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ABSTRACT

Simulation has become the tool of choice for an increasing
number of networking researchers. Unfortunately, standard
statistical techniques often cannot be applied when Internet-
like heavy-tailed workloads are used as input. We present
issues involved in using heavy-tailed distributions in network
simulations, including three different methods for dealing
with such distributions in simulation. We also discuss the
proper use of the random number generator implemented
in the ns-2 simulator and the impacts of improper usage.

1 INTRODUCTION

Simulation has become the tool of choice for an increasing
number of networking researchers. Unfortunately it appears
that as the number of users of simulations increases, the
number of sound simulation studies has not. Recently, sev-
eral researchers (Kurkowski, Camp, and Colagrosso 2005;
Pawlikowski 2003; Pawlikowski, Jeong, and Lee 2002; Per-
rone, Yuan, and Nicol 2003) have investigated the “credi-
bility crisis” in network simulation analysis. Pawlikowski
et al. found that a large majority of papers accepted to
several conferences and journals did not consider aspects of
randomness found in most simulation studies. Kurkoswksi
et al. found similar issues present in the mobile ad-hoc
networking community. These factors contribute not only
to studies where the results may not be credible, but also
to studies where the results may not be repeatable, espe-
cially if significant detail about the simulations is lacking.
Compounding this issue is the use of heavy-tailed distribu-
tions with infinite variance to describe certain characteristics
of Internet traffic, including file sizes. These heavy-tailed
workloads often prevent researchers from using standard
statistical methods for analyzing output data.

There have been several papers recently describing the
process of data output analysis from simulation (Alexopoulos
and Seila 2001, Nakayama 2002, Law 2004). Simulations
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are typically driven by samples from random variables.
When sampling from a random variable distribution, the
statistics derived from those samples are only approxima-
tions of the actual distribution. One of the main goals of
output analysis is to assess the accuracy with which the
samples reflect the true nature of the distribution. Often,
the initial state of the simulation is not representative of the
steady-state of the system (e.g., simulations are often started
with network queues in an empty and idle state). When run-
ning steady-state simulations, this transient period should
be removed before computing statistics on the simulation
data. Procedures for determining the length of the transient
period in steady-state simulations and for determining how
well the sample mean and variance approximate the true
mean and variance of the system are well-described by
Alexopoulos and Seila (2001), Nakayama (2002), and Law
(2004).

The goal of this paper is to raise important issues in the
analysis of data from network simulations. We highlight
problems encountered when running simulations that require
workloads drawn from heavy-tailed distributions. Many net-
working studies today focus on Internet-like traffic where
file sizes and service times are based on heavy-tailed dis-
tributions. Unfortunately, in these situations, well-known
statistical techniques for determining confidence are not ap-
plicable. We present the problem and several approaches
that have been taken to address the problem. Another im-
portant, yet often ignored, issue in simulation studies is the
proper use of random number generators (RNGs). Since
ns-2 (Breslau et al. 2000) is one of the most popular net-
work simulators, we present a guide for the proper use of
the sophisticated RNG implemented in ns-2.

2 EFFECTS OF USING HEAVY-TAILED
DISTRIBUTIONS

In this section, we describe heavy-tailed distributions, and
in particular, the Pareto family of heavy-tailed distributions.
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We show how these distributions have been used in network
simulations and what properties make them difficult to use
in simulation.

2.1 Heavy-Tailed Distributions

Distributions where the tail follows a power law are called
heavy-tailed. Previous studies (Mah 1997; Park, Kim, and
Crovella 1996) have shown that the distribution of the size of
files transferred over HTTP is heavy-tailed. This is caused
by the large number of small files and the non-negligible
number of extremely large files associated with web content.

The most-often used heavy-tailed distribution to de-
scribe Internet file sizes is the Pareto distribution. Pareto
actually describes a family of distributions. We discuss
the Pareto of the first kind and the Pareto of the second
kind, also known as the Lomax distribution. The probability
distribution function (pdf) of the Pareto of the first kind is

ok®
fx) = prasy

where o > 0 and x > k > 0. The pdf of the Lomax is

ok®
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where o > 0, k> 0, and x > 0. The o parameter is often

called the shape parameter, and k is often called the scale

parameter. When « < 2, a Pareto distribution has infinite

variance, and when o < 1, the distribution has infinite mean.

2.2 Usage in Network Simulations

One criteria to tell how long to run a simulation is to run
the simulation long enough for the sample mean to reach
the theoretical mean. Crovella and Lipsky (1997) show that
when sampling from heavy-tailed distributions, statistics
such as the mean can take a very long time to reach steady-
state. The PackMime HTTP model (Cao et al. 2004), for
example, has a HTTP response size distribution where the
body is described empirically and the tail is a Pareto of the
first kind with @ = 1.23 and k = 1400. To achieve two-
digit accuracy for the mean of such a Pareto distribution,
over 10*° samples are required. Even then the mean is
still unstable because of “swamping” observations that can
double the mean with just one sample. The probability
that a swamping observation could occur in a simulation
that uses a Pareto (o = 1.23) distribution is greater than 1
in 100. For these reasons, Crovella and Lipsky state that
when o < 1.5, simulation convergence becomes impractical.
If the simulation statistic can not reach steady-state in a
reasonable amount of time, then the simulation is always
in a transient state.
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To demonstrate the variability of heavy-tailed distribu-
tions, we ran a set of simulations with the PackMime-HTTP
traffic generator in ns-2. In general, the HTTP protocol is
simple: a web client sends a request to the web server, and
after some delay, the web server sends back a response. In
our experiments, we used PackMime-HTTP to model the
request sizes as Pareto (i = 50 bytes, @ = 1.2, k =8.3)
and the response sizes as Pareto (1 = 7000 bytes, o = 1.2,
k =1400). New connections were initiated according to an
Exponential distribution with a mean of 50 new connec-
tions per second. All network links were 100 Mbps, the
round-trip time was 50 ms, and the maximum TCP window
size was 64 KB, resulting in an uncongested network.

Figure 1 shows the offered load generated by the web
servers, and Figure 2 shows the cumulative mean of the
response sizes, with a theoretical mean of 7000 bytes. No-
tice that in Figure 2, the sample mean is not converging to
the theoretical mean, and in fact appears to be diverging
from the theoretical mean. The large spike in offered load
around time 1160 seconds corresponds to the large jump
in the average response size around sample 57,000. This
spike is caused by a single response of size 64,403,669
bytes. Though the large response size observed is from the
tail of the distribution, such large responses are not uncom-
mon. We ran 30 replications of the simulation, generating
100,000 response size samples in each. In almost all of the
replications, there is at least one large spike similar to the
one shown in Figures 1 and 2.
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Figure 1: Offered Load with Pareto (@ = 1.2) Response
Sizes

3 APPROACHES TO DEALING WITH HEAVY-
TAILED DISTRIBUTIONS

When using heavy-tailed workloads as input, networking re-
searchers have few options for statistically valid simulation
analysis. The extremely long sample path lengths needed to
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Figure 2: Mean Response Sizes from Pareto (¢ = 1.2)

obtain a sample mean with high confidence often preclude
standard statistical analysis. We discuss a few approaches
that have been taken to handle heavy-tailed workloads in
simulation. These include using a Bounded Pareto distri-
bution that has finite mean and variance, approximating the
Lomax distribution with a Lognormal distribution, or treat-
ing the simulation that uses Pareto distributions as transient.

3.1 Use Bounded Pareto

Crovella and Lipsky (1997) suggest using time scale as a
simulation parameter and bounding the distribution. The
time scale should be measured in the number of samples
drawn from the distribution. For Pareto with shape o and
scale k, they suggest defining the maximum observation to
be Y, and

E[Y] = knB(n,1—1/a) ~ E[X]n"/*,

where 7 is the number of samples and B is the Beta func-
tion. If a maximum possible observation p is known (e.g.
maximum file size on a web server), then the simulation
should be run long enough for E[Y] to approach p. In Table
1, we show the number of samples n needed for E[Y] to
approach certain values of p for a Pareto distribution with
k=1400 and a =1.2.

Table 1: Number of Samples from Pareto (& = 1.2) Required
for E[Y] to Approach Various Maximum File Sizes

Maximum File Size (p) | Samples (n)
MP3 - 5 MB 2500

TV episode - 350 MB 400,000
CD image - 650 MB 850,000
DVD image - 4.7 GB 9,000,000
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This idea is expanded by Harchol-Balter et al. (1999)
who have proposed using a Bounded Pareto distribution in
order to allow for computation of the mean and variance
for Pareto distributions where the mean is highly variable
and the variance is infinite. The pdf of a Bounded Pareto is

B ak? p
1—(k/p)* ’

where o is the shape parameter (similar to & in Pareto),
k is the smallest possible sample, p is the largest possible
sample, and k <x < p. The idea is that for network studies,
and heavy-tailed distributions of file sizes in particular,
there is generally a maximum file size. This file size can
be used to produce the Bounded Pareto distribution that has
the same power-law tail characteristics as the unbounded
original Pareto distribution. The Bounded Pareto distribution
has been used in several studies that involve heavy-tailed
workloads (Urvoy-Keller and Biersack 2002; Rai, Urvoy-
Keller, and Biersack 2003; Alparslan, Akar, and Karasan
2004).

f(x)

3.2 Approximate Pareto with Lognormal

Fishman and Adan (2006) give guidelines for creating a
Lognormal distribution that approximates a Lomax distri-
bution. They observed that distributions such as Lognormal
converge much faster than Lomax. Given a Lomax shape
parameter o, where 1 < o < 2, and a Lomax scale param-
eter k, they provide a set of parameters for the Lognormal
distribution given the desired fit of the tail of the Lomax.
To approximate the Lomax distribution, Fishman and Adan
match the means of the Lomax and Lognormal distributions
along with the 1— { quantiles of each distribution. The
parameter { sets the point at which the tails of the distribu-
tion diverge. The smaller {, the better the fit. Fishman and
Adan also provide the required sample path length (after the
warmup samples have been removed) given the desired ac-
curacy of the mean, 7(v) =min{t > 0: varx(oco,7) < uv},
where U is the actual mean and x is the sample mean. High
accuracy is represented by v = 10~*, moderate accuracy
by v =1073, and gross accuracy by v =102,

In Figure 3 we show the complementary CDFs (CCDFs)
of file sizes drawn from a Lomax distribution (¢ = 1.2, k =
1400) along with the corresponding Lognormal distributions
with two different fits for the tail with enough samples for
moderate accuracy of the mean. For { = 10~3, 330,000
samples were collected, and for { = 10~°, 100,000,000
samples were collected. Due to run time and memory
constraints, only 643,783,352 samples were collected for
the Lomax CCDF even though about 102 are required for
accuracy. Generating the 100 million Lognormal samples
took almost 50 minutes on a 2.8 GHz Xeon processor with
4 GB of memory. This time included only generating the
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Figure 3: Complementary CDFs of File Sizes Generated
by Lomax and Lognormal Approximations, with Moderate
Accuracy for the Mean (v = 1073)

samples and writing them to disk. It would take much longer
to run a complex packet-level simulation that required at least
100 million samples. Even though Lognormal converges
with fewer samples than Lomax, for high levels of accuracy,
simulation still may not be feasible until new methods for
fast packet-level simulation are developed.

3.3 Treat as Transient

Other researchers have chosen to treat data resulting from
heavy-tailed workloads as essentially transient. In previ-
ous work (Weigle, Jeffay, and Smith 2005), we used the
PackMime-HTTP traffic generator in ns-2 and ran simula-
tions long enough to observe a specific number of completed
HTTP request-response pairs, usually 250,000. This large
number allows the simulation to encounter several response
sizes from the tail of the Pareto distribution. We also re-
quired that in each experiment, there was at least one HTTP
response larger than 10 MB. We compared the performance
of web traffic with different types of TCP congestion control
and queuing mechanisms. Although the simulations were
always in a transient state, we ran each protocol with the
same input traffic, using the same RNG seed. This way we
were able to compare the performance of the protocols in
equivalent environments.

Some of the first work in evaluating web performance
through simulation (Ott, Lakshman, and Wong 1999; May,
Bonald, and Bolot 2000) ran simulations for a certain period
of time, at most 100 seconds. Other work has run web-
based simulations for 160 seconds (Claypool, Kinicki, and
Hartling 2004). One of the problems running simulations
with web-like workloads is that the actual running time
of the packet-level simulation is very long. For example,
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the PackMime-HTTP simulations described above often
took over 6 hours to run a simulation that ran about 40
minutes in simulation time. Other work studying web cache
performance (Williamson and Markatchev 2003, Houtzager
and Williamson 2003) ended simulations after sending a
specific number of requests into the system. In those cases, it
was about 5000 requests. Actual running time and memory
resources for these types of simulations appears to be a
limiting factor in the length of the simulations performed.

If treating the simulation as transient, the running time,
or number of samples gathered, may not be the most im-
portant factor in how well the CCDF of the sample fits the
theoretical CCDF of the Pareto distribution. Large samples
can occur at any time, so users of these heavy-tail distri-
butions should be aware of the number of large samples
present in their simulations and run their simulations long
enough to observe some reasonable number of these large
samples.

4 RANDOM NUMBER GENERATION

When using samples from a probability distribution as input
to simulations, the random number generator used by the
simulator becomes very important. In order to sample from
a distribution, a simulator needs a random stream of samples
from U(0,1) (Fishman 2001). To produce these samples,
a random number generator is used to produce a stream
of non-negative integers, Zy,Z1,Z2,...,Z,. This stream of
integers can be thought of as on a circle, resulting in there
being a finite number of integers that can be generated before
the cycle repeats (i.e., Z; = Zy). This number is known as
the period of the random number generator. Different types
of random number generators have different periods.

4.1 RNG in ns-2

Some simulation and data analysis packages still use a form
of the linear congruential generator (LCG) with a period
of 231, which has been shown to be inappropriate given
the computational power of today’s computers (L’Ecuyer
2001). We added an implementation (L’Ecuyer et al. 2002)
of the MRG32k3a combined multiple recursive generator
(”Ecuyer 1999) to the popular ns-2 network simulator. This
RNG has been the default in ns-2 since version ns-2.1b9,
released in April 2002.

The implementation of the MRG32k3a generator in
ns-2 provides several useful features for those performing
simulations. The implementation divides the period into
264 streams, each of which consists of 2°! substreams.
Each of these substreams has a period of 276, resulting
in a total period of approximately 2'9*. The relationship
between streams and substreams is shown in Figure 4.
Each of the streams is guaranteed to be independent of
every other stream, and each substream is guaranteed to be
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# set the replication number (3rd replication)
set run 3

” o # seed the default RNG
global defaultRNG
SdefaultRNG seed 9999

# create the RNGs
set arrivalRNG [new RNG]
set sizeRNG [new RNG]

Streams Substreams # set the RNGs to the appropriate substream
for {set j 1} {$3 < S$Srun} {incr J} {
SarrivalRNG next-substream
Figure 4: RNG Streams and Substreams in ns-2 $sizeRNG next-substream

# arrival_ is an exponential random variable
# describing the time between consecutive

# packet arrivals

set arrival_ [new RandomVariable/Exponential]
Sarrival_ set avg_ 5

independent of every other substream. The implication of
this is that users of ns-2 no longer need to explicitly set
a seed for each RNG used in a simulation. Once the seed
of the defaultRNG is set, each subsequent call to create

a new RNG object ([new RNG]) moves the generator Sarrival_ use-rng SarrivalRNG

to the next stream, thus guaranteeing independence. To

perform multiple replications of simulations with multiple # size_ is a uniform random variable describing
random variables (such as generating packet sizes and packet # packet sizes

arrival times), each random variable should use a different set size_ [new RandomVariable/Uniform]

stream, and each replication should use a different substream 9size_ set min_ 100

(L’Ecuyer et al. 2002). So, the i replication should use the $size_ set max_ 5000

ith $size_ use-rng $sizeRNG

i substream of each stream. Figure 5 shows an example
ns-2 script that generates the third replication of output from
two random variables, and Figure 6 shows the output when
the script is run. We contributed a version of this example

# print the first 5 inter-arrival times and sizes
for {set j 0} {$j < 5} {incr j} {

puts "[Sarrival_ value] [$size_ value]"
to the ns-2 Manual (Fall and Varadhan 2006). }
4.2 Effects of Improper RNG Usage
One of the noticeable effects of improper RNG usage is Figure 5: Example Use of ns-2 RNG Functions

decreased reproducibility. We use the PackMime-HTTP
traffic generator in ns-2 as an example. PackMime-HTTP
uses random variable distributions to choose the HTTP
request size, HTTP response size, time between the start of
new connections, and the server delay time (time between

oe

ns rng-example.tcl

the server receiving a request and sending the response). 2.515083e+00 1.119200e+03
We also have random variables that determine the round-trip 3.153944e+00 3.118043e+03
time (RTT) of each connection. The request size, response 9.672774e+00 1.200644e+03
size, and next connection start time are all drawn when a new L.334614e+01 2.515018e+03

i 7.051881e+00 2.114656e+03

connection is started. The server delay time is not drawn
until the HTTP request reaches the server. If we were
using separate RNGs for each distribution, as described
in the previous section, there would be no problem with Figure 6: Output of ns-2 RNG Example
repeatability, because samples from each distribution would
be drawn from their own independent substream. If all of
the random variables used the same RNG, a change in
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network settings (e.g, router queue size, link speed, RTT)
could affect the sizes of the requests and responses drawn
and used in the simulation.

To demonstrate this, we ran four simulations using the
PackMime-HTTP traffic generator with the same basic setup
as described in Section 2.2:

An uncongested network (100 Mbps) with proper
use of the RNG (separate streams for each random
variable and separate substreams for each replica-
tion);

A congested network (7.5 Mbps) with proper use
of the RNG;

An uncongested network with improper use of the
RNG (only a single substream used for all random
variables);

A congested network with improper use of the
RNG.

The only difference between the uncongested and congested
cases is the link speed. Ideally, network settings should not
affect the sizes of requests or responses or the times at
which the connections are initiated. We show the HTTP
response sizes and the times the connections were initiated
for the uncongested and congested cases with the proper
use of the RNG in Figure 7 and with improper use in Figure
8. Since there were a very large number of responses less
than 100 KB, we show only those greater than 100 KB in
order for the graphs to be readable. As expected, there is
a perfect match of response sizes when the RNG is used
properly. When samples from all distributions are drawn
from the same RNG substream, the same response sizes
are not drawn once network conditions change. Just by
random chance, the congested case has no responses larger
than 10,000 KB, while the uncongested case has three such
responses. As shown in Section 2.2, the response sizes can
have a large impact on the offered load in the network,
so the offered load would likely be very different between
these two cases.

5 CONCLUSIONS

Network simulations that employ heavy-tailed workloads
have become more prevalent as more researchers study In-
ternet traffic. We have discussed some of the high variability
present in heavy-tailed distributions. We have also demon-
strated how a single large sample from a heavy-tailed file size
distribution can greatly affect offered loads on a network.
Unfortunately, due to this high variability, standard statisti-
cal output analysis is often unsuitable. We presented three
different approaches to dealing with heavy-tailed workloads.
In addition, we discussed the impact of improper use of
the RNG available in the ns-2 simulator and examples for
its proper usage. All ns-2 simulation scripts used in this
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paper are available at <www.cs.odu.edu/ mweigle/
research/netsim/>.

ACKNOWLEDGMENTS

We thank Dr. George Fishman for numerous discussions on
the impacts of heavy-tailed distributions on data analysis.

REFERENCES

Alexopoulos, C., and A. F. Seila. 2001. Output data analysis
for simulations. In Proceedings of the Winter Simulation
Conference, 115-122.

Alparslan, O., N. Akar, and E. Karasan. 2004. AIMD-based
online MPLS traffic engineering for TCP flows via dis-



Weigle

tributed multi-path routing. Annales Des Telecommu-
nications.

Breslau, L., D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H. Yu. 2000, May. Advances in network simulation.
IEEE Computer 33 (5): 59-67.

Cao, J., W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith, and
M. C. Weigle. 2004, March. Stochastic models for gen-
erating synthetic HTTP source traffic. In Proceedings
of IEEE INFOCOM. Hong Kong.

Claypool, M., R. Kinicki, and M. Hartling. 2004, April.
Active queue management for web traffic. In Proceed-
ings of IEEE International Performance, Computing,
and Communications Conference (IPCCC).

Crovella, M., and L. Lipsky. 1997. Long-lasting transient
conditions in simulations with heavy-tailed workloads.
In Proceedings of the Winter Simulation Conference,
1005-1012. Atlanta, GA.

Fall, K., and K. Varadhan. (Eds.) 2006. ns Manual. <www .
isi.edu/nsnam/ns/doc/ns_doc.pdf>.

Fishman, G. 2001. Discrete-event simulation: Modeling,
programming, and analysis. Springer-Verlag.

Fishman, G. S., and L. J. B. F. Adan. 2006. How heavy-tailed
distributions affect simulation-generated time averages.
ACM Transactions on Modeling and Computer Simu-
lation. To appear.

Harchol-Balter, M., M. Crovella, and C. Murta. 1999,
November. On choosing a task assignment policy for a
distributed server system. Journal of Parallel and Dis-
tributed Computing, Special issue on software support
for distributed computing 59 (2): 204-228.

Houtzager, G., and C. Williamson. 2003. A packet-level
simulation study of optimal web proxy cache placement.
In Proceedings of IEEE MASCOTS.

Kurkowski, S., T. Camp, and M. Colagrosso. 2005, Octo-
ber. MANET simulation studies: The incredibles. ACM
SIGMOBILE Mobile Computing and Communications
Review 9 (4): 50-61.

Law, A. M. 2004. Statistical analysis of simulation output-
data: The practical state of the art. In Proceedings of
the Winter Simulation Conference, 67-72.

L’Ecuyer, P. 1999. Good parameters and implementations
for combined multiple recursive random number gen-
erators. Operations Research 47 (1): 159-164.

L’Ecuyer, P. 2001. Software for uniform random number
generation: Distinguishing the good and the bad. In
Proceedings of the Winter Simulation Conference, 95—
105.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton.
2002, November. An object-oriented random-number
package with many long streams and substreams. Op-
erations Research 50 (6): 1073—-1075. Software avail-
able at <www.iro.umontreal.ca/ lecuyer/
myftp/streams00/>.

2194

Mah, B. 1997. An empirical model of HTTP network traffic.
In Proceedings of IEEE INFOCOM, 592-600.

May, M., T. Bonald, and J. Bolot. 2000, March. Analytic
evaluation of RED performance. In Proceedings of IEEE
INFOCOM, 1415-1424.

Nakayama, M. K. 2002. Simualtion output analysis. In
Proceedings of the Winter Simulation Conference, 23—
34,

Ott, T., T. Lakshman, and L. Wong. 1999, March. SRED:
Stabilized RED. In Proceedings of IEEE INFOCOM,
1346-1355.

Park, K., G. Kim, and M. Crovella. 1996. On the relationship
between file sizes, transport protocols, and self-similar
network traffic. In Proceedings of the IEEE Interna-
tional Conference on Network Protocols (ICNP).

Pawlikowski, K. 2003, February. Do not trust all simulation
studies of telecommunications networks. In Proceed-
ings of the International Conference on Information
Networking (ICOIN).

Pawlikowski, K., H.-D. J. Jeong, and J.-S. R. Lee. 2002, Jan-
uary. On credibility of simulation studies of telecommu-
nication networks. IEEE Communications Magazine 40
(1): 132-139.

Perrone, L., Y. Yuan, and D. Nicol. 2003. Modeling and
simulation best practices for wireless ad hoc networks.
In Proceedings of the Winter Simulation Conference,
685-693.

Rai, I. A., G. Urvoy-Keller, and E. W. Biersack. 2003. Anal-
ysis of LAS scheduling for job size distributions with
high variance. In Proceedings of ACM SIGMETRICS,
218-228.

Urvoy-Keller, G., and E. Biersack. 2002, October. A mul-
ticast congestion control model for overlay networks
and its performance. In Proceedings of the Workshop
on Networked Group Communication.

Weigle, M. C., K. Jeffay, and F. D. Smith. 2005, May.
Delay-based early congestion detection and adaptation
in TCP: Impact on web performance. Computer Com-
munications 28 (8): 837-850.

Williamson, C., and N. Markatchev. 2003, July. Network-
level impacts on user-level web performance. In Pro-
ceedings of SPECTS.

AUTHOR BIOGRAPHY

MICHELE C. WEIGLE is an Assistant Professor of Com-
puter Science at Old Dominion University. She received
her Ph.D. from the University of North Carolina at Chapel
Hill in 2003. Her research interests include network proto-
col evaluation, network simulation and modeling, Internet
congestion control, and mobile ad-hoc networks. She is a
member of ACM and ACM SIGCOMM. Her e-mail address
is <mweigle@cs.odu.edu>.



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



