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ABSTRACT 

Internet trace packet data for a given network link contains 
information on each packet’s arrival time and size. An im-
portant problem is to model the congestion packets experi-
enced over the collection period. Recent research has util-
ized a relationship from Queueing Theory known as 
Lindley’s Recursion to model packet congestion. This rela-
tionship has existed for 50 years and has been quite benefi-
cial in analyzing these traces. We report on our use of 
Lindley’s Recursion to analyze publicly-available link data 
from the Abilene Network, an Internet2 backbone network. 
We extend the use of Lindley's Recursion and include a 
discussion of the computational problems, numerical 
evaluation of trace packet performance and potential mod-
eling issues, and a statistical investigation of the independ-
ence of packet interarrival times. In addition, we show how 
Lindley’s Recursion can be used to extend the baseline 
analysis to interject Voice over Internet Protocol (VoIP) 
packets into the trace.  

1 INTRODUCTION 

Internet trace packet data for a given link in the network 
contains information on each packet’s arrival time and 
size. A very important problem is to model the congestion 
the trace packets experienced over the collection period. In 
this paper we discuss how to utilize a very famous 50- 
year-old equation called Lindley's Recursion from Queue-
ing Theory to model the congestion the packets are experi-
encing. This discussion includes the computational prob-
lems we encountered, numerical evaluation of trace packet 
congestion performance and potential modeling issues, a 
statistical investigation of independence, and how Lind-
ley's Recursion can be used to analyze performance if 
VoIP packets are interjected into the trace. This use of 
Lindley’s Recursion to analyze a packet trace is a numeri-
cal simulation to study the system performance; in this 
case the trace data is used to compute arrival and service 
times, rather than generating random variables.  
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This paper has grown out of our modeling and simula-
tion support to the National Communications System 
(NCS). The mission of NCS includes assisting the Presi-
dent, National Security Council, Office of Science and 
Technology Policy, and the Office of Management and 
Budget in the coordination of the planning for and provi-
sion of national security and emergency preparedness 
communications for the federal government under all cir-
cumstances, including crisis or emergency, attack, recov-
ery, and reconstitution. In support of its mission, NCS runs 
several emergency telecommunications priority service 
programs for federal government users, including the Gov-
ernment Emergency Telecommunications Service (GETS) 
and the Wireless Priority Service (WPS). However, indus-
try is moving from circuit switched to Internet Protocol 
(IP) technology for all telecommunications applications in-
cluding voice, and NCS is initiating a new program called 
the Next Generation Priority Service (NGPS). This NCS 
program will investigate the need to evolve toward IP ca-
pability to ensure continuity of priority traffic during 
emergencies. As part of that investigation, we are conduct-
ing various modeling and simulation activities to support 
the NGPS. The results presented in this paper are just one 
step in gaining a better understanding of the modeling of 
such systems. 

The modeling of IP networks depends on the nature of 
the packet interarrival and packet size distributions. These 
statistics have been extensively studied by many authors. 
For a sample of such studies, see (Paxson and Floyd 1995), 
(Resnick 1997), (Adler et al. 1998), (Cao et al. 2002), (No-
gueira et al. 2004), (Heyman 2005), (Karagiannis et al. 
2004), and (Fischer and Masi 2005). These studies started 
in the early 1990s and continue until the present. Self-
similarity, long-range dependence, heavy-tailed distribu-
tions, convergence to Poisson processes, and Markov 
Modulated Poisson Processes are just some of the statisti-
cal properties used to characterize these traffic statistics.  

In this paper we present a method to analyze Internet 
traces using a famous equation called Lindley’s Recursion 
from Queueing Theory (Gross and Harris 1998). This sim-
ple equation does not depend on statistical assumptions 
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about the packet trace—it just takes the packet trace and 
generates required congestion results like packet latency, 
jitter, and loss. In fact, it can be used to generate the com-
plete probability distribution of delay and buffer sizes.  

One of the first uses of Lindley's Equation to analyze 
Internet packet traces was the 2004 report by Park et al. 
and subsequent paper in Computer Networks. That paper 
discusses a Trace-Driven Queueing Analysis using Lind-
ley's Recursion as a method of simulating traces. They 
provide an analysis of long-range dependence in a continu-
ally evolving Internet traffic mix by employing a number 
of recently developed statistical methods. Heegaard et al. 
(2005) used a Lindley-type recursion and importance sam-
pling to analyze packet traces of MPEG encoded video 
streams. They introduced the use of importance sampling 
to minimize the impact of large number of events that have 
to be processed. 

In this paper we extend these uses of Lindley's Recur-
sion to a much larger class of analysis problems. In Section 
2 we present and discuss Lindley's Recursion and a related 
congestion measure called Kingman’s Upper Bound, 
which can be used to determine packet arrival time inde-
pendence. The Internet traces we used in this analysis are 
discussed in Section 3. That section also included our 
computational experiences in processing the data. In Sec-
tion 4, we present some of the potential analyses by apply-
ing Lindley's Recursion to an Internet trace and the result-
ing congestion analysis. Those analyses include a 
numerical evaluation of trace packet performance (packet 
delay, jitter and loss) and a statistical investigation of inde-
pendence. We also show Lindley's Recursion can be used 
to analyze a modified system if VoIP packets are inter-
jected into the trace. We close the paper with some con-
cluding remarks on future extensions of the use of Lind-
ley's Recursion. 

2 LINDLEY’S RECURSION FROM QUEUEING 
THEORY 

Consider a G/G/1 queueing system—in such a queue, the 
customer interarrival distribution is general, the service 
distribution is general, and there is a single server. (For a 
complete description of this queueing system, see Gross 
and Harris, 1998.) For the nth arrival, define Wq(n) to be 
the waiting time in the buffer, A(n) to be the arrival time, 
and S(n) to be the service time. For the case of an infinite 
buffer and a First Come First Served (FCFS) system, Lind-
ley’s Recursion is: 
 
 ,))1())1()()(1(()( +−+−−−= nSnAnAnWnW qq  
 
where xx =+  if 0≥x , and 0=+x  if .0<x  
 

Lindley’s Recursion states that the waiting time in the 
buffer of the nth arrival equals the waiting time in the 
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buffer of the (n-1)st arrival minus the time between the nth 
arrival and the (n-1)st arrival plus the service time of the (n-
1)st arrival. If that quantity is less than or equal to zero, 
then the waiting time in the buffer of the nth customer is 
zero. The only assumption required for Lindley’s Recur-
sion to be valid is FCFS service discipline and an infinite 
buffer. We do not need any independence assumptions. 

For the case of a finite buffer, Lindley’s Recursion can 
be modified to give the loss probability of the nth arrival as 
well as the buffer waiting time. At each arrival, all service 
completion events since the previous arrival time must be 
tracked to update the number of customers in the system, 
e.g., using event-oriented bookkeeping. This process re-
quires arrays saving the event times and event type (ser-
vice, arrival, blocked arrival). Since Internet trace data has 
each packet size, keeping track of the departures between 
arrivals is straightforward because of the FCFS discipline. 
When the number of customers in the system at the current 
arrival time is computed, then it is determined whether the 
current customer will be serviced or blocked. Thus, it is 
straightforward to extend Lindley’s Recursion to the finite 
buffer case for FCFS systems. 

Once Wq(n) is computed for each arrival, moments of 
the buffer delay are easily found as well as the complete 
probability distribution of buffer delay for an arbitrary ar-
rival. Since the system wait of the nth arrival equals the 
buffer wait plus the service time, we also easily have that 
statistic. In addition, using a modification of the method 
described above for the finite buffer problem, one can de-
termine the number of customers in the system at an arrival 
point. So, the generation of Wq(n) and the availability of 
the data allow one to compute all congestion measures of 
interest; that is the expected buffer delay, jitter and loss. In 
addition, if interested one could generate the complete 
probability distribution of buffer delay. 

There is also a famous upper bound—Kingman’s Up-
per Bound—on the expected customer delay in the buffer 
for a FCFS infinite buffer G/G/1 queue. If E{A}, Var{A} 
are the mean and variance of the interarrival times and 
E{S} and Var{S} are the similar statistics for the service 
time, then Kingman’s Upper Bound for the expected delay 
in the buffer, E{Wq}_KUB, is given by 

 

.
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For this bound to hold, we must have the load to be 

less than one, that is E{A} > E{S}, the customer interarri-
val times are independent and service times are independ-
ent and the service discipline to be FCFS. For a develop-
ment of E{Wq}_KUB, see (Gross and Harris 1998); it 
becomes exact as the load (= E{S}/E{A}) approaches one. 
Kingman’s Upper Bound is a steady state result. Thus, one 
would expect if the data from the Internet obey the inde-
pendence assumption, then Kingman’s Upper Bound 
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would be a very important measure. In addition, if the up-
per bound was violated, then one would expect that is due 
to the independence assumptions being violated.  

The Transmission Control Protocol (TCP) congestion 
control that would be implemented in a real network is not 
being modeled here. Model results from Lindley's Recur-
sion and Kingman's Upper Bound are rather being used 
and compared to check the appropriateness of the model 
assumptions (i.e., the independence required by King-
man's). 

3 INTERNET TRACES 

In our analysis, we used the publicly-available data from 
Abilene Network, an Internet2 high-performance backbone 
network that enables the development of advanced Internet 
applications and the deployment of leading-edge network 
services to Internet2 universities and research labs across 
the country. The Abilene Network supports the develop-
ment of applications such as virtual laboratories, digital li-
braries, distance education and teleimmersion, and the ad-
vanced networking capabilities that are the focus of 
Internet2. The current network is a primarily OC-192 (10 
Gbps) backbone; at the time the data was collected it was 
OC-48; see <http://abilene.internet2.edu/>. 

Packet traces were collected by the National Labora-
tory for Applied Network Research (NLANR) on August 
14, 2002, at the Indianapolis router node (IPLS), a CISCO 
GSR-12015 with four OC-48 uplinks. We downloaded data 
from the Cleveland to Indianapolis (westbound) link; the 
opposite direction is also available, plus both directions of 
the IPLS—Kansas City link. (The data can be found at 
<http://pma.nlanr.net/Traces/long/ipls1
.html>.) We have downloaded 1 of 2 available hours of 
data, starting at 9:00 a.m. The traces are in Dag PoS for-
mat. We use Libtrace (<http://research.wand. 
net.nz/software/libtrace.php>) to read the 
data. 

The size of the file is approximately 6 GB of data. For 
each packet in the file, the full set of IPv4 packet fields is 
available, resulting in this very large file. In order to proc-
ess the data using Lindley’s Recursion, we had to filter the 
trace and create files that contained only the packet arrival 
time and size fields. We also had the check the data to be 
sure the arrival times were ordered from smallest to largest. 
We processed an hour’s worth of data and saved it in 60 
files; one for each minute in the hour. We then sorted each 
of the files using the UNIX sort command to be sure the 
arrival times were ordered. Each file had a little over 100 
MB of data with around 4,500,000 records. It took around 
one minute on a 1.8 GHz PC to sort each file. We did not 
find any problems with the data. Then we used VBA to 
read and process the data using Lindley’s Recursion. All 
processing was done on a 1.8 GHz PC, and depending on 
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the type of analyses being conducted, could take anywhere 
for a couple of minutes to a half an hour.  

4 DATA AND CONGESTION ANALYSIS 

In this section we present several analyses we have done 
with the data and Lindley’s Recursion. Some of these 
analyses did not require the use of Lindley’s Recursion. 
Figure 1 is a plot of the packets per second from 9:00 a.m. 
to 10:00 a.m. on the Cleveland to Indianapolis link. We see 
the arrivals are fairly constant for roughly 10 minute peri-
ods. Heyman (2005) also reported and discussed this ob-
servation. For the entire hour, the mean interarrival time is 
0.0138 ms (=E{A}) and the standard deviation of the inter-
arrival time is 0.0158 ms (=Var{A}0.5). The coefficient of 
variation of interarrival time (SD/Mean) is 1.145; certainly 
not Poisson. 
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Figure 1: Packets per Second 

 
Figure 2 is a plot of the packet size distribution. We 

see that packet primarily come in four or five main sizes, 
each with a certain probability. This observation is well 
known (Thompson 1997). The smallest size is 40 bytes, 
and the largest is 1500 bytes, with mean equal to 693.1 
bytes (or about 5.54 kilobits [kb]) and a standard deviation 
of 672.5 bytes (or about 5.38 kb). Therefore, the coeffi-
cient of variation of packet size (SD/Mean) is 0.97. The 
service times used in Lindley's recursion are computed as 
the packet sizes divided by the link speed. For instance, for 
the Cleveland to Indianapolis OC-48 link, the mean service 
time E{S} =5.54 kb / 2400 kb per ms = .00231 ms  

Figure 3 is our first use of Lindley’s Recursion. It 
plots the running value of the expected buffer delay per 
packet in ms. We know the buffer delay for each packet 
and a running average can easily be computed from that 
data. Although the packet arrival rate (Figure 1) was not 
constant over the hour, now we also see the expected 
packet delay does not settle down over the hour. How does 
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Kingman’s Upper Bound contribute to this analysis? That 
is, is the expected buffer delay less than the result given by 
Kingman’s Upper Bound? For this trace, we have 
E{Wq}_KUB=0.011062 ms; and so the answer is yes.  

 
 Packet Size Distribution, from crl_prt_packet, First 29,999 records
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Figure 2: Packet Size Distribution 

 
 
 Expected Buffer Delay - OC48
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Figure 3: Expected Buffer Delay from Lindley’s Recursion 
for OC-48 
 
 

Next we investigated what happens if the speed of the 
link was decreased. This analysis is easily accomplished by 
running the data again through Lindley’s Recursion, but 
with a slower speed line. To do this, the service times for 
Lindley's Recursion are re-computed by dividing the origi-
nal packet sizes by a smaller line rate. We used an OC-12 
line rate or about 25 percent of an OC-48. In a real net-
work, the change in line rate may affect queue performance 
due to the use of TCP congestion control; however, as 
stated before, these models are not dealing with TCP. 
Those results are shown in Figure 4.  

Two very important points are seen from Figure 4. 
First, the expected buffer delay is not constant and varies 
quite a bit; and second, and probably more importantly, 
Kingman’s Upper Bound is violated. The question is “Why 
does this happen? The load only increased to 0.64; so 
Kingman’s Upper Bound still should be valid.” 
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Figure 4: Expected Buffer Delay from Lindley’s Recursion 
for OC-12 

 
Kingman’s Upper Bound depends on the packet inter-

arrival times being independent of each other. It is well 
documented that there is some evidence that they can be 
long-range dependent for Internet packet arrival times. To 
determine if there is evidence of dependence, one can look 
at the autocorrelation function with lag k (see Adler et al. 
1998, or Law and Kelton 2000). The autocorrelation func-
tion with lag k is shown in Figure 5. 
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Figure 5: Autocorrelation in Packets per Second 

 
We see that there is strong correlation especially for a 

lag of 10 minutes or less. Heyman (2005) also found evi-
dence of autocorrelations in packet counts in Internet 
packet trace data. In addition, we used a runs test (Law and 
Kelton 2000) to determine if the packet interarrivals were 
independent. We tested the arrivals during minutes 5, 15, 
25, 35, 45 and 55, and found that in all minutes tested, the 
hypothesis of independence in the arrivals was rejected 
based on the runs test. 

Karaiannis et al. (2004) found that for the data sets 
they were looking at, the packet interarrival distribution 
was exponential at the sub-second level. We tested the 
Internet2 data we were analyzing to see if that was true. 
Figure 6 is a plot of the Cumulative Distribution Function 
(CDF) for the data and an exponential distribution with the 
same mean for the first second of minute 5. Obviously, the 
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packet interarrivals are not exponential for this data; this 
result was also verified by the fact that the coefficient of 
variation (standard deviation divided by the mean) of the 
interarrival time was greater than one (for this example it 
was equal to 1.067). 

Up until now we have been using Lindley’s Recursion 
to analyze the packet congestion. Next we show how to 
expand its use. We have seen that for these traces, the 
packet interarrival times are non-stationary and dependent. 
Thus, to simulate the packet behavior using standard de-
rived arrival and service probability distributions would be 
difficult. One could see which probability distribution best 
fits the arrival and size data or one could numerically gen-
erate those distributions and then use a standard discrete 
event simulation to study congestion. The problem with 
those approaches is that arrival times are drawn independ-
ently. We have seen that arrival times are not independent; 
therefore, this method will not result in the correct analy-
ses. Lindley’s Recursion overcame the lack of independ-
ence.  

Suppose we want to study the congestion that VoIP 
packets would experience on this link. We can use the 
packet trace data directly and intertwine the voice packet 
into the data trace date. We then can use Lindley’s Recur-
sion to analyze the congestion the voice and data packets 
are experiencing. Sriram and Whitt (1986) were the first to 
model voice packet performance. Their results were con-
tinued by Fischer and Masi (2005 a and b). For the details 
of how the voice packets are simulated, see those refer-
ences. Based on the codec that is used, a voice packet with 
a certain size is generated every T ms. We use a G.729 co-
dec in the example below, and it has a T = 20 ms and a 
packet size of 0.528 kb. If there are N active voice conver- 
sations, then in the appendix of Sriram and Whitt there is 
an expression for the packet interarrival time probability 
distribution.  
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Figure 6: Comparisons of Packet Interarrival Distribution 
and Exponential First Second of Minute 5 

 
We looked at the case of 2000 Erlangs of voice traffic 

being offered to the link with a call admission capability of 
2000. Thus, 0.0176 of the calls were blocked initially. We 
simulated the number of active voice calls over the hour in 
2199
the standard way. That is, we simulated the number of calls 
present at the start and then simulated when there was a 
change in the number. We assumed a 3-minute holding 
time for a voice call. For the period of time when the first 
calls were fixed, we used Sriram and Whitt’s results to 
generate voice packet arrival times. This resulted in a 
stream of voice packet arrivals during the hour and their 
sizes.  

For this example, we assumed the First Come First 
Served service discipline in our example. Priority Queue-
ing and Weighted Fair Queueing are other frequently used 
queueing disciplines (see Fischer and Masi 2005 a and b). 
We then used Lindley’s Recursion to numerically simulate 
the congestion the voice and data packets were experienc-
ing. All we needed to do was to keep track of what type of 
packet (data or voice) was the next arrival. We generated 
the voice packets for the entire hour before we used Lind-
ley’s Recursion. That structure limited the size of the ar-
rays VBA could handle; so the examples below are just for 
the first five minutes of the hour. The easy solution to that 
issue would be to generate the voice packet only for the 
minute being simulated.  

In Figure 7, we see that in both cases (with and with-
out voice), the data packet delay is approximately 50 per-
cent of the jitter. In the presence of voice packets, there 
was roughly a 50 percent increase in data packet delay and 
jitter. These measures appear to be constant over the five 
minutes, but that is only because of the scale of the Y axis 
in the figure. 
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Figure 7: Data Packet Buffer Delay and Jitter With and 
Without Voice 

 
Figure 8 shows the voice packet delay and jitter over 

the same period of time. Again, we see the jitter is much 
larger than the delay, and the overall measures are an order 
of magnitude larger than the data packet numbers. We con-
jecture this results stems from the fact that the data packet 
arrival process is not independent. For this case, the data 
packet load was around 0.16 and the voice packet load was 
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0.008. We have compared the data packet performance (no 
voice) with assuming a Poisson process for the data packet 
arrivals and found that model (with Poisson data packet ar-
rivals) resulted in a larger expected buffer delay than was 
generated using Lindley’s equation. From (Sriram and 
Whitt 1986) and (Fischer and Masi 2005a and 2005b), the 
voice packet arrival process tends to Poisson under certain 
loading conditions and so the voice packet stream would 
tend to be smooth (Poisson), see Figure 9. The delay and 
jitter the voice and data packets are experiencing seems to 
be constant, as is shown in Figures 7 and 8; but when we 
expand the Y axis, we see that is not true, as is presented 
Figure 10. 
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Figure 8: Voice Packet Buffer Delay and Jitter 
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Figure 9: Voice and Data Packet Per Second 
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Figure 10: Data Packet Buffer Delay With Voice 
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5 CONCLUDING REMARKS 

In this paper we have expanded the use of Lindley's Recur-
sion to process and derive congestion results for Internet 
packet traces. It is extremely simple to use and largely as-
sumption free, except for requiring FCFS queueing. We 
have successfully used it to analyze several Internet traces 
and found it to be computationally quick and yields impor-
tant information about the congestion packets are experi-
encing within the trace. In addition, when used in conjunc-
tion with other Queueing Theory results (Kingman's Upper 
Bound) it can provide further insight into the congestion 
behavior of packets on an Internet link. Lindley's Recur-
sion in this case demonstrates the benefits of simulating 
versus analytic queueing approaches that require assump-
tions that may not be justified. In addition, it is easier to 
implement than other well-known telecommunications 
simulation packages. We have also shown how to use it to 
extend the analysis of other situations of interest; in par-
ticular VoIP. 

Future work will be directed at looking into using 
Lindley’s Recursion to analyze other VoIP disciplines, Pri-
ority Queueing, and Weighted Fair Queueing. In addition, 
we will look into optimizing our VBA code so that we are 
not at the storage limits of VBA. We also will be looking 
into downloading other traces to see if we get similar re-
sults to the ones we have generated to date, especially deal-
ing with the statistical properties. 
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