
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A MANET SIMULATION TOOL TO STUDY ALGORITHMS FOR GENERATING PROPAGATION MAPS

Scott L. Rosen
John A. Stine

William J. Weiland

The MITRE Corporation
McLean, VA 22102, U.S.A.

ABSTRACT

In this paper we describe a new simulation tool used to
study the creation and optimization of propagation maps
for Node State Routing protocols within wireless and mo-
bile ad hoc networks. The simulation is developed in
MATLAB and interfaces with DLL libraries for network
data management support. These DLL libraries also have
applications within OPNET for other Node State Routing
studies.

1 INTRODUCTION

Propagation maps are used in the mobile ad hoc network-
ing (MANET) routing protocol Node State Routing (NSR)
to capture how well a node can hear its neighbors. Our
simulation tool, Single Hop Propagation Map Evaluation
Tool (SHOPMET), supports the study of the optimization
of propagation map size and the longevity of propagation
map relevance.

We start this paper by describing ad hoc networks and
our motivation for using propagation maps. We then de-
scribe the constituent problems in creating propagation
maps before proceeding into a discussion of the simulation
tool used for our study on propagation maps.

1.1 Background - What are Ad Hoc Networks

Mobile ad hoc networks (MANETs) are wireless networks
without infrastructure. Rather than connecting to a base
station as in wireless telephony or an access point as in
wireless local area networks, user radios collaborate to cre-
ate their own network. When a user turns on his radio, that
radio follows a protocol to announce its own existence and
to discover other radios. The collective objective of the ra-
dios is to discover a topology that allows them to route
communications amongst themselves. This approach to
networking is necessary for tactical networks that cannot
rely on infrastructure such as those used by military and
22191-4244-0501-7/06/$20.00 ©2006 IEEE
disaster relief organizations. It is also appropriate for sen-
sor networks and inter-vehicular networks.

MANETs present many challenges to networking pro-
tocols. In the absence of the central control performed by
base stations and access points, protocols must provide dis-
tributed solutions. The mobility of nodes causes those solu-
tions to be fleeting and so inter-radio communications for
network maintenance persists throughout the lifetime of
the network. This is no where more important than in the
routing protocols that track network topology. The plethora
of routing protocols proposed for MANETs attests to the
challenge of this task. There is a direct correlation between
the effectiveness of a protocol to track topology and the
quantity of administrative traffic and this quantity in-
creases as either the size or volatility of the network in-
creases. However, wireless networks are capacity con-
strained. As a result, the bulk of the research in routing is
directed towards reducing the overhead burden of dissemi-
nating topology data.

A major contributor to the quantity of overhead that is
required to track topology can be attributed to the use of
links to define topology. All MANET routing protocols
that we are aware articulate the connectivity between pairs
of nodes as links (Murthy and Manoj 2004). These proto-
cols use the observation of past connectivity to infer con-
nectivity in the future. In a typical proactive protocol,
nodes periodically announce their existence and those that
hear these signals assume a directed link between them.
Next, nodes announce information on which nodes they
can hear which supports determining bidirectional connec-
tivity. Finally, nodes disseminate a comprehensive list of
links, perhaps with a quality metric. Each node in the net-
work takes the collective set of the observations of links
and calculates its routing table. If a node discovers a link
failure, it needs to resend a new list of links and all nodes
that receive this information must purge the old list and re-
place it with the new followed by a recalculation of their
routing table. The movement of a single node can cause it
and multiple neighboring nodes to change their lists of
links and then these lists must be disseminated throughout

Rosen, Stine, and Weiland

the network. In a typical reactive protocol, nodes needing
to send packets to a destination send out a broadcast probe
to discover the route. When the destination receives one of
these probes it sends a reply back to the source. This reply
either captures the route taken or specifies the next of the
series of nodes that know the route to the destination. Here,
not only are the links assumed because of past observations
but also the whole path is assumed because it was observed
in the past. If one link in the path fails because of move-
ment or other reasons, a new path must be discovered, and
the whole discovery process may need to be repeated.
Since discovery often requires network-wide broadcasts it
can be quite costly.

1.2 Node State Routing

Node State Routing (NSR) is the alternative to the link
driven protocols described above. It uses a paradigm that
more closely matches the physics of wireless networking.
Rather than disseminating link states, nodes disseminate
node states. A node’s state is a set of observations made by
a node of itself and its environment. Two pieces of infor-
mation in the node state support the determination of con-
nectivity in the network, the location of the node and a
propagation map. The propagation map articulates how
well a node can hear by direction and ultimately defines a
space from which it can hear other nodes. Routers use a
collection of node states to determine connectivity. Links
are inferred between two nodes when they are within each
other’s listening space.

Similar to link driven protocols, nodes periodically
send hello messages. These messages include the power at
which the node transmits and the node’s location. Distant
nodes that hear the transmission record the location of the
distant node, its own location, the time of the observation,
and the observed path loss. Then, periodically or when the
existing propagation map becomes incorrect, it generates a
new propagation map from the collection of these meas-
urements. The advantages of using NSR are that node
states and propagation maps are concise when compared to
lists of links, are unlikely to change for neighbors when a
node moves thus reducing update volume, and they pro-
vide substantially more information than link states which
can be used to support quality of service, energy conserva-
tion, and network management, and to anticipate not just
track connectivity.

1.3 Propagation Maps

Nodes within an MANET communicate there connectivity
through sending propagation maps inside their node state
packets. These maps are transmitted in vector form re-
ferred to as a propagation vector. The structure of the
propagation vector involves 8 bit words, which specify 256
different path loss exponents n ranging from 1.9 to 7.0 in
222
increments that provide equidistant changes in propagation
range. The propagation vector structure also divides a
node’s encompassing sphere representing connectivity
range into 256 longitudes θ and 180 latitudes φ.

To understand the notation, consider each sector of the
map to represent a specific path loss exponent n. If all sec-
tors were explicitly defined by the propagation map, it
would have the form (0, 0, n00, θ01, n01, …, θ0x, 255, φ1, θ11,
n11, …, θ1x, 255, 180). Each sector covers the φ values
ranging from the adjacent and previous φ from its n to the
adjacent and following φ. Likewise, each sector covers the
θ values ranging from the adjacent and previous θ from its
n to the adjacent and following θ within the vector. How-
ever, if the previous θ is 255 then the range of θ values be-
gins at 0. Also, the ranges of the θ and φ values for the first
sector begin at 0.

Visually, the smaller n is for a sector within the map,
the more connectivity there is, and the more outward the
map extends those directions. To illustrate, an example of a
propagation map is provided below.

Figure 1: Illustration of Sample Propagation Map

Since 0φ = , 0θ = , 255θ = , and 180φ = occur pre-

dictably, most of these elements can be dropped from the
vector to obtain a more efficient structure. This is best de-
scribed through an example. Consider the corresponding
propagation vector to the above map in Figure 1, which is
[2 255 69 4.5 100 3.1 255 100 2.7 255 110 4.7 0]. In this case, a
path loss exponent n = 2 is assigned in directions contain-
ing a [0, 255]θ ∈ and [0, 69]φ ∈ . A path loss exponent n =
4.5 is assigned in directions containing a [0,100]θ ∈ and a

[70,100]φ ∈ . A path loss exponent n = 3.1 is assigned in
directions containing a [100, 255]θ ∈ and a [70,100]φ ∈ . A
path loss exponent n = 2.7 is assigned in directions con-
taining a [0, 255]θ ∈ and a [101,110]φ ∈ . Finally, a path
loss exponent n of 4.7 is assigned in directions from con-
taining a [0, 255]θ ∈ and a [111,180]φ ∈ . This notation is
an efficient way for a node to convey its own information
concerning connectivity. Of course, the fewer of bits re-
quired to define connectivity, the less network capacity re-
quired for sharing propagation maps among nodes in NSR.
0

Rosen, Stine, and Weiland

That is the motivation for developing and studying the op-
timization algorithms to minimize vector length.

Using propagation maps has three constituent prob-
lems: collecting and pruning propagation observations in a
manner that tracks the environment; building and then op-
timizing the size of the propagation maps; and disseminat-
ing the propagation maps in a manner that balances over-
head with enabling a reasonable effective and reliable
routing solution.

Five algorithms have been created to optimize the size
of the propagation map. They involve a combination of
brute force heuristics, linear programming, and genetic al-
gorithms. A primary issue to determine is which algorithm
provides the most optimal maps in a reasonable amount of
time.

The simulation tool SHOPMET has been designed to
investigate the best algorithm to deploy for NSR as well as
the methodology for collecting propagation observations
that best suits NSR. The rest of this paper is devoted to
discussing the development and usage of the simulation
tool SHOPMET.

2 SIMULATION ENVIRONMENT

SHOPMET simulates the generation of propagation maps
for a single node in the network, which we will refer to as
the center node in this paper. However, this still requires
simulation of an entire MANET scenario. Simulating
propagation map generation within a MANET for our
study involves executing intensive algorithms requiring a
Linear Programming solver and a genetic algorithm solver.
These requirements make it difficult for a single software
package to execute the entire simulation. Furthermore, we
wish to display 3-D surface plots of the propagation maps,
such as what is displayed in Figure 1 in the simulation out-
puts for visual demonstration and validation. SHOPMET
contains three components to achieve these simulation
goals. Two components are written in MATLAB and one
component is written in C for use in OPNET.

2.1 Component Simulations

To begin we present an outline of the complete simulation
environment. The first component, called Propmap Stimu-
lus is responsible for node movement, the conduction of
path loss measurements, and the sending of node state
packets between nodes. Node movement is modeled
through Brownian motion. There are parameter settings to
define the frequency of sending node state packets and as
well as collecting measurements from other nodes.

Propmap Stimulus has many other parameter settings
to give the user flexibility in the network scenario he/she
wants to replicate. The user can select an urban or rural en-
vironment. The urban environment consists of buildings,
which effect path loss where as the rural environments
2221
contains fewer obstructions that increase path loss. If se-
lecting an urban environment, the user can then select how
many buildings and the dimensions and locations of each
building in a scenario. The user can select the velocity of
the nodes as well as specific parameters of the optimization
algorithm among other parameter settings.

Inferring connectivity between two nodes in the simu-
lation consists of determining if the estimated path loss is
below a threshold for connectivity. It is not crucial to pre-
dict path loss with precision to infer connectivity (Stine
and Veciana 2004). An estimate, such as, a log-distance
path loss model is suitable. In SHOPMET, the model PL =
PL(1 m) + 10n log(d) is used (Rappaport 1996) where
PL(1m) is the path loss of the first meter, n is the path loss
exponent, and d is the distance between the two nodes.
Then an additional path loss is added for each meter that
the signal traverses through an obstruction based upon the
predefined coefficient of path loss for that object. This pa-
rameter can also be set by the user in SHOPMET.

In NSR nodes disseminate information about their
propagation maps, locations, and other states in node state
packets. SHOPMET simulates the distribution of node
state packets. The transfer of these packets between nodes
is contingent upon the existence of connectivity between
two nodes. Likewise, path loss measurements from other
nodes are contingent upon connectivity in SHOPMET.

When generating its propagation map, the center node
also considers the location other nodes in the network that
it doesn’t have direct connectivity with through informa-
tion contained in node state packets. These nodes are re-
ferred to as occlusions. The threshold for connectivity is
set to 100 db in SHOPMET. When the center node learns
about a new node for which it has no path loss measure-
ment for, it assigns the path loss exponent in that node’s
direction to be .1 + the path loss exponent which would re-
sult in the threshold path loss of 100 db between the two
nodes.

A screen shot of Propmap Stimulus is provided in Fig-
ure 2. Note that the unit distance on the screen is 10 me-
ters. The yellow blocks represent the two buildings, which
are present in this scenario.

Figure 2: Screen Shot of Propmap Stimulus

-10
-5

0
5

10

-10

0

10
-10

-5

0

5

10

Rosen, Stine, and Weiland

Propmap Stimulus is then responsible for sending
measurements repeatedly throughout the simulation to the
simulation component, which is called NSR Sim, to man-
age the path loss measurements in propagation map stud-
ies. NSR Sim also will be the simulation tool for the study
of NSR in complete network scenarios. NSR Sim is created
in DLL libraries because of the other more technical simu-
lation details that are required for the study of NSR, which
will be performed in OPNET.

Propmap Stimulus receives formatted data concerning
propagation measurements back from NSR Sim. It then
calls the third simulation component, called Map Mini-
mizer to create the propagation map using one of the five
algorithms under investigation. It required the use of thee
optimization toolbox and the Genetic Algorithm toolbox in
Matlab. Map minimizer outputs the optimized map back to
Propmap Stimulus to be plotted in 3D. The simulation then
continues with more node movement, measurements, and
transfer of node state packets until the next event for a
propagation map creation. Figure 3 provides a chart to
summarize all 3 component simulations.

Figure 3: Chart of SHOPMET Simulation Components

2.2 Algorithms Tested in SHOPMET

The objective of each of the algorithms is to define a
propagation map around the center node, which accurately
infers connectivity to each node it is aware of in the net-
work in the fewest number of bits possible. In other words,
the algorithms attempt to solve for a propagation vector of
minimum length. Lower and upper bounds are assigned in
the optimization problem across small windows in space,
which individually cover a single occlusion or observation.
For observations, the minimum exponent is calculated us-
ing the observed path loss and the maximum exponent is
calculated using the maximum path loss for a link. For oc-
clusions the minimum exponent is calculated using a path
loss that excludes the node from connectivity and the
Maximum exponent is the maximum exponent value. An
additional constraint that is considered is the goodness of
fit between the path loss measurements and the propaga-
tion map’s corresponding path loss for the sample points.

A brief outline of each of the give algorithms tested in
SHOPMET is provided below. Nonlinear Programming is

Propmap Stimulus

Map Minimizer

NSR SIM
2222
notated as NLP, Integer Programming as IP, Linear Pro-
gramming as LP, and Genetic Algorithm as GA. This nota-
tion is provided below to specify the underlying optimiza-
tion / search methodology.

1. NLP: Minimize length of vector such that good-

ness of fit is also considered as well as connec-
tivity.

2. IP: Minimize length of vector such that connec-

tivity is properly predicted at all sample meas-
urement points.

3. Two-phase cut (GA/LP): At each iteration cut a

subset of the vector (containing no more than one
n), solve for the remaining n, θ, φ values in the
vector that minimize goodness of fit. Before each
cut is made an LP is solved to smooth the n values
in the vector and the subset containing the n with
the smallest deviation to adjacent n is cut. Proceed
with reducing vector until connectivity constraint
cannot be achieved.

4. Fast map (GA): Start with a vector of form [n, 0].

Using GA, solve for the best vector at the current
length. If connectivity constraint cannot be
achieved then increase the length of the vector.
Continue until acceptable goodness of fit can be
achieved.

5. Constraint Based – Simply iterate through all

possible n, θ, φ values at each length, starting at
length 3, until a combination is found that satisfies
constraints on connectivity and goodness of fit.

3 INTERFACING THE COMPONENT SIMS

Algorithms for propagation map computation and routing
were being developed independently of the work being
done in SHOPMET for simulating and testing propagation
map optimization and aging. These C-coded algorithms
(henceforth known as the “NSR code”) were built and
tested within NSR Sim, an OPNET simulation environ-
ment. Although the NSR code was largely built to be port-
able (independent of underlying OPNET toolkits and oper-
ating system), the presence of profiling and memory
allocation monitoring tools within OPNET was extremely
valuable to effectively test, debug, and optimize the code.
This meant that the resulting code was largely portable, but
had some embedded OPNET dependencies to enable use of
these execution and memory profiling tools.

One of the goals of the research effort was to integrate
the underlying propagation map/routing code within multi-
ple simulation environments (one of these being
SHOPMET) being used to model and test various aspects

Rosen, Stine, and Weiland

of the MANET environment. Each of these environments
was based on a proprietary closed-source toolkit that sup-
ported use of external dynamically-loaded libraries (“dll’s”
in the Windows environment) for extension and integration
with third party code. In order to best leverage the work
being done under OPNET, we decided to adopt the ap-
proach of embedding the NSR code within a dll that could
be used with SHOPMET running under Matlab, using its
built-in support for dynamically loading dll’s.

Although this provided the basics of the integration
mechanism, there was still an issue that the NSR code re-
lied on a fairly low-level interface, utilizing pointers to C
“structs” to pass data in and out of its functions. Moreover,
some of these structs represent linked list structures. Al-
though Matlab supports allocating and passing structs and
arrays (with a few limitations), it is cumbersome to spec-
ify, create and manage data structures such as those re-
quired by the NSR code from within Matlab code. Another
environment being used in a similar fashion (Runtime
Revolution) made such usage even more complex, because
it requires passing all data to external functions as strings.
This led us to decide to develop an adapter layer that pro-
vided higher-level data types and a simplified API (appli-
cation program interface) that could be exposed more ef-
fectively to third party tools such as Matlab. Basically, this
interface involved specifying nodes by name and location,
and providing calls to allow these nodes to be manipulated,
to specify propagation loss observations between nodes,
and to generate propagation maps, all based on symbolic
node names.

We resolved the issue of OPNET dependencies by de-
veloping a simple replacement header file for OPNET
functionality that would use a combination of C macros to
eliminate profiling calls and replacement functions to map
OPNET memory allocation to standard C library functions
(“malloc”). We “coopted” the profiling calls to provide a
runtime logging capability for debugging purposes (ac-
complished by further use of C macros). The dll itself was
built using a combination of the Eclipse IDE with CDT (C
development toolkit) and Mingw (Minimal GNU Windows
toolkit) and gcc 3.4 to compile the C code. The benefits of
this approach were that it helped to preserve portability of
the code to platforms other than Windows for future im-
plementations on embedded, real-time, and Linux-based
systems.

The result of this integration effort was a single dll that
could be built directly from the NSR code (unmodified
from its form as embedded in an OPNET simulation) and
that could be used by the SHOPMET simulation based on
Matlab. A secondary dll that utilized the NSR dll was de-
veloped that provided a mapping of functions and string
argument conversions for use with Runtime Revolution.
This meant that all simulation efforts were based on the
same underlying NSR code; that changes to the NSR code
could be readily propagated to the other efforts simply be
2223
“dropping in” the revised dll; the provision of execution
logging meant that debugging information could be cap-
tured in usage outside of the OPNET simulation.

4 EXPERIMENTATION WITH SHOPMET

To give the reader a better idea of how SHOPMET is used
for the study of propagation maps and for NSR, we briefly
discuss its input parameters and resulting performance
measures. The input parameters for propagation map study
involve the network scenario parameters for Propmap
Stimulus discussed above as well as additional parameters
pertaining to Map Minimizer. These include, for each algo-
rithm, the time limit for the search for the optimal solution,
the number of nodes contained in the network, and the
minimal acceptable level of goodness of fit between the
propagation map and the measurements at the sample
points.

The performance measures of interest were the aver-
age length of the optimized map generated by the algo-
rithms as well as the goodness of fit. Length is the most
important criteria for choosing the best algorithm since
there is a hard constraint for inferring connectivity within
the formulation of the optimization problem. Experiments
can be performed with this tool to investigate then, which
algorithm performs best when the network contains a large
set of nodes, is dense with buildings, fast moving nodes,
etc. We can investigate which algorithms perform best un-
der each the parameter settings discussed in the discussion
of Propmap Stimulus.

5 CONCLUSION

The simulation SHOPMET is a flexible an effective tool
for studying algorithms that generate propagation maps in
MANET scenarios. It provides plotting of propagation
maps and network animation to demonstrate the propaga-
tion map optimization algorithms in various network envi-
ronments. In addition, it also contains the technical solvers
to perform experimentation on the algorithm making it a
powerful all in one tool for visualization and computation.

After the conclusion of this study on propagation
maps, SHOPMET will be integrated within a future
OPNET simulation to study large scale system designs of
MANETs. In this application, SHOPMET will consist only
of the Map Minimizer component. It will contain only a
single algorithm for propagation map generation, which is
the algorithm found in this study to be the most effective. It
will be called iteratively during this MANET simulation to
generate propagation maps for every node in the network.
Each node will then use these propagation maps to com-
pute an optimal route for a packet.

Rosen, Stine, and Weiland

REFERENCES

Murthy, C. and B. Manoj. 2004. Ad hoc wireless networks
architectures and protocols. Prentice Hall, Upper Saddle
River, New Jersey.

Rappaport, T. 1996. Wireless communications: principles
and practice. Prentice Hall, Upper Saddle River, New
Jersey.

Stine, J and G. Veciana. 2004. A paradigm for quality-of-
service in wireless ad hoc networks using synchronous
signaling and node states. IEEE Journal on Selected Ar-
eas in Communication. 22 (7): 1301-1321.

AUTHOR BIOGRAPHIES

SCOTT L. ROSEN is a Senior Operations Research Ana-
lyst with the MITRE Corporation. He holds M.S. and
Ph.D. degrees for Penn State in Industrial Engineering and
Operations Research and a B.S. in Industrial and Systems
Engineering from Lehigh University. His current work at
MITRE involves simulation output analysis and optimiza-
tion. He is a current member of INFORMS.

JOHN A. STINE received a BS in general engineering
from the United States Military Academy at West Point,
NY in 1981. He received MS degrees in manufacturing
systems and electrical engineering from The University of
Texas at Austin, Austin, TX in 1990 and later a Ph.D. in
electrical engineering, also from The University of Texas
at Austin in 2001. He served as an engineer officer in the
United States Army for 20 years with relevant assignments
as an assistant professor in electrical engineering at West
Point and as a lead analyst in the Army’s Task Force XXI
experiment which was the Army’s first attempt to network
a brigade size maneuver force. He has been with The
MITRE Corporation in McLean, VA, since 2001 where he
does research in ad hoc networking and consults on pro-
jects concerning ad hoc networking, spectrum manage-
ment, and modeling and simulation of command, control,
communications, computer, intelligence, surveillance, and
reconnaissance (C4ISR) systems. Dr. Stine is a member of
the IEEE Communications Society and a registered profes-
sional engineer in the state of Virginia.

WILLIAM J. WEILAND is a Lead Software Systems
Engineer with the MITRE Corporation. He holds an M.S.
in Computer Science from the University of Maryland. His
current research interests include simulation, visualization,
and distributed computing. He has previously conducted
work in human computer interaction and virtual environ-
ments.
2224

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

