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ABSTRACT 

Inbound call center operations are challenging to manage, 
in large part because there is considerable uncertainty in 
estimates of arrival rates, which vary over time. We have 
developed a general purpose simulation model for inbound 
call center operations which supports time varying and un-
certain arrival rates along with variable staffing. We out-
line the conceptual and technical design of the simulation 
model. We then define and conduct an initial experiment 
that uses the model to evaluate the impact of arrival rate 
uncertainty on call center performance. We find that arrival 
rate uncertainty creates significant planning challenges for 
managers attempting to satisfy tight performance targets, 
particularly one-sided performance measures. We also find 
that abandonment rate has a major impact on call center 
performance. 

1 INTRODUCTION 

Call centers are a large and growing component of the U.S. 
and world economy (Gans et al. 2003). In 1999 an esti-
mated 1.5 million workers were employed in call centers in 
the US alone.  Large scale call centers are technically and 
managerially sophisticated operations and have been the 
subject of substantial academic research. 

A call center is a facility designed to support the deliv-
ery of some interactive service via telephone communica-
tions, typically an office space with multiple workstations 
manned by agents who place and receive calls (Gans et al. 
2003). Call center applications include tele-marketing, cus-
tomer service, help desk support, and emergency dispatch.   

Most call centers support both inbound and outbound 
operations. An inbound operation takes customer initiated 
calls while an outbound operation places calls to custom-
ers.  Inbound and outbound calls are often handled by 
separate teams of agents, though in some call centers in-
bound and outbound calls are mixed in a process known as 
blending.  
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Even a moderately sophisticated call center is 
equipped with advanced computer and telecommunications 
equipment. An inbound call typically connects from the 
public service telephone network (PSTN) to the call cen-
ter’s switch, the private branch exchange (PBX), over a 
number of owned or leased trunk lines. Callers may ini-
tially connect to an Interactive Voice Response Unit (IVR) 
where the caller can use her keypad to select options and 
potentially provide data input to call center system. When 
callers need to speak to an agent, the call is handled by the 
Automated Call Distributor (ACD). The ACD routes calls 
internal to the call center and is responsible for monitoring 
agent status, collecting data, managing on hold queues, and 
making potentially complex routing decisions. For exam-
ple, in call centers that employ skills based routing, a com-
plex decision process is used to match callers and agents 
based on multiple criteria concerning both the callers and 
the agents. In addition to the telephone system, a call cen-
ter agent usually has a computer terminal connected into 
one or more enterprise applications; these are typically 
classified under the general category of Customer Rela-
tionship Management (CRM).  

In lower volume, less sophisticated call centers the 
telecommunications systems and information processing 
systems are completely separate, but most moderately so-
phisticated centers use some form of Computer Telephony 
Integration (CTI). CTI allows information to pass back and 
forth between the two systems. The call center system 
typically has some form of CTI middleware to manage the 
integration of the telephony and computing systems. With 
that data the CTI system can orchestrate a screen pop, the 
simultaneous delivery of a call to an agent’s telephone and 
a screen of information to the same agent’s workstation.  

Gans et al. (2003) document a series of industry stan-
dard measures used to evaluate call center performance. 
We summarize the key measures here: 

 
• Excess Capacity: the minimum staff level re-

quired to provide queue stability is well known to 
be N = Ri, where Ri is the offer load; the ratio of 
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average arrival rate and service rate. (R = λ/μ). 
Excess capacity (denoted as Δ) is defined as the 
number of additional agents staffed above the 
minimum level. (Δ = N - λ/μ) 

• Average Speed of Answer (ASA): this is the av-
erage time callers spend on hold, waiting for an 
agent.  

• Telephone Service Factor (TSF): also called the 
service level, TSA is the fraction of calls for 
which the delay is below a specified level. For ex-
ample, a call center may report the TSF as the 
percent of callers on hold less then 30 seconds.  

• Abandonment %: callers that are put on hold and 
hang up while in queue are said to have aban-
doned the system.  The proportion of all calls that 
abandoned is known as the abandonment % and is 
a key metric in most call centers. 

  
The paper also outlines a set of call center regimes: 

three basic categories that describe the staffing/customer 
service objectives of the call center. 

  
• Quality Driven Regime: customer waiting costs 

are assumed to dominate the cost of capacity and 
the objective is to serve the majority of customers 
without delay. Staffing levels are increased line-
arly with offered load. Average utilization in this 
regime is typically low, on the order of 65-75%, 
and average customer wait time is also low.  

• Efficiency Driven Regime: staffing costs are as-
sumed to dominate the cost of customer delay and 
the operational objective in this regime is to 
maximize the utilization of the staff. 

• Quality Efficiency Driven (QED): an opera-
tional environment that attempts to strike some 
balance between efficiency and customer service. 
Unlike the quality regime where the fraction of 
delayed customer is near zero, or the efficiency 
regime where the fraction delayed is near one, the 
QED regime balances costs and attempts to 
achieve some steady delay proportion between 0 
and 1. 

2 CALL CENTER RESEARCH 

Much of the call center research is oriented toward queuing 
behavior in general as well as the relationship between 
queuing behavior and staff level decisions. (Halfin and 
Whitt 1981; Whitt 1989; Whitt 1992a; Whitt 1992b; Borst 
et al. 2004; Whitt 2005). Another series of papers ad-
dresses the specific issues related to staff selection given 
schedule constraints Many of these papers are motivated 
by call center applications, but several are applicable to the 
staffing problem at any operation. The general problem 
presented in these papers is developing a staff schedule 
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that meets a time varying set of agent requirements. These 
models generally assume the call center staffing require-
ments are known with certainty in each 15 or 30 minute 
time period. The models also assume that agents may be 
scheduled to a finite set of scheduled start and end times. 
The more advanced models include an explicit break 
schedule. These models are extensions of the general set 
covering algorithm, and when breaks are scheduled explic-
itly the problem becomes NP hard (Garey and Johnson 
1979).  Given the intractability of the scheduling problem 
many researchers have sought heuristic scheduling solu-
tions. A large set of papers addresses this problem (Bech-
told and Jacobs 1990; Brusco and Johns 1996; Brusco and 
Jacobs 1998; Brusco and Jacobs 2000). As mentioned pre-
viously these period-by-period models assume agent re-
quirements can be defined explicitly. The implicit assump-
tion is that the queue achieves equilibrium in each time 
period and that arrival rates are known with a high degree 
of confidence. This breaks the optimization problem into 
two components: a server sizing component done exoge-
nously to the model, and a schedule optimization compo-
nent.  We know of one paper that breaks with this ap-
proach. Koole and Sluis (2003) attempt to develop a 
staffing model that optimizes a global objective, i.e. an av-
erage performance metric over a longer time period.  

Much of the academic literature on call centers, and 
queuing systems in general, is done using closed form ana-
lytical equations, using approximations as necessary. The 
benefits from closed form analysis are substantial; equa-
tions that describe system behavior, even when approxi-
mate, are easily generalized and applied to other related 
problems. Management insight is often easier to develop 
from closed form expressions that describe system behav-
ior. 

However there are some serious limitations in terms of 
the results that closed form analysis can provide. Analyti-
cal models are usually derived given the following set of 
assumptions—see (Gans et al. 2003) for a more detailed 
discussion. 

 
• Poisson Processes: interarrival and service times 

are typically assumed to be exponentially distrib-
uted so that some form of an Erlang model can be 
used. The assumption of exponentially distributed 
arrivals is theoretically supported and empirically 
verified (Brown et al. 2005). The same study, 
however, finds that talk time is not distributed ex-
ponentially but rather exhibits a lognormal distri-
bution.   

• Independence: interarrival and service times are 
virtually always assumed to be independent of 
each other. Brown et al. (2005) also find positive 
correlation between service time and arrival rate 
so that calls are longest during the busiest time of 
the day.  
1
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• Steady State: arrival rates are often considered to 
be time invariant as is staffing. Models in which 
rates or staffing are variable generally assume 
each is constant in a time bucket (say 15 or 30 
minutes). Stationary measures are calculated in 
the interval, implicitly assuming the system 
quickly obtains stability. Analysis of transient be-
havior is limited, but in reality call centers subject 
to highly variable arrival rates may rarely achieve 
steady state.  

• Arrival rate uncertainty: the interarrival time of 
calls is recognized as uncertain and highly vari-
able, being described in most models by an expo-
nential distribution. The arrival rate λ, is however 
usually assumed to be known. In reality call cen-
ters are staffed based on expected arrival rates 
which may suffer from high levels of uncertainty. 
Limited research has been done to explore the ef-
fect of arrival rate uncertainty.  

• Routing: most standard models assume a simple 
routing of calls. In reality call centers often have 
more complex routings. Calls may be condition-
ally routed based on priority or the skills required 
to service the call type: so called skills based rout-
ing. 

 
While much of the theoretical analysis of call centers 

ignores the issue of abandonment, abandonment is dis-
cussed in detail in Mandelbaum and Zeltyn (2004). This 
paper analyzes call centers in the context of the Erlang-A 
model, an extension of the basic Erlang-C (M/M/N) model 
that assigns an exponentially distributed patience factor to 
callers. A caller abandons the system when his wait time 
exceeds his patience. A call center staffed so that is unsta-
ble in an Erlang-C model is shown to be stable, and in 
some situations to exhibit desirable performance character-
istics. Stated another way, significant cost savings can be 
achieved if the call center is willing to accept moderate 
levels of customer abandonment. A key limitation of the 
Erlang-A model is the assumption of exponential patience.  

In addition to the large body of theoretical/analytic 
models addressing call centers, we know of 2 papers that 
explicitly analyze the statistical data generated in a call 
center. Mandelbaum et al. (2000) and Brown et al. (2005) 
provide a statistical analysis of the same set of data gath-
ered from a bank’s call center. They find that call time has 
a lognormal distribution; in contrast most analytical work 
makes the simplifying assumption that talk time is expo-
nential.  The authors also find that the hazard rate for 
abandonment (the time phased probability for abandoning) 
is bimodal.  A large peak occurs a few seconds after the 
caller realizes he must wait, while a second peak occurs 60 
seconds later after a please wait message is played. In the 
tail, the hazard rate becomes approximately constant, sup-
2182
porting the concept of exponential patience for those will-
ing to wait at least a moderate time.  

In addition, a few papers have been written on call 
center operations in practice. A series of papers discusses 
call center operations at L. L. Bean (Andrews and Parsons 
1989; Quinn et al. 1991; Andrews and Parsons 1993; An-
drews and Cunningham 1995). The authors discuss issues 
related to forecasting, resource allocation and scheduling. 
The theme that runs through these papers is the challenge 
related to determining the appropriate number of agents to 
staff given the tradeoff of operational costs and customer 
service. A practice paper that highlights the use of simula-
tion in call center planning is Saltzman and Mehrotra 
(2001). In this paper the authors document the use of a call 
center simulation model to help a software company de-
termine approximate staff level requirements for a new 
service offering. 

3 CALL CENTER MODEL 

Our first effort was to develop a general purpose inbound 
call center simulation model. Our model assumes infinite 
trunk capacity and homogeneous agents, and has the fol-
lowing characteristics:  

 
• Time varying arrival rate: the system supports 

exponential arrival rates that may vary by 15 min-
ute time periods. The arrival rates are read from 
an external data file. 

• Arrival Rate Error: the model further allows for 
the specification of an arrival rate error so that the 
realized arrival rate in each 15 minute period is 

r aλ λ ε= +  where λ is the arrival rate speci-
fied and εa is a normally distributed error with 
mean μa and standard deviation σa. Note that set-
ting μa and σa to zero reduces the model to a 
known arrival rate.  

• Staffing Levels: the staffing level is configurable 
in 15 minute periods, and is read from an external 
file. 

• Service Time Distribution: the model allows 
service time to be modeled as either exponential 
or lognormal.  

• Abandonment: we recognize from the empirical 
research that abandonment may be bi-modal so 
the system models abandonment as follows:  
− Each caller is willing to wait with probability 

pw, and unwilling to wait with probability 1-
pw. If the caller is unwilling to wait he aban-
dons immediately if put on hold. The parame-
ter pw is a global parameter for the model and 
may be specified externally.  

− Callers who are willing to wait have a pa-
tience that is uniformly distributed on 
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[wa,wb]. A caller will wait up until his pa-
tience and if not served by then will abandon. 
The wait parameters are global and externally 
specified.  

• Operation Time: the call center may be a con-
tinuous (24x7) operation or may have a finite op-
erating time. In the latter case, calls are blocked at 
the end of the shift but any calls in process or in 
queue are completed.  

• Statistics: the model collects and reports on the 
following statistics: call volume, abandonment 
rate, agent utilization, queue size, ASA, calls with 
zero wait time, TSF, and maximum hold time. For 
each statistic a file is created that stores the value 
of the statistic for each hour of simulated time. 

 
Modeling issues included constructing a model that 

was entirely data driven, providing for external analysis of 
the hour-by-hour statistics, modeling the nonstationary ar-
rival process, and incorporating abandonment. Our model 
uses external data files for input of variable rates and out-
put of hourly statistics, while flags are used to control 
items such as enabling hourly logging, abandonment, vari-
able rates, etc. We plan to replace the data files with an 
ActiveX interface for ease of use.  Henderson (2005) pro-
vides an excellent discussion of alternatives for modeling 
arrival processes in call centers; our model implements a 
nonhomogeneous Poisson process. To model abandon-
ment, the arriving entity is cloned; the clone waits for the 
(random) patience time and removes its original entity 
from the list of calls on hold if that entity is still on the list. 

4 ANALYSIS OF FORECASTING ERROR 

The model described above is a general purpose call center 
simulation that can be applied to the analysis of a wide 
range of scenarios. We conduct an experiment to examine 
the degradation in system performance when arrival rates 
vary from expectation. We define a scenario with a 12 hour 
shift, from 8 AM to 8 PM. Call volume in each 15 minute 
period is given by λa = λa + εa, where λa = 1,000 calls/hr. 
and εa ~N(μa,σa). Service time is lognormally distributed 
with an expected talk time of 10 minutes and a standard 
deviation of 2 minutes. Callers are willing to wait with 
probability pw = 95%. Callers put on hold have a patience 
uniformly distributed between 60 and 300 seconds. We 
wish to explore effects of arrival rate uncertainty so our 
experiment varies μa from -200 to 200 and σa from 0 to 
200.  

Since our objective is to investigate how different call 
center regimes respond to arrival rate forecasting errors, 
we assume we have 3 call centers with the following staff-
ing objectives. 
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• Call Center 1: call center 1 is efficiency driven. 
Staffing is planned so as to achieve a 96% agent 
utilization rate.  

• Call Center 2: call center 2 is quality driven. 
Staffing is planned so that the 99% of customers 
will have a wait time of less then 3 seconds.  

• Call Center 3: call center 3 utilizes a quality effi-
ciency driven policy. Staffing is planned so that 
the expected wait time for a customer is less then 
2 seconds and abandonment rate is less then 5%.  

4.1 Baseline Analysis 

The first step in this analysis is to find the baseline staffing 
level for each of the 3 scenarios. To do this we conduct a 
numerical experiment where we vary the staff levels and 
calculate the relevant performance metrics. We varied staff 
levels from 125 to 250 in increments of 1. We conducted 
our experiment with a warmup period of 4 hours, an 8 hour 
analysis period and 5 runs per staff level. This experiment 
required 630 runs and executed in about 45 minutes in the 
background. Based on this analysis we are able to deter-
mine the baseline staffing for each of the call centers in our 
experiment; call center 1: 160 agents, call center 2: 194 
agents, call center 3: 170 agents. 

4.2 Variability Analysis 

In order to test the impact of variability in arrival rate we 
set up an experiment in which we vary several factors:  
  

• Estimate Error Mean: the error mean is varied 
from -200 to 200 in increments of 100. 

• Estimate Error Standard Deviation: the error 
standard deviation is set to 4 discrete values, 0, 
10, 100, 200.  

• Staff Level: staffing is set to the 3 discrete levels 
selected from the baseline analysis: 160, 170, and 
194.  

 
We run the model with a 4 hour warmup period and an 8 
hour snap length. We run 20 iterations at each point result-
ing in 1,200 total runs. The results for each regime are dis-
cussed below. 

4.2.1 Efficiency Driven Regime 

In the efficiency driven call center the key management 
metric is utilization. The staffing goal is to keep utilization 
levels high, in our example at 96%. Figure 1 shows the re-
sults of the simulation analysis performed to vary arrival 
rate. 
 

3
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Figure 1: Effect of Arrival Rate Uncertainty on Utilization 
for the Efficiency Driven Regime 

 
We make the following observations: 
• A small standard deviation has little impact. (i.e. 

if the arrival rate varies from its mean over the 
course of the day by a small amount the impact is 
minimal.)  

• Larger standard deviations tend to decrease utili-
zation since utilization will drop during the slow 
periods and abandonment will rise during the busy 
periods.  

• Positive bias (i.e. underestimating the arrival rate) 
has a limited effect. Since target utilization is very 
high, a higher call rate creates only a small in-
crease in utilization.  

• Negative bias adversely affects the utilization sta-
tistic. A 10% overestimation of arrival rate causes 
utilization to drop by 4%. A 20% error causes 
utilization to drop by 12%, and if this is accompa-
nied by arrival rate variability during the day, 
utilization may drop below 82%.  

 
In addition to the management objective of high utili-

zation we also wish to see the impact on customer service 
metrics. For this analysis we chose to look at abandonment 
rate, as shown in Figure 2.  
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Figure 2: Effect of Arrival Rate Uncertainty on Abandon-
ment for the Efficiency Driven Regime 
 

We make the following observations concerning aban-
donment rate: 
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• Arrival rate variability drives abandonment rate 
up.  

• Call volumes above forecast will significantly in-
crease abandonment rate from its base level of 
about 8% to over 20%. 

• Arrival rates below expectation will decrease 
abandonment rate substantially.  

 
The key conclusions from this analysis are that the 

performance metrics in an efficiency driven call center are 
very sensitive to the estimated arrival rate, and that main-
taining a high utilization rate is very difficult in the pres-
ence of customer abandonment. Given the large decline in 
utilization for below expected arrival rates, a call center 
manager measured on staff utilization is likely to estimate 
call volume very conservatively (i.e. systematically under-
estimate call volume). With utilizations slightly above tar-
get, abandonment rates are likely to be large.  

4.2.2 Quality Driven Regime 

In the quality driven regime the key management objective 
is to maintain a specified percentage of customers whose 
wait time is less then an established target. Figure 3 shows 
the percentage of customers who achieve the target wait 
level as a function of the arrival rate parameters. Recall 
that the target level is very high, 99% with a wait time of 3 
seconds or less.  

 

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

-200 -100 0 100 200

Estimate Error Mean

Te
le

ph
on

e 
Se

rv
ic

e 
Fa

ct
or

 (T
SF

)

0

10

100

200

Est. Error 
Std Dev

 
Figure 3: Effect of Arrival Rate Uncertainty on Calls with 
Low Wait for the Quality Driven Regime 

 
Summary observations are: 
 
• Again, small variations in the arrival rate standard 

deviation have limited impact. 
• High variability in arrival rate affects the per-

formance metric significantly. If the daily arrival 
rate is on target, but varies significantly during the 
day, the call center misses the 99% target by over 
5%.  

• Underestimating the arrival rate has a major nega-
tive impact. A call volume 10% greater than ex-
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pected can decrease the TSF by 8%, and a 20% 
forecast error drops the TSF to below 78%.  

 
We also examine the abandonment rate in this regime. 

Given the high percentage of customers to be served in less 
then 2 seconds the implied target for abandonment rate is 
very low. Figure 4 shows the impact of variable arrival 
rate.   
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Figure 4: Effect of Arrival Rate Uncertainty on Abandon-
ment % for the Quality Regime 

 
Summary observations for this case include: 
 
• The abandonment rate is highly sensitive to arri-

val rate variability and bias.  
• Because the model assumes a substantial portion 

of customers will abandon immediately when put 
on hold, small increases in arrival rate can have 
major impacts on abandonment rate.  

4.2.3 Quality-Efficiency Driven Regime 

In the quality-efficiency driven regime the key manage-
ment objective is to maintain a specified expected wait 
time. Unlike the other regimes, this implicitly makes a 
tradeoff between agent time and customer wait time. Re-
call that the target level for our call center is an average 
wait time of 2 seconds. The expected wait time is shown in 
Figure 5. 
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Figure 5: Effect of Arrival Rate Uncertainty on Wait Time 
for the Quality-Efficiency Driven Regime  
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Summary observations are: 
• Again, small variations in the arrival rate standard 

deviation have limited impact. 
• Larger variations in the period to period arrival 

rate increase wait time. 
• A bias in the overall arrival rate has a roughly 

near linear impact on expected wait time. A 20% 
increase in call volume causes wait time to 
roughly double. A 20 % decrease in call volume 
causes wait time to fall near zero.  

 
Once again we also examine the impact on customer 

service as measured by abandonment rate (see Figure 6).  
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Figure 6: Effect of Arrival Rate Uncertainty on Abandon-
ment for the Quality-Efficiency Driven Regime  

 
We observe the following effects: 
 
• Again we see that deviations in call volume have 

a major impact on abandonment rate. Increased 
call rates cause abandonment rates to rise signifi-
cantly.  

• Overall the performance metrics for this regime 
tend to behave a bit more linearly then for the 
previous two regimes. Abandonment percentage 
is increasing at a faster than linear rate, but lies 
between the performance of the other regimes.  

5 SUMMARY AND CONCLUSIONS 

We have analyzed the effect of call arrival rate uncertainty 
across call center regimes in an admittedly narrow experi-
ment. A more thorough analysis would have examined the 
impact of variability at various call center scales (small, 
medium, and large centers) and across a range of efficiency 
and quality parameters. However, our analysis does serve 
its intended purpose: to show that the various call center 
staffing models are highly sensitive to the arrival rate as-
sumptions.   

In our analysis we allowed call volume to vary from 
expectation and showed that performance levels differ sig-
nificantly from target when arrival rate varies from plan.  
Empirical research has shown that call arrival rates are 
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highly variable and difficult to predict (Brown et al. 2005). 
Furthermore, a qualitative analysis of the incentives in the 
quality and efficiency regimes illustrates that management 
incentives to meet one sided goals may cause rational 
managers to systematically bias arrival rate estimates as a 
cushion.  

The quality-efficiency paradigm, on the other hand, is 
a two sided objective: the goal is to achieve a specific level 
of performance, rather then be better then some threshold. 
We argue that this type of paradigm, where deviation from 
plan above or below is equally costly, does not create in-
centives for an estimation bias. The performance metric in 
the quality-efficiency example is also slightly less sensitive 
to disruptions than the pure efficiency or pure quality met-
rics.  

Overall we find that the high volume call center we 
examined in this analysis is highly sensitive to arrival rate 
estimation. We expect that lower volume centers, with 
lower economies of scale, would suffer equal or greater 
disruption from shifts in call volume. Since arrival rates 
have been shown to be highly variable, we argue that theo-
retical models that assume a known arrival rate are suspect, 
yet this is common practice. We believe models that ex-
plicitly recognize the variability in the arrival rate, while 
more complex to solve, would provide better results.  

Our study has also demonstrated some of the limita-
tions of a simulation based analysis. Because this analysis 
does not develop closed form results we must test across a 
wide range of input parameter values. The admittedly nar-
row analysis we report in this paper required thousands of 
simulation runs. To demonstrate that the general findings 
are applicable for different sized call centers, or differently 
specified target metrics, requires either faith, or many more 
simulation runs.  

The model we have developed is very general and may 
be used to analyze various issues in call center perform-
ance. Our ongoing analysis will continue to evaluate the 
impact of uncertainty in system parameters. In particular 
we seek to investigate the equilibrium assumption when 
arrival rates are highly variable through the course of the 
day.   
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