedly throughout the simulation to the 
simulation component, which is called NSR Sim, to man-
age the path loss measurements in propagation map stud-
ies. NSR Sim also will be the simulation tool for the study 
of NSR in complete network scenarios. NSR Sim is created 
in DLL libraries because of the other more technical simu-
lation details that are required for the study of NSR, which 
will be performed in OPNET. 

Propmap Stimulus receives formatted data concerning 
propagation measurements back from NSR Sim. It then 
calls the third simulation component, called Map Mini-
mizer to create the propagation map using one of the five 
algorithms under investigation. It required the use of thee 
optimization toolbox and the Genetic Algorithm toolbox in 
Matlab. Map minimizer outputs the optimized map back to 
Propmap Stimulus to be plotted in 3D. The simulation then 
continues with more node movement, measurements, and 
transfer of node state packets until the next event for a 
propagation map creation. Figure 3 provides a chart to 
summarize all 3 component simulations.  

 

 
 

Figure 3: Chart of SHOPMET Simulation Components 

2.2 Algorithms Tested in SHOPMET 

The objective of each of the algorithms is to define a 
propagation map around the center node, which accurately 
infers connectivity to each node it is aware of in the net-
work in the fewest number of bits possible. In other words, 
the algorithms attempt to solve for a propagation vector of 
minimum length. Lower and upper bounds are assigned in 
the optimization problem across small windows in space, 
which individually cover a single occlusion or observation. 
For observations, the minimum exponent is calculated us-
ing the observed path loss and the maximum exponent is 
calculated using the maximum path loss for a link. For oc-
clusions the minimum exponent is calculated using a path 
loss that excludes the node from connectivity and the 
Maximum exponent is the maximum exponent value. An 
additional constraint that is considered is the goodness of 
fit between the path loss measurements and the propaga-
tion map’s corresponding path loss for the sample points.  

A brief outline of each of the give algorithms tested in 
SHOPMET is provided below. Nonlinear Programming is 

Propmap Stimulus 

Map Minimizer 

NSR SIM
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notated as NLP, Integer Programming as IP, Linear Pro-
gramming as LP, and Genetic Algorithm as GA. This nota-
tion is provided below to specify the underlying optimiza-
tion / search methodology. 

 
1. NLP: Minimize length of vector such that good-

ness of fit is also considered as well as connec-
tivity. 

 
2. IP: Minimize length of vector such that connec-

tivity is properly predicted at all sample meas-
urement points. 

 
3. Two-phase cut (GA/LP): At each iteration cut a 

subset of the vector (containing no more than one 
n), solve for the remaining n, θ, φ values in the 
vector that minimize goodness of fit. Before each 
cut is made an LP is solved to smooth the n values 
in the vector and the subset containing the n with 
the smallest deviation to adjacent n is cut. Proceed 
with reducing vector until connectivity constraint 
cannot be achieved. 

 
4. Fast map (GA): Start with a vector of form [n, 0]. 

Using GA, solve for the best vector at the current 
length. If connectivity constraint cannot be 
achieved then increase the length of the vector. 
Continue until acceptable goodness of fit can be 
achieved. 

 
5. Constraint Based – Simply iterate through all 

possible n, θ, φ values at each length, starting at 
length 3, until a combination is found that satisfies 
constraints on connectivity and goodness of fit. 

3  INTERFACING THE COMPONENT SIMS 

Algorithms for propagation map computation and routing 
were being developed independently of the work being 
done in SHOPMET for simulating and testing propagation 
map optimization and aging. These C-coded algorithms 
(henceforth known as the “NSR code”) were built and 
tested within NSR Sim, an OPNET simulation environ-
ment. Although the NSR code was largely built to be port-
able (independent of underlying OPNET toolkits and oper-
ating system), the presence of profiling and memory 
allocation monitoring tools within OPNET was extremely 
valuable to effectively test, debug, and optimize the code. 
This meant that the resulting code was largely portable, but 
had some embedded OPNET dependencies to enable use of 
these execution and memory profiling tools. 

One of the goals of the research effort was to integrate 
the underlying propagation map/routing code within multi-
ple simulation environments (one of these being 
SHOPMET) being used to model and test various aspects 
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of the MANET environment. Each of these environments 
was based on a proprietary closed-source toolkit that sup-
ported use of external dynamically-loaded libraries (“dll’s” 
in the Windows environment) for extension and integration 
with third party code. In order to best leverage the work 
being done under OPNET, we decided to adopt the ap-
proach of embedding the NSR code within a dll that could 
be used with SHOPMET running under Matlab, using its 
built-in support for dynamically loading dll’s.  

Although this provided the basics of the integration 
mechanism, there was still an issue that the NSR code re-
lied on a fairly low-level interface, utilizing pointers to C 
“structs” to pass data in and out of its functions. Moreover, 
some of these structs represent linked list structures. Al-
though Matlab supports allocating and passing structs and 
arrays (with a few limitations), it is cumbersome to spec-
ify, create and manage data structures such as those re-
quired by the NSR code from within Matlab code. Another 
environment being used in a similar fashion (Runtime 
Revolution) made such usage even more complex, because 
it requires passing all data to external functions as strings. 
This led us to decide to develop an adapter layer that pro-
vided higher-level data types and a simplified API (appli-
cation program interface) that could be exposed more ef-
fectively to third party tools such as Matlab. Basically, this 
interface involved specifying nodes by name and location, 
and providing calls to allow these nodes to be manipulated, 
to specify propagation loss observations between nodes, 
and to generate propagation maps, all based on symbolic 
node names. 

We resolved the issue of OPNET dependencies by de-
veloping a simple replacement header file for OPNET 
functionality that would use a combination of C macros to 
eliminate profiling calls and replacement functions to map 
OPNET memory allocation to standard C library functions 
(“malloc”). We “coopted” the profiling calls to provide a 
runtime logging capability for debugging purposes (ac-
complished by further use of C macros). The dll itself was 
built using a combination of the Eclipse IDE with CDT (C 
development toolkit) and Mingw (Minimal GNU Windows 
toolkit) and gcc 3.4 to compile the C code. The benefits of 
this approach were that it helped to preserve portability of 
the code to platforms other than Windows for future im-
plementations on embedded, real-time, and Linux-based 
systems. 

The result of this integration effort was a single dll that 
could be built directly from the NSR code (unmodified 
from its form as embedded in an OPNET simulation) and 
that could be used by the SHOPMET simulation based on 
Matlab. A secondary dll that utilized the NSR dll was de-
veloped that provided a mapping of functions and string 
argument conversions for use with Runtime Revolution. 
This meant that all simulation efforts were based on the 
same underlying NSR code; that changes to the NSR code 
could be readily propagated to the other efforts simply be 
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“dropping in” the revised dll; the provision of execution 
logging meant that debugging information could be cap-
tured in usage outside of the OPNET simulation. 

4 EXPERIMENTATION WITH SHOPMET 

To give the reader a better idea of how SHOPMET is used 
for the study of propagation maps and for NSR, we briefly 
discuss its input parameters and resulting performance 
measures. The input parameters for propagation map study 
involve the network scenario parameters for Propmap 
Stimulus discussed above as well as additional parameters 
pertaining to Map Minimizer. These include, for each algo-
rithm, the time limit for the search for the optimal solution, 
the number of nodes contained in the network, and the 
minimal acceptable level of goodness of fit between the 
propagation map and the measurements at the sample 
points. 

The performance measures of interest were the aver-
age length of the optimized map generated by the algo-
rithms as well as the goodness of fit. Length is the most 
important criteria for choosing the best algorithm since 
there is a hard constraint for inferring connectivity within 
the formulation of the optimization problem. Experiments 
can be performed with this tool to investigate then, which 
algorithm performs best when the network contains a large 
set of nodes, is dense with buildings, fast moving nodes, 
etc. We can investigate which algorithms perform best un-
der each the parameter settings discussed in the discussion 
of Propmap Stimulus. 

5 CONCLUSION 

The simulation SHOPMET is a flexible an effective tool 
for studying algorithms that generate propagation maps in 
MANET scenarios. It provides plotting of propagation 
maps and network animation to demonstrate the propaga-
tion map optimization algorithms in various network envi-
ronments. In addition, it also contains the technical solvers 
to perform experimentation on the algorithm making it a 
powerful all in one tool for visualization and computation.  

After the conclusion of this study on propagation 
maps, SHOPMET will be integrated within a future 
OPNET simulation to study large scale system designs of 
MANETs. In this application, SHOPMET will consist only 
of the Map Minimizer component. It will contain only a 
single algorithm for propagation map generation, which is 
the algorithm found in this study to be the most effective. It 
will be called iteratively during this MANET simulation to 
generate propagation maps for every node in the network. 
Each node will then use these propagation maps to com-
pute an optimal route for a packet.  
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