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ABSTRACT 

Valid models of the WWW are important for creating 
WWW-like representations, upon which new algorithms 
and applications for searching, indexing, compression etc. 
can be tested, but also for predicting the evolution of the 
web and the emergence of important new phenomena. In 
this study we introduce a validation process for web-graph 
models and use it to analyze the behavior of the Exponen-
tial Growth Copying Model, which has been explicitly de-
signed to model the WWW. We study the effect of indi-
vidual parameters on its effectiveness, suggest appropriate 
parameter values for the creation of web-like graphs and 
indicate inherent deficiencies of the model. 

1 INTRODUCTION 

The World-Wide Web (WWW) has shown a tremendous 
growth in late years and estimates of its size are currently 
at the billion web-pages scale. No crawl or search engine 
can chart its entirety, a problem that is magnified by its 
ever increasing dynamic content. Therefore, it has become 
an extremely tedious task for researchers to obtain and 
manage real-world data (i.e. the web itself). The most 
promising solution for this problem is the use of models 
that create realistic representations of the WWW, where 
new algorithms and applications (for searching, compres-
sion, etc.) can  be tested. These models can further enhance 
our understanding of the sociology of content creation on 
the web, our predictions of its evolution and the emergence 
of important new phenomena. The need for valid models of 
its structural evolution is much more pronounced today; 
existing technologies need to be thoroughly tested prior to 
deployment and future needs to be accurately predicted and 
taken into consideration. 

In detail, the development of realistic and accurate 
stochastic models for the web-graph could enhance: 

 
• Testing web applications with synthetic bench-

marks (Laura et al. 2002). 
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• Detecting peculiar regions of the web-graph (local 
subsets that share different statistical properties 
with the whole structure). 

• Analyzing the behavior of search algorithms that 
make use of link information, e.g. PageRank (Brin 
and Page 1998), HITS (Kleinberg 1998). 

• Designing crawling strategies. 
• Predicting the evolution and the emergence of im-

portant new phenomena in the web. 
• Dealing more efficiently with large scale compu-

tations (e.g. by recognizing the possibility of 
compressing a graph generated by such a model). 

 
In (Adler and Mitzenmacher 2001) a characteristic 

case demonstrating the usefulness of web-graph models is 
presented: the problem of efficient algorithms for the com-
pression of graphs with the link structure of the WWW. 
Motivated by the random graph models proposed in 
(Kumar et al. 1999b), the authors devised a compression 
algorithm based on finding similarities among the links of 
web-pages and tested it on graphs created by the model and 
compared its effectiveness with other widely used com-
pression schemes, thus verifying its suitability for real web 
data. 

In this study we introduce a validation process for 
web-graph models based on empirical data and use it to 
analyze the behavior of the Exponential Growth Copying 
Model (EGC), which has been explicitly designed to model 
the WWW (Kumar et al. 2000). We study the effect of in-
dividual parameters on its effectiveness, suggest appropri-
ate parameter values for the creation of more web-like 
graphs and indicate inherent deficiencies of the model. 

2 WORLD-WIDE WEB 

The WWW is traditionally modeled as a graph, the so-
called web-graph, where each static HTML page is a ver-
tex and each hyperlink an edge of this graph (either di-
rected or undirected). Directed edges are defined by vertex 
of origin (tail) and vertex of destination (head), whereas 
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undirected edges are defined by the two vertices they con-
nect. For undirected graphs, the degree of a vertex is the 
number of distinct edges incident at the vertex. For di-
rected graphs, the out (in) degree of a vertex is the number 
of edges having this specific vertex as tail (head). 

The most widely accepted structural characteristic of 
the web-graph, reported by various researchers in web 
crawls is the existence of power-laws for vertex degrees  
(Broder et al. 2000, Kleinberg et al. 1999, and Kumar et al. 
1999a). The power-law for in-degree states that “the prob-
ability that a vertex has in-degree i is proportional to i-x, for 
some x > 0”. The power-law for out-degree is similar, 
though for a different value of x. The values of x for in-
degree power-law (xin) and out-degree power-law (xout) 
have been reported to be xin = 2.1 and xout = 2.7 (Broder et 
al. 2000). The existence of power-laws for vertex degrees 
and the corresponding exponent values are widely accepted 
in the literature as salient WWW characteristics. 

In (Broder et al. 2000) the authors present, to the best 
of our knowledge, the single most extensive and in-depth 
analysis of large-scale WWW characteristics, based upon 
two Altavista crawls (May and October 1999), consisting 
of over 200 million pages and 1.5 billion links each. They 
confirm that the power-law exponent for in-degree is ≈ 2.1 
and for out-degree ≈ 2.7 (using the over 1 billion distinct 
links of each crawl). That study also introduced the large-
scale structure of the web-graph: the “bow-tie” shape. The 
(directed) web-graphs in it comprise of: 

 
• SCC (Strongly Connected Component), consisting 

of all vertices reachable through directed paths 
from each other. 

• ΙΝ component, consisting of all vertices that can 
reach the SCC via directed paths but are them-
selves unreachable from it. 

• OUT component, consisting of all vertices that are 
reachable from the SCC via directed paths but 
cannot reach it themselves. 

• TENDRIL components, consisting of vertices that 
are either reachable from the IN but cannot reach 
the SCC and the OUT components, or can reach 
the OUT but cannot be reached from the SCC and 
the IN components. 

• DISCONNECTED components, consisting of ver-
tices that do not belong in any of the above com-
ponents. 

 
It was noted that sizes of the SCC, IN, OUT and 

TENDRIL components are comparable (about 21% - 28% 
of the total number of vertices), while the 
DISCONNECTED component is much smaller (about 8% 
of the total number of vertices). This means that over 75% 
of the time there exists no directed path from a random 
start vertex to a random finish vertex; but if it does, its 
length was estimated to be 16 on average. Another issue 
2203
explored was the diameter of the web-graph (defined as the 
maximum shortest path between any two vertices that such 
a path exists) by breadth-first searches a number of ran-
domly chosen start points; it was estimated about 905. 

In a preceding paper (Kumar et al. 1999a), a study of a 
1997 web-crawl had been presented, emphasizing in the 
number of bipartite cores existing in the web-graph as sig-
natures of emerging cyber-communities. A bipartite core 
Ci,j consists of i vertices (fans) that all point to the same j 
vertices (centers). Among the about 200 million web-pages 
of the crawl, they found more than 130 thousand bipartite 
cores Ci,j of fans i ≥ 3 and centers j ≥ 3. They also proved 
that the copying models they proposed (such as the EGC) 
are rich in such micro-structures. 

The existence of power-laws in vertex degree distribu-
tions has been also recognized in various other network 
graphs. In (Faloutsos Faloutsos, and Faloutsos 1999) it was 
empirically shown that certain properties of the AS-level 
Internet topology are well described by power-laws. The 
power-law exponent was computed by linear regression of 
degree frequencies on the logarithmic scale. Because these 
distributions are heavy-tailed, calculations of best linear fit 
were restricted to the top roughly 75% of degree frequen-
cies. 

In (Bu and Towsley 2002) it is stated that one should 
not attempt to fit a power-law to a degree frequency distri-
bution unless sure that it is indeed a power-law distribution 
and not some other heavy-tailed one. The empirical com-
plementary distribution (ECD) of vertex degree frequen-
cies is proposed as the criterion of the existence of power-
law: if it is a straight line, then it is a power-law. Analyti-
cally, let f(d) be the fraction of vertices with degree d; the 
ECD is F(d) = Σ f(i) {i = d to ∞}, i.e., the fraction of verti-
ces with degree equal or greater than d. 

3 EXPONENTIAL GROWTH COPYING MODEL 

Previous to the extensive contemporary research of WWW 
structure, traditional random graphs had been considered 
adequate for its modeling. It became apparent though that 
these models do not give birth to power-law degree distri-
butions, so other models were proposed, in varying degrees 
of complexity. For a brief review of the most typical ran-
dom graph models for the web, please see (Kogias, Niko-
laidou and Anagnostopoulos 2005). Presently we describe 
the Exponential Growth Copying (EGC) Model (Kumar et 
al. 2000), which was used as the test case of our methodol-
ogy. 

Evolving Copying Models in general have been ex-
plicitly designed to model the WWW. It has been shown 
that they have a large number of complete bipartite sub-
graphs, as has been observed in the crawls, whereas several 
other models do not. Their development was based on the 
following very realistic intuitions about the WWW: 
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• Although some page creators may create content 
and links to other pages regardless of the already 
represented topics on the web, many will be 
drawn to existing topics of interest and link to 
pages within some of these existing topics (Kumar 
et al. 1999b). 

• Due to the exponential growth of the WWW, a 
page creator will not “see” the most recent “ep-
och” of pages (i.e. will not be aware of the exis-
tence of pages created most recently) (Kumar et 
al. 2000). 

 
All Copying Models incorporate the first intuition, but 

the EGC is the only one that incorporates both. It has been 
proven analytically that the graphs created by the EGC 
model follow some power law for in-degree with a 
bounded exponent and that they also contain a large num-
ber of bipartite cliques (Kumar et al. 2000). Both conclu-
sions agree with real WWW observations (Kumar et al. 
1999b). For a detailed description of the graph creation al-
gorithm please see (Kumar et al. 2000). The EGC model is 
formally described by four parameters: 

 
• “growth” factor p є (0 , 1], used in the typical bi-

nomial distribution 
• “self-loop” factor γ > 1, defines the initial “attrac-

tiveness” of each vertex and is used to control the 
amount of attractiveness gained by a new edge to 
or from a vertex 

• “tail-copy” factor γ' ∈ (0, 1), provides a way of 
tuning the out-degree distribution 

• “natural link” factor d > 0, is the amount of natu-
ral (non self-loop) edges that are added to the 
graph for each new vertex 

 
The EGC model is not hierarchical; it does not try to 

use structural properties of the WWW (e.g. web-sites that 
contain web-pages that have hyperlinks within and without 
the same web-site) to produce a web-like graph. Instead, it 
provides an evolutionary framework, based on realistic in-
tuitions about the web, to capture its macroscopic struc-
tural characteristics. In a study of network models (Tang-
munarunkit et al. 2002) it is concluded that degree based 
models (although using minimal information about the sys-
tem they are trying to picture) behave substantially better 
than hierarchical models (that need a lot of information to 
start with and have more complicated algorithms) in pictur-
ing networks with loose (not strict) hierarchies (e.g. the 
web); however it is suggested that they be used only when 
the number of vertices is substantially large. 

Compared with other models, EGC provides a very 
convenient way of adaptation to real-time evolution studies 
of the WWW. All other models grow by one vertex at each 
time-step, a fact that doesn’t help when one must define 
how much real time passes at each time-step. Even if that 
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was possible, since the WWW’s growth is approximately 
exponential, the real-time duration of each time-step 
should be adjusted to reflect the onslaught of new vertices 
arriving in incrementally smaller real-time intervals. The 
EGC model suffers from no such drawbacks; one has only 
to decide the real time equivalent of one model’s “epoch” 
and adjust the growth-factor p accordingly. 

4 MODEL EVALUATION FRAMEWORK 

In principle, there are two approaches that may be em-
ployed for model validation: analytical solution or simula-
tion. Being more exact, the former approach is preferable, 
but it cannot always be employed because of the complex-
ity of models. For instance, it is analytically proven that the 
EGC model follows some power law, with a bounded ex-
ponent for in degree distribution; the same is not proven 
for out-degree, due to the model’s complexity of edge crea-
tion. Simulation can overcome these difficulties, but re-
quires special attention to the selection of experimentation 
parameters and output analysis. As a “what-if” type of in-
vestigation, simulation may be used to narrow the search 
space of the problem under study and accordingly focus on 
specific parameters. In web graph models’ validation, 
simulation may determine whether model results conform 
with empirical observations and, at a second stage, refine 
(i.e., appropriately parameterize) proposed models to ex-
hibit greater efficiency. Finally, a valid model can be fur-
ther used for studying additional features of the real web, 
such as diameter, number of small structures, clustering, 
components etc. 

The established way of obtaining WWW data is by us-
ing web crawlers (a.k.a. spiders or robots) that run a con-
tinuous loop of downloading web pages, extracting URLs 
and in turn attempting to download these also. When a 
specified amount of time has passed or a specified amount 
of pages has been downloaded, the crawler terminates and 
exports the data set, which is subsequently processed to ex-
tract various statistics. 

However, web crawlers have shortcomings too. They 
do not provide a WWW snapshot per sec, as they cannot 
download each and every URL simultaneously; thus the 
temporal granularity they provide is usually very coarse. 
Furthermore, they cannot map the whole web: they cannot 
reach pages if there are no page references, web-site ad-
ministrators can forbid them from entering their web-sites, 
they cannot capture page changes that occur in time inter-
vals smaller than the crawling duration and are constrained 
by available secondary storage. Therefore, crawls provide 
a data set that is not the real web, but a sample -hopefully- 
big enough to draw valid conclusions from. 

On the other hand, a valid model of the system in 
question may resolve many issues through simulation. 
Even if various models for the web-graph have been pro-
posed, we are still far from a widely accepted valid model. 
4
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The optimal solution would be to compare model results 
with crawls of the whole WWW; however, as previously 
explained, this is infeasible. The usually adopted approach 
is to compare model results with various crawls; this is also 
cumbersome because the model needs to produce results of 
similar size to the crawl – and numerous runs must also be 
completed before any comparison is made, for the results 
to obtain statistical validity. 
 In this study we propose the framework of comparing 
the model’s results against the valid statistical features of 
the real web, which are consistent across various crawls 
(Barabasi and Albert 1999; Broder et al. 2000; Kleinberg et 
al. 1999; Kumar et al. 1999a; Kumar et al. 1999b; Laura et 
al. 2002), i.e. in and out degree power law distributions. 
Furthermore, we explore the compliance with other, less 
widely recorded, statistical properties of the WWW; 
namely large-scale structure, bipartite cores and diameter. 

5 EGC MODEL SIMULATION 

The EGC model needs to be appropriately adjusted to rep-
resent the WWW with as much effectiveness as possible. 
In this simulation-based study, we provide answers to the 
following issues: 

 
• As the model always creates power-law distribu-

tions for vertex in-degrees with a bounded expo-
nent, for which parameter values this exponent is 
realistic (-2.1)? 

• As it is unknown whether the model creates 
power-law distributions for vertex out-degrees, is 
it possible to obtain them? If yes, what are the pa-
rameter values that the power-law exponent is re-
alistic (-2.7)? 

• Are the above parameter constraints sensitive to 
the initial graph size? 

• Are the desired power-laws resilient over different 
magnitudes of final graph sizes? 

• Is it possible, for any value of the growth factor p, 
to find proper values for the other parameters in 
order to obtain the desired power-laws? 

• Based on results of experiments for the above pa-
rameter values, what predictions does the model 
offer for the structural properties (diameter, com-
ponents, bipartite cores) and do these predictions 
agree with real WWW observations? 

 
This paper extends and completes the preliminary 

study in (Kogias, Nikolaidou, and Anagnostopoulos 2005) 
concerning the effect of EGC model parameters. The con-
clusion was that the EGC can easily produce power-laws 
for vertex in-degrees but not so easily for out-degrees. Pa-
rameter p was found to almost surely have no effect on the 
existence and appropriateness of power-laws for node de-
grees. Parameter d was found that degree distributions ap-
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proached the desired power-laws when its value increased. 
Parameter γ was found that degree distributions ap-
proached the desired power-laws when its value decreased. 
Parameter γ' was found that out-degree distributions were 
very sensitive to it, only approaching power-law for its 
greater values. The present in-depth study focuses on the 
following: 
 

• Experiments consist of 30 runs, thus strengthening 
statistical properties, with incremental final graph 
sizes up to 1,000,000 vertices. 

• Parameter p is studied for the same values, so as 
to certify the model’s appropriateness for real-
time simulation (as previously explained). 

• Parameter d in the WWW was found in 1999 
(Broder et al. 2000; Kleinberg et al. 1999; Kumar 
et al. 2000) to be about 7. Thus we attempt to 
achieve the best power-law approximation using 
this value in all experiments, for different values 
of the other parameters that cannot be empirically 
measured. 

• Parameter γ is a positive integer and defined γ > 1. 
Using the preliminary study’s findings that low 
values increase the model’s efficiency, we expect 
best results for values 2 and 3. Value of 1 de-
grades the model to a simple preferential attach-
ment approach, but since some kind of interesting 
behavior might emerge in this degenerate case, we 
choose to use it in our experiments. For the sake 
of completeness, we also use the values 4 and 5. 

• Parameter γ' defines the existence of power-law 
for vertex out-degree distributions and fine-tunes 
the asymmetry between the in-degree and out-
degree power-law exponents. Using the prelimi-
nary study’s findings that high values increase the 
model’s efficiency, we try to pinpoint the exact 
area in the 0.5 to 0.95 range that this efficiency 
reaches its peak. Thus we use the value set {0.05, 
0.25, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 
0.95}. 

 
The EGC model was implemented in ANSI C for 

Windows 32bit and all the experiments were run in a Intel 
Xeon 3 GHz CPU with 1 GB RAM system. We used the 
Mercenne Twister (Matsumoto and Nishimura, 1998) ran-
dom number generator whose C implementation is freely 
distributed for non-profit use. Each experiment consisted 
of 30 runs of the EGC algorithm for final graph size of 
1,000,000 vertices starting from an initial graph of 1 vertex 
with γ self-loops (unless otherwise noted). Self-loops and 
duplicate edges are deleted prior to the computation of 
each run’s results. This is a necessary step because we 
rather consider parameter γ as an evolutionary conditioner 
of the model than an intrinsic characteristic of the real 
WWW; therefore its value must be carefully tuned to pro-
5
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vide vertices with the appropriate initial attractiveness. We 
average in-degree and out-degree frequency and ECD dis-
tributions for all runs of each experiment. Next we use ei-
ther MATLAB or StatGraph for computing best-fit linear 
regressions in log-log plots. In degree ECD plots we also 
compute means and variations of the error of the fit, which 
will define the existence of power-laws in the correspond-
ing degree distributions (Bu and Towsley 2002). In degree 
frequency plots linear regression is done for the about 75% 
bottom distinct degree values, to diminish the “heavy tail” 
effect (Faloutsos, Faloutsos, and Faloutsos 1999). For pa-
rameter values that both in-degree and out-degree ECD in-
dicate the existence of power-laws (linear fit mean error ≈ 
0 and error variation ≈ 0) and both power-law exponents 
are close to the desired ones (2.1 and 2.7 for in- and out- 
degree respectively), we do a further examination as fol-
lows. We explore the influence of both initial graph size 
(experiments with initial size of 1,000 vertices) and final 
graph size (experiments with final size of 1,000, 50,000, 
100,000, and 500,000 vertices) and measure various struc-
tural graph characteristics to achieve accurate prediction of 
their values in graphs larger than 1,000,000 vertices; spe-
cifically, predict the values of these characteristics for final 
graph size of 200,000,000 vertices, which is the case where 
these same characteristics were measured on the real 
WWW (Broder et al. 2000). 

6 SIMULATION EXPERIMENTS RESULTS 

6.1 In and Out Degree Distributions 

Using an initial graph of 1 vertex with γ self-loops, final 
graph of 1,000,000 vertices and parameter d = 7, we ran 
180 experiments for all possible combinations of the values 
of the other parameters {p, γ, γ'}. Each experiment consists 
of 30 runs and each run uses a different value for initializa-
tion of the random number generator. We average and 
compute frequency and ECD distributions for in- and out- 
degrees over all runs of an experiment. We use MATLAB 
to perform linear regression and find the best linear fit in 
log-log plots, then compute error means and variances of 
these fits. If the linear fit of the ECD is good (error mean 
less than 1 and error variance less than 0.1), we surmise 
that the respective frequency distribution is a power-law 
and the exponent computed via linear regression is valid. 
We present the parameter values that we found to produce 
power-laws as well as the corresponding power-law expo-
nents computed by the linear fit procedure in Table 1 
(called ‘optimum’ henceforth) and an instructive out-
degree log-log linear fit plot in Figure 1. 

Conclusions: 
 

• Values of γ > 3 or γ < 2 create graphs that do not 
follow the desired power-laws for in- and out- de-
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gree frequency distributions simultaneously. 
• Values of γ' < 0.6 create graphs that do not follow 

power-laws for out-degree frequency distributions 
at all (in-degree frequency distributions are not in-
fluenced by this parameter). Best results are for 
values of γ' in the range 0.6 to 0.8 and seem to be 
slightly influenced by the value of γ: if γ = 2 then 
γ' should be around 0.65 but if γ = 3 then γ' should 
be around 0.75. 

• For all values used for p, there are values for γ 
and γ' that create graphs with the desired power-
laws for in- and out- degree frequency. These val-
ues do not differ much between varying values of 
p. 

 
Table 1: Best Parameter Values and Power-law Exponents 
for d = 7 – 1,000,000 Vertices 

p 
 

γ 
 

γ' 
 

in-degree 
power-law 
exponent 

out-degree 
power-law 
exponent 

0.05 2 3 0.70 0.80 2.08 2.24 2.73 2.63 
0.50 2 3 0.65 0.70 2.04 2.16 2.73 2.73 
0.95 2 3 0.60 0.70 2.00 2.12 2.78 2.66 

 
 

 
Figure 1: Linear Fit of out-degree Frequency log-log Plot 
for p = 0.50 γ' = 0.70 and γ = 3 

 

6.2 Sensitivity to Initial Graph Size 

For the optimum parameter values we made 6 additional 
experiments with the distinction that the initial graph has 
1,000 vertices with γ self-loops each. Each experiment 
consists of 30 runs for a final graph of 1,000,000 vertices 
(results analysis and linear regressions as in subsection 
6.1). The conclusion was that, not only out-degree fre-
quency distributions, but also in-degree frequency distribu-
tions do not follow power-laws when the initial graph is 
large (see Figure 2). 
6



Kogias and Anagnostopoulos 

 

 
Figure 2: Plot of in-degree Frequency ECD for p = 0.50 γ' 
= 0.70 γ = 3 and Initial Graph of 1 (red stars) and 1,000 
(blue circles) Vertices 

6.3 Resiliency over Different Sizes of the Final Graph 

To study the resilience of the various statistical properties 
over different magnitudes of the final graph size (and to 
also provide information for the later prediction activity) 
we ran 174 additional experiments of 30 runs each, for the 
optimum parameter values and initial graph of 1 vertex and 
γ self-loops. We varied the size (vertices) of the final graph 
in the set {10,000, 50,000, 100,000, 150,000, 200,000, 
250,000, 300,000, 350,000, 400,000, 450,000, 500,000, 
550,000, 600,000, 650,000, 700,000, 750,000, 800,000, 
850,000, 900,000, 950,000, 1,000,000} and we analysed 
the results with StatGraph for the statistical properties of 
interest. 

6.3.1 In and Out Degree Distributions 

Power-law exponent values show stability and vary very 
close to the values presented in Table 1. We perform linear 
regression to discover the relationship of these exponents 
with final graph size, which outlines a logarithmic linear 
model of interdependence. Using this model, we predict 
that in- and out- degree frequency power-law exponents for 
final graph size of 200 million vertices are very close to 
those of 1 million vertices. Therefore we surmise that the 
EGC model is very stable on account of in- and out- degree 
frequency distributions, when its parameters take the val-
ues indicated in Table 1 or close to them. The general con-
clusion is that, for any value of parameter p, there exist 
values for the other parameters, so as the desired power-
laws for vertices degree frequency distributions to exist in 
the final graph, regardless of its size. In Table 2 we present 
the predictions for power-law exponents, using 95% confi-
dence interval. 
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Table 2: Prediction of Power-law Exponents for Optimum 
Parameter Values – 200,000,000 Vertices 

p 
 

γ 
 

γ' 
 

in-degree 
power-law 
Exponent 

out-degree 
power-law 
exponent 

0.05 2 3 0.70 0.80 2.13 2.29 2.77 2.73 
0.50 2 3 0.65 0.70 2.08 2.22 2.78 2.81 
0.95 2 3 0.60 0.70 2.00 2.17 2.81 2.72 

 

6.3.2 Exhaustive Count of Bipartite Cores 

The exhaustive count of bipartite cores Ci,j (i ≥ 3, j ≥ 3) in 
the final graphs of all these experiments allows us to per-
form linear regression and establish a prediction model for 
a final graph of 200 million vertices. The best prediction 
model found was a multiplicative linear fit model and its 
predictions agree to the observed count of such bipartite 
cores in the real WWW (about 200,000 bipartite cores). 
Therefore we surmise that the EGC not only delivers in 
producing graphs much wealthier in micro-structures than 
all other models, but also in adequate quantity. We present 
predictions of bipartite cores count on a final graph of 200 
million vertices in Table 3, using 95% confidence interval. 
 
Table 3: Prediction of Bipartite Cores Count for Optimum 
Parameter Values – 200,000,000 Vertices 

p γ γ' Ci,j (i≥3, j≥3) count (thou-
sands) 

0.05 2 3 0.70 0.80 204 346 
0.50 2 3 0.65 0.70 237 212 
0.95 2 3 0.60 0.70 172 375 
 

6.3.3 Size of Large-scale Structural Components 

Size of the structural components of the final graph is a 
major point that the EGC fails to even approach the desired 
values. In all experiments the SCC component’s size is in 
giant proportion to the other components, resulting in the 
vast majority of vertices belonging to the SCC (and conse-
quently the graph has a very small diameter). Linear re-
gression of size of the SCC, IN, OUT and REST (all verti-
ces that do not belong to the other components) vs. size of 
the final graph produces a multiplicative model of predic-
tion as the best linear fit, which we use to predict compo-
nent sizes in a final graph of 200 million vertices. The 
EGC effectiveness towards these structural characteristics, 
however undesirable, appears stable. We present in Table 4 
the predictions of SCC, IN, OUT and REST components’ 
size, using 95% confidence interval and an instructive pre-
diction plot in Figure 3. 
 

7
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Table 4: Prediction of SCC, IN, OUT and REST Compo-
nents Sizes for Optimum Parameter Values – 200,000,000 
Vertices 

Component Size (millions) p γ γ' 

scc in out rest 
0.05 2 3 0.70 0.8 203 189 5 3 5 7 7 11 
0.50 2 3 0.65 0.7 195 179 21 20 2 3 7 9 
0.95 2 3 0.60 0.7 192 178 31 26 1 3 6 10 
 

 
Figure 3: Plot of Linear Regression for Best Multiplicative 
Model Fit of SCC Component Size vs. Final Graph Size 
for p = 0.5 γ' = 0.7 and γ = 3 

6.3.4 Diameter 

The existence of a giant SCC component indicates that the 
diameter of the final graphs is too small because the graphs 
are too well connected. We certify this fact by running 30 
experiments for the optimum parameter values but with fi-
nal graph sizes of 10,000 50,000 100,000 500,000 
1,000,000 vertices. Because diameter finding experiments 
are highly time-consuming, involving a BFS (Breadth-First 
Search) from every vertex in the graph, we only ran the 
BFS on one run of each experiment for indicative pur-
poses. Results show diameter sizes, as expected, quite low. 
With linear regression vs. graph size and prediction for fi-
nal graph of 200 million vertices, diameter estimates are 
still very low compared to the ones reported from the real 
WWW. Thus we surmise that the EGC model cannot pro-
vide graphs with the desired diameter (mainly due to the 
giant SCC component it creates). Experiment results and 
predictions are presented in Table 5, using 95% confidence 
interval. 
 
Table 5: Prediction of Graph Diameter for Optimum Pa-
rameter Values – 200,000,000 Vertices 

P γ γ' 200Μ 
Diameter 

0.05 2 3 0.70 0.8 14 26 
0.50 2 3 0.65 0.7 13 59 
0.95 2 3 0.60 0.7 72 72 
220
7 CONCLUSIONS 

We presented a framework for evaluating web graph mod-
els and the test case of the EGC model, where we used the 
framework to assess its eligibility for simulating the 
WWW. The conclusions drawn from the experimental re-
sults are summarized below. 

Concerning in- and out- degree power-law distribu-
tion, we concluded that power-law vertex degree distribu-
tions do exist; they have realistic exponents (for d = 7) 
when γ' lies between 0.6 and 0.8 and seem to be only 
slightly affected by the value of γ: if γ = 2 then γ' should be 
about 0.65 while if γ = 3 then γ' should be about 0.75. Pre-
diction of these exponents for a final graph of 200 million 
vertices agrees with WWW observations. These parameter 
constraints are sensitive to the initial graph size. Not only 
out-degree frequency distributions, but also in-degree fre-
quency distributions do not follow power-laws when the 
initial graph is large. The desired power-law degree distri-
butions are resilient over different magnitudes of final 
graph sizes. 

EGC demonstrated a very stable behavior in all prop-
erties we studied; based on its stability we made predic-
tions for a final graph size of 200 million vertices. Because 
values for all parameters were found for low, middle and 
high values of p such as to produce the desired observable 
graph characteristics, we conclude that for any value of p, 
appropriate values for the other parameters can be found. 
This property strengthens its usefulness in temporal studies 
of the web. 

Concerning structural properties (diameter, compo-
nents, bipartite cores), EGC predictions agree with the real 
WWW only on the bipartite cores’ count, where predic-
tions for a final graph of 200 million vertices are very close 
to reality. However, graphs produced display a great ex-
pansion of the SCC component in the expense of the other 
structural components, which is not a result of the increase 
of graph size but an intrinsic characteristic of the model. 
This property naturally affects the diameter of the graphs 
produced, which in all experiments and predictions for fi-
nal graphs of 200 million vertices is too small. 

Overall, EGC succeeds in producing graphs with very 
realistic vertex degree frequency distributions and very sat-
isfying quantity of bipartite cores. It is also a very good 
candidate for graph evolution versus time or size simula-
tion studies. However, we note that it fails to structure the 
produced graphs according to real WWW observations. 

From a simulation-based standpoint,  we have contrib-
uted in presenting an evaluation framework, more detailed 
than simple in- and out- degree distribution analysis. We 
have also contributed by evaluating the EGC model’s be-
havior in so far uninvestigated areas. Although we pro-
vided no new insights about the real www, this paper con-
tributes in the accreditation of such studies, by setting up a 
validation framework for web models used to draw infer-
8
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ences about the WWW. However, updating this framework 
with contemporary measurements proves to be problematic 
since no such measurements currently exist; more data col-
lection and analysis research is needed in that direction  
Extending the framework to allow comparison of models is 
another open research area that may provide valuable in-
sights in establishing a widely-accepted  world-wide web 
graph model. 
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