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ABSTRACT

Simulation interoperability and model interreplaceability

still remain as goals to be attained in network simulation.

We have previously developed a high level architecture for

network simulators, named AMINES-HLA. In this paper, we

discuss AMINES-HLA with respect to IEEE HLA standard,

DEVS, and the architectures of OMNeT++ and NS-2. We

describe two scenarios which demonstrate how simulation

interoperability and model interreplacement can be realized

through AMINES-HLA. In the first scenario, we show how

a virtualized program and protocol stack can be used to

replace a specific model in a simulator built on AMINES-

HLA. In the context of the second scenario, we discuss how

two simulators can be interoperated.

1 INTRODUCTION

Simulations have been one of the main tools for understand-

ing, tuning, and therefore designing networks and network

protocols. In addition to the natural interest from network

experimenters, network simulation has also drawn more and

more attention from the simulation community. The main

driving force for the simulation community’s continuing in-

terest is that the networks to be simulated grow bigger and

bigger, and new technologies, such as wireless and sensor

networks, require more and more complex models.

Today there is a proliferation of network simulators.

In addition to the mainstream network simulators such as

NS-2, OMNeT++, OPNET Modeler, and GloMoSim, many

experiment or project specific simulators, emulators, and

testbeds are reported in the literature. Although there have

been considerable progress with works such as the Dynamic

Simulation Backplane (Xu et al. 2001), to this date, model

level interreplaceability and simulator interoperability for

model reuse still remain as goals to be achieved in network

simulation. In this paper, we shortly describe a high level

architecture for network simulators, called AMINES-HLA,

and describe two scenarios that demonstrate how this archi-
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tecture can be used for model replacement and simulator

interoperability. These scenarios provide the grounds for

our current efforts in re-factoring some widely used open

source network simulators.

AMINES-HLA can be regarded as a component-based

architecture, where our focus is mainly on the architecture

of the run-time representation (RTR) of the model of the tar-

get network (MoTN), and the simulator. In AMINES-HLA

based simulators, the management of the RTR of the model,

such as construction and transformation, is separated from

the RTR of the MoTN. We believe that time management,

which is traditionally considered a function of the simulation

executive, should be a part of the RTRs of the simulation

models. Furthermore, a simulation executive which pro-

vides simulation model related functionality such as time

management, and which is not itself sufficiently compo-

nentized, is one of the major obstacles towards simulation

model interreplaceability.

The organization of the paper is as follows: in Section 2

we introduce AMINES-HLA shortly. In Sections 3, 4, and

5 we discuss AMINES-HLA in comparison to the IEEE-

HLA, the DEVS formalism, and the architectures of network

simulators OMNeT++, and NS-2. Then, in Sections 6 and

7, we describe the scenarios for model replacement and

simulator interoperability, and we conclude in Section 8.

2 AMINES-HLA

Although high level architecture has become a term that

refers to the High Level Architecture Modeling and Simula-

tion Standard (IEEE 2000), we will use high level architec-

ture (HLA) as a term to refer to an architectural specification

using which the architecture of a particular system can be

formulated. We will also use the term run-time infrastruc-

ture (RTI) to refer to the necessary code or binaries that

support the software environment described by a high level

architecture. In the rest of the paper, we will refer to the

High Level Architecture Modeling and Simulation Standard

as IEEE-HLA, and its RTI as IEEE-HLA-RTI.
0
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AMINES-HLA is a higher level architecture designed

to be used as basis for network simulator architectures.

The design goals targeted by the AMINES-HLA are the

following:

• Creating a run-time environment where the com-

ponents are as loosely coupled as possible, in order

to support interoperability of simulators, and re-

placement or interreplacement of simulation model

parts.

• Providing an architecture that ensures separation

between the code responsible for simulation man-

agement and initialization, and RTR of the simu-

lation model.

• Imposing and exposing a meta-model for simu-

lation models that can be simulated by network

simulators.

• Providing an architecture where components can

be distributed transparently, with respect to the

perspective of the experimenter. Current processor

trends towards multi-core architectures imply that

concurrent simulation will become more common

even in simulators designed to run on low-cost PCs

and workstations.

A more detailed description of the design of an ear-

lier version of AMINES-HLA, which does not include the

concurrency extensions, can be found in Göktürk (2006a).

As discussed in Göktürk (2006b), there are two stake-

holders in network simulation and emulation: the simulation

system developers, and experimenters. Exposing the meta-

model related assumptions made by the simulation system

or library developers for a particular simulation system or

library, should make the simulation system easier to use for

the experimenters. Furthermore, a meta-model that is in

good agreement with the modeling approach that appears

in the expert knowledge of the experimenters, which they

use in their day-to-day research tasks, would make it eas-

ier for the experimenters to adapt to and learn to use the

network simulator. Our approach in using this similarity

of knowledge structure differs from other approaches based

on the same similarity idea, such as GTNetS (Riley 2003),

in the fact that our focus is on a relatively more abstract

level, solely on the architectural aspects, not on providing

entities that have real-network counterparts such as nodes,

protocols, etc. We see providing appropriate models that

have sufficiently real-world-like counterparts as an issue to

be handled by the simulation system or simulation library

designers.

The meta-model assumed in the design of AMINES-

HLA is inspired by the actor model (Agha 1986, Agha

1996). In this meta-model, a simulation model is formed

by instances of unit models. The unit models represent the

basic sub-models, whose further division appears infeasible
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with respect to the granularity targeted for a particular

simulation model. These unit models are represented as

customized behaviors of actor like entities, which result in

a model composed of homogeneous simple elements with

customized behavior.

The AMINES-HLA does not describe a complete sim-

ulation system. It only provides an architectural common

ground for network simulators and emulators.

There are two types of units in AMINES-HLA: unit

models (UMs) and constructor units (CUs). A simulator

that is built on AMINES-HLA is composed of instances

of these two kinds of units (UMIs and CUIs), and links

between instances of unit models.

A unit model in AMINES-HLA represents a basic

indivisible sub-model. Each unit model instance (UMI) has

a UMI identifier that is assigned when the UMI is created

at run-time. This UMI identifier is guaranteed to be unique

among the UMI identifiers created during a particular run.

The UMIs are connected to other UMIs with uni-directional

data paths, which we refer to as links. A link between

two UMIs is uniquely defined by the four-tuple originating

out-link identifier, originating UMI identifier, target in-link

identifier, and target UMI identifier. The out-link and in-link

identifiers are meaningful only locally to a particular UMI.

In a UMI, the behavior is left blank to be provided by the

simulator developers. We refer to this provided behavior

as the customized behavior of the UMI. AMINES-HLA

imposes the restriction that such customized behaviors must

work on local information only. Any non-local interaction

is to be established via employing services provided by

the AMINES-HLA run-time infrastructure (AMINES-HLA-

RTI) to the UMI customized behavior. These services are

provided to each UMI customized behavior by a dedicated

UMI base entity, as shown in Figure 1. The only service

provided to the UMI customized behavior in the current

design of the AMINES-HLA is the SendMessage service,

which takes the locally meaningful identifier of an out-link

and a message, and sends the message to the instance

that has previously been connected to the out-link. The

UMI customized behaviors receive two callbacks. The

ReceiveMessage callback happens when a message is

received, and passes the received message and the identifier

of the in-link the message was received from, to the UMI

customized behavior. The UmiBaseCreated callback

is used to inform the UMI customized behavior when a

UMI base is created and assigned to the UMI customized

behavior.

As the reader will notice, the UMIs lack the capability

to create new UMIs or links. The reason is that the UMIs are

intended to carry customized behaviors that are executable

models out of which the model to be simulated will be

composed. The functionality about managing the RTR of the

model to be simulated, which we will refer as the Simulation

Management Functionality (SMF), is to be provided by the
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Figure 1: Logical Structure of a UMI

instances of the construction units (CUIs) in an AMINES-

HLA based simulator. Examples of the functionality that

falls in SMF are construction and destruction of the RTR,

or transforming the topology of links between the UMIs.

The logical structure of the CUIs resembles the structure

of the UMIs depicted in Figure 1. Each CUI has a unique

identifier just like the UMIs have. The CUI customized

behaviors are under the same restriction that they can freely

work on local information, but any interaction with the other

instances in the simulator should be through AMINES-HLA-

RTI. However, the services provided to the CUIs are more

extensive. The CUIs can:

• create and delete UMIs or CUIs,

• create or delete links between UMIs, or from UMIs

to CUIs,

• send and receive messages to and from UMIs and

CUIs,

• create and delete execution units, related to con-

current extensions of the AMINES-HLA.

The communication services provided to the CUIs dif-

fer from communication services provided to the UMIs.

When a message is to be sent, the only allowed addressing

for the message is the use of the locally meaningful out-link

identifier. The UMI has no way of knowing the other party

to the link. The same is true for incoming messages, where

the UMI is informed only about the locally meaningful

in-link identifier of the link the message was received from.

However, since links are created by CUIs using instance

identifiers, the CUIs use directly the UMI and CUI iden-

tifiers for addressing their messages instead of having to

constantly create and delete links. The CUIs get informed

about the UMI and CUI identifiers when they create new

UMIs or CUIs, or when they exchange messages with other

CUIs. Otherwise, the AMINES-HLA-RTI does not provide

any centralized repository of UMIs or CUIs created in the

simulator.

An example of how a simulator based on AMINES-

HLA is typically organized and how it works, is presented

in Section 6.

The concurrency support in AMINES-HLA is provided

by partitioning the set of instances into execution units (EUs).

Within an EU, the execution is sequential. Therefore an EU

can be regarded as the equivalent of a logical process (Fuji-
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moto 2000). Like UMIs and CUIs, an execution unit has a

unique identifier. The UMIs and CUIs are assigned to EUs

by providing the creation service with the identifier of the

EU in which the CUI or UMI is to be created. Message

sending service workis in a non-blocking manner, both in

and accross EUs. Blocking message sending semantics can

be implemented in a simulator by using additional UMIs.

The careful reader might notice that AMINES-HLA,

unlike other simulation systems, does not include a sim-

ulation executive that provides scheduling services. This

is intentional in AMINES-HLA’s design. We regard the

schedulers as part of the model to be simulated. They are

therefore expected to be represented in the executable model

by one or more UMIs and their links in AMINES-HLA.

By granting schedulers and event scheduling mechanisms a

normal model element status, we gain additional flexibility

when making different simulators or models interoperate.

We are currently preparing a more detailed discussion of

scheduler designs on AMINES-HLA.

3 AMINES-HLA VS. IEEE-HLA

In this section, we will shortly compare the AMINES-HLA

and the HLA IEEE Standard for Modeling and Simula-

tion (IEEE 2000), in order to outline the differences in

goals and design.

The AMINES-HLA provides a component-based ar-

chitecture to be used in building the executable models of

network systems to be simulated, as well as the simulators

which build and execute the RTR of these models. It is not

necessarily to be used along with distributed simulations.

It provides the architectural structure for organizing the

sub-model instances in a sequential or distributed network

simulation.

The IEEE-HLA, on the other hand, provides a run-

time infrastructure and architectural specification targeted

towards interoperating simulators. IEEE-HLA regards the

federates as logical processes, provides simulation exec-

utive functionality to the federates, and services at the

federate-federate boundary. It does not provide or impose

any particular architecture on the internal structure of the

individual simulators.

Therefore, the AMINES-HLA and IEEE-HLA are in-

dependent tools that can supplement each other. An RTI

implementation that is based on the AMINES-HLA for

IEEE-HLA seems possible. Our recent and ongoing ex-

perience from designing a multi-agent systems based RTI

architecture for the IEEE-HLA suggests that the approach

is not impractical, nor infeasible.

Providing an IEEE-HLA-RTI interface to the simulators

built on AMINES-HLA, is as good an idea as it would be

for any simulator that can be used as part of a federated

simulation experiment. How this interface can be designed,

is out of the focus for AMINES-HLA. This is because the
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services that need to be translated between the simulator

and the IEEE-HLA, are in fact not a part of AMINES-HLA.

Although implementing an IEEE-HLA-RTI based on

AMINES-HLA seems possible, the other way around,

namely implementing the AMINES-HLA-RTI using IEEE-

HLA-RTI, does not look so promising. The most apparent

way of using IEEE-HLA-RTI in implementing AMINES-

HLA-RTI is mapping execution units to federates. But

doing so only results in publishing on the IEEE-HLA-RTI

the data passing the execution unit boundaries. Further work

is needed in determining whether various services, espe-

cially the time management services, can be encapsulated

as UMIs in order to be made available in a simulator based

on AMINES-HLA.

4 AMINES-HLA VS. DEVS

Discrete Event System Specification (DEVS) is a formalism

for specifying models to be simulated (Zeigler 1976, Chow

and Zeigler 1994). DEVS provides a meta-model for model

developers, but does not describe an architecture for simu-

lators simulating DEVS based models. It should be noted

that DEVS is not specifically targeted for network simula-

tors. However, there is an apparent similarity between the

architectural aspects of DEVS models and the structure of

AMINES-HLA based simulation architectures. Therefore

we want to comment on DEVS shortly in this section.

The DEVS based models are composed of basic (atomic)

models that receive messages from input ports, create mes-

sages at the output ports, and change state. In this respect,

the DEVS basic models can be implemented as UMIs in

AMINES-HLA.

DEVS also defines what is called “coupled models”,

which are composite models built by composing basic or

other coupled models. The inputs and outputs of a coupled

model are mapped to the inputs and outputs of its component

models. AMINES-HLA does not support composed entities

as basic entities. However, coupled models are in essence

a tool for increasing the manageability of the modeling

process from the human modeler’s point of view. Such an

abstraction can be employed in a simulator design made

using AMINES-HLA, where the tool for model development

may provide representations of such coupled models to the

modeler, and instruct the CUI of the simulator to create the

proper RTR of the coupled model as made up of a set of

connected UMIs. This draws onto the fact that the model

creation and RTR creation are two different processes.

We believe that an implementation of a DEVS simulator

on AMINES-HLA is possible. As an example to the benefit

of doing so, we believe one may have largely avoided

the need for the abstract model defined by Wutzler and

Sarjoughian (2006) in order to interoperate different DEVS

simulators, if the implementations of the simulators were

based on AMINES-HLA.
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5 AMINES-HLA VS. THE ARCHITECTURES

OF OMNeT++ AND NS-2

In this section, we will shortly compare the AMINES-HLA

to architecture of the network simulators OMNeT++ (Varga

2001), and the NS network simulator (Breslau et al. 2000). A

comparative study of AMINES-HLA and GloMoSim (Zeng

et al. 1998, Gerla et al. 1999), and AMINES-HLA and

SSFNet, which is based on Scalable Simulation Framework

(Nicol and Liu 2001), remains as future work.

The OMNeT++ models consist of modules that commu-

nicate with message passing. The modules can be simple,

or compound, similar to atomic and compound models in

DEVS. They can be parametrized, which are initialized

when a module is instantiated in the RTR of a particular

simulation model. Modules are connected via gates, and

connections between gates. Connections can have simula-

tion related properties such as propagation delay, data rate,

and bit error rate. OMNeT++ modules have the option of

bypassing the gates and connections, and sending messages

to other modules directly. It is also possible to modify the

run-time configuration of how the modules are connected,

dynamically during execution of the simulation.

It is apparent that the OMNeT++ simulator is based

on an architecture similar to the AMINES-HLA. The main

reason why the scenarios described in Sections 6 and 7

can not be easily realized using OMNeT++, lies in the

fact that OMNeT++ modules depend on method calls be-

tween objects for data flow between modules. Data flow

is strictly and explicitly confined to the links between in-

stances in AMINES-HLA. The gate and connector abstrac-

tion provides the same locally meaningful addressing of

messages as links in AMINES-HLA provides. However,

allowing modules to directly communicate with each other

would introduce problems about hidden dependencies be-

tween modules. Furthermore, although it can be provided

in the AMINES-HLA based simulator architectures using

CUIs, we doubt the benefits of allowing changes in the con-

figuration of how the models are connected during execution

of the simulation, once the RTR is constructed.

The NS-2 network simulator is widely used in the

network research community. It uses a dual-programming

approach to employ the TCL scripting language as the model

description method. NS-2 is developed by a large commu-

nity, and the code has traces of this collective effort. The

architecture is very diffuse. We believe that the architecture

being so diffuse adds up to the steep learning curve of NS-2.

There seems to be no limitation, hard or suggested, on the

communication between objects that make up the model.

However, we believe that the NsObject class along with

class Event, forms a basis for re-factoring the ns-2 simu-

lator using AMINES-HLA. We have very recently started

a project to look into this issue.
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6 SCENARIO FOR MODEL REPLACEMENT

In this section and the next, we are going to describe two

scenarios. In the first one, we will give an example of

how models can be replaced in simulation systems built

using the AMINES-HLA. In the second scenario, which

will be presented in the next section, we will introduce

how different simulators built using the AMINES-HLA can

interoperate.

In our first scenario, we have a simulator, which we will

refer to as SIM, whose architecture conforms to AMINES-

HLA. We also have a program and an associated protocol

stack, which we have virtualized on a particular machine

architecture and operating system. We would like to use

this virtualized program and protocol stack as part of a sim-

ulation model built to be simulated in SIM. The machine

architecture or the operating system the virtualization of the

program and protocol stack was made in, does not neces-

sarily have to be the same as the machine architecture or

the operating system SIM was designed to run on. Such an

assumption is unnecessary as long as we have implementa-

tions of AMINES-HLA-RTI, which can communicate with

each other, on these architectures and operating systems.

The first observation that we will point to, is that by

interoperating a virtualized program and protocol stack along

with the simulator SIM, we are in effect using SIM in an

emulation setting. Using simulators in emulated settings is a

source of potential problems (Göktürk 2005). A discussion

of how emulation related problems can be avoided using

various design principles in cases as we have in our first

scenario, is out of the scope of this paper. However, at

the very least, either the simulator SIM must be capable

of managing a virtual time synchronized to the wall-clock

time, or the virtualization of the program and protocol stack

must be capable of virtualizing the time of the program and

protocol stack as well.

The second preliminary condition that should hold for

our solution in this first interoperation scenario, is that in

the simulation system SIM, the creation of the RTR of

the executable simulation model must precede execution of

that model. What we refer to as the creation of the RTR

of the executable simulation model, is the creation of unit

models as UMIs and the links between them, through a set

of CUIs. The topology of the UMIs must be constructed

and fixed before the execution of the composite model

they constitute starts. New UMIs or links must not be

created during execution. Although this condition appears

as overly restrictive, situations where the experimenter can

not predict an upper bound on the number of model instances

(for example entities), are seldom encountered in network

simulations.

Since the simulator SIM is assumed to have an architec-

ture derived from AMINES-HLA, it will have one CUI that

is created as the first unit instance when SIM is executed.
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We will refer to that CUI as the main CUI of simulator

SIM, or SIM-CUI. The simulator SIM may employ other

CUIs when constructing the RTR of the executable model,

but the main CUI presents a single point of contact for the

whole simulation system. Our third preliminary condition

is that the SIM-CUI must support the following as three

separately invokable services: construction of the RTR of

the executable model, configuration of the individual model

instances, and execution of the composite simulation model.

We will assume that the SIM-CUI accepts three different

messages, CONSTRUCT, INITIALIZE, and RUN, as in-

vocation requests for these services.

In this scenario, we would like to substitute a virtualized

program and protocol stack, for some part of a simulation

model. After the construction of the RTR of this simulation

model, the parts we would like to substitute will correspond

to a subset of the RTR. As the simulator SIM is using

AMINES-HLA, this subset of the RTR will constitute of

one UMI, or more than one UMIs and links between them.

The fourth and last preliminary condition that our solution

will require, will be that there must exist a mechanism to

identify this subset of RTR and obtain the identifiers of

the relevant UMIs. Such a mechanism must be accessible

through the SIM-CUI, as it is the single point of contact

for simulator SIM. Using symbolic names that relate UMIs

to the role they play in the simulation model, the SIM-CUI

can provide such a mechanism by supporting queries for

mapping these symbolic names to UMI identifiers. Such

a mapping can not be provided by AMINES-HLA-RTI

alone, since the role of a particular UMI in a simulation

model can rarely be deduced solely from how the UMIs

are connected to each other, which is the only information

available to AMINES-HLA-RTI. The SIM-CUI must also

support queries for obtaining the topology of the UMIs

that have been created by SIM for the simulation model at

hand. This topology information is necessary for correctly

accounting for the connections of the to-be-substituted set

of UMIs to the rest of the RTR of the model.

Before we describe how to connect the virtualized pro-

gram and protocol stack to the simulator SIM, we must look

into how SIM would run the simulation model if we did not

interfere with it. The sequence of events that we describe

in this paragraph, are exemplified graphically in Figure 2.

In such a normal run, the main CUI for the simulator SIM

(SIM-CUI) is created by some initialization code (step 1

in Figure 2). This initialization code is specific to the pro-

gramming environment that is used for implementing the

simulator SIM. For example, if the programming environ-

ment is C or C++, the SIM-CUI would be created in the

main() function, as depicted in Figure 2. Since this initial-

ization code is not a proper instance in the AMINES-HLA,

it can not send the CONSTRUCT, INITIALIZE, or RUN

messages that are to be sent to the SIM-CUI. Therefore the

initialization code must invoke some behavior in the SIM-
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Figure 2: Normal Run of Simulator SIM
CUI through some means other than the message passing

mechanism provided by AMINES-HLA, for example by

calling a function in the implementation of the customized

behavior of the SIM-CUI (step 2). This kickoff function may

then send the CONSTRUCT (step 3), INITIALIZE (step

6), and RUN (step 8) messages to the SIM-CUI through the

SendMessageToCui service provided by the CUI-base

associated with the SIM-CUI. In response to these messages,

the SIM-CUI receives three ReceiveMessage callbacks

(steps 4, 7, and 9), and constructs (step 5), initializes, and

runs the RTR of the simulation model.

We can now describe how the virtualized program and

protocol stack can be made to interoperate with the simulator

SIM. Up to the initialization of the simulation model and the

virtualized program and protocol stack, the steps described

here are outlined in Figure 3.

First and foremost, the virtualized program and pro-

tocol stack must have been encapsulated in, or abstracted

behind, one or more UMI custom behavior implementations.

Therefore the virtualized program and protocol stack should

appear in the AMINES-HLA as one or more UMIs. For the

sake of simplicity, we will assume in this scenario that the

virtualized program and protocol stack will be represented

by a single UMI in the AMINES-HLA, which we will re-

fer to as VPPS-UMI. When the virtualized program and

protocol stack is represented by more than one UMI, there

will presumably be a CUI for overseeing the construction

of these UMIs and links between them, and the situation

will resemble the second scenario we will describe later in

this paper.

In order to integrate the VPPS-UMI into the RTR of

the simulation model built by SIM, we need to have a

new main CUI for the combined SIM-VPPS system. To

accomplish this, we will have to be able to either change

or bypass the main initialization code, the main function
217
in Figure 2. If we choose to change the main function, we

need to recompile the new initialization code, and re-link the

SIM simulator. When re-linking is not an option, bypassing

the main function through library preloading techniques

presents an alternative method in UNIX environments.

Once the new main CUI for the combined SIM-VPPS

system is created (step 1 in Figure 3), the new initialization

code will hand over control to the new main CUI (step 2

in Figure 3). As discussed before, the initialization code

has to accomplish this hand-over by some other means than

AMINES-HLA supported message exchange mechanism,

for example by calling a kickoff function in the imple-

mentation of the custom behavior for the new main CUI.

The main CUI then follows the send-to-itself mechanism

outlined when we were describing the normal operation

of the simulator SIM. The main CUI following the same

send-to-itself mechanism, ensures that even the combined

SIM-VPPS system can later be modified using the technique

outlined in scenarios we describe in this paper.

When the main CUI receives the message CONSTRUCT

that it has sent to itself (steps 3 and 4 in Figure 3), it has

a list of tasks to do:

1. construct the simulation model using the simulator

SIM,

2. construct the virtualized program and protocol stack

through VPPS-UMI,

3. find and replace the customized behavior of certain

UMIs,

4. and construct some UMIs and their links that will

transform messages to be passed between the sim-

ulation model and VPPS-UMI.

To accomplish the first task, the main CUI will

first create a SIM-CUI (step 5 in Figure 3), using the

CreateCui service request. Then it will send the SIM-
5
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Figure 3: Running Simulator SIM with Virtualized Program and Protocol Stack, up to Initialization
CUI a CONSTRUCT message (step 6 and 7 in Figure 3).

The SIM-CUI knows the CONSTRUCT message since we

assumed that it satisfies our third preliminary condition.

In response to the CONSTRUCT message, the SIM-CUI

will construct the RTR of the simulation model (step 8 in

Figure 3).

The main CUI will then create the VPPS-UMI, using a

CreateUmi service request (steps 9 and 10 in Figure 3).

The VPPS-UMI may construct the necessary environment

related to virtualization of the program and protocol stack

at this point in execution, or it may defer such initialization

until the simulation model is initialized by the SIM-CUI.

The reason why it is possible to defer the initialization

of the virtualization environment until initialization of the

simulation model, is that it is possible for the VPPS-UMI

to get information and notification about initialization from

the UMIs through which the VPPS-UMI is connected to

the RTR of the simulation model. The decision about when

to initialize the virtualization environment would not affect

our scenario. Even if the VPPS were represented with more

than one UMIs, we would require a version of the second

preliminary condition. Therefore we would have required

that their topological configuration may not change once

constructed, and the decision about initialization time would

still not affect our scenario.

The third task that the main CUI must do, is to find and

modify the UMIs that represent the part of the simulation

model whose role will be assumed by VPPS (steps 11 and

12 in Figure 3). In order to find the ids of the relevant

UMIs, and how they are connected to the other UMIs in the

RTR of the simulation model, the main CUI must use the

queries we described as the fourth preliminary condition.
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Just to remind the reader, one of these queries was about

obtaining the topology of how the UMIs are connected,

and the other was about mapping a name that has semantic

connection to some part of the simulation model to the

UMI or UMIs that represent that part of the model in the

RTR. Once the main CUI identifies the relevant UMIs,

it issues ReplaceUmiCallbackAmbassador service

requests to replace the custom behavior on these UMIs,

with behaviors that will take role in channeling messages

back and forth between the RTR of the simulation model

built by SIM, and the VPPS. The resources used by the

implementations of the replaced customized behaviors may

be reclaimed at this point if necessary.

An apparent alternative to using the service request

ReplaceUmiCallbackAmbassador is to delete the

relevant UMIs in the RTR of the simulation model, creating

new UMIs with necessary behavior, and then linking these

new UMIs to the RTR of the simulation model in exactly

the same way as the deleted ones. The reason why this

“apparent” alternative does not present a real alternative,

stems from the fact that information about UMIs’ identi-

fiers can be used in two places in the AMINES-HLA: in

describing links between the UMIs, and in CUI custom

behaviors. Although we update the information about the

deleted UMIs when we link the newly created ones in ex-

actly the same way the deleted ones were linked, we did not

require that the SIM-CUI be the only CUI in the simulator

SIM, and we have no control over the data structures of

any CUIs except for the main CUI. AMINES-HLA man-

dates that a UMI is to be identified with nothing else but

its UMI identifier. Therefore, unless we impose additional

conditions on the SIM-CUI for updating its and any other
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CUIs data structures with such UMI replacements, the re-

placement strategy results in invalidation of UMI identifier

data kept in CUIs. To prevent that, the main CUI must use

the ReplaceUmiCallbackAmbassador service, as it

does not change the UMI-base of the UMI it is invoked on.

This, in effect, means that the UMI identifier of the UMI,

which we have updated to have new behavior, does not

change, and no data structure kept by CUIs is invalidated.

Furthermore, since the links are defined via UMI identifiers

as well, in a proper AMINES-HLA-RTI implementation,

theReplaceUmiCallbackAmbassador should not ne-

cessitate recreation of the links connected to the UMI the

behavior of which is being replaced.

The fourth and last task of the main CUI must do in

response to the CONSTRUCT message, is to establish the

connection between the VPPS-UMI and the UMIs whose

behavior were replaced (steps 13 and 14 in Figure 3).

Depending on the design of the VPPS-UMI and the RTR

of the simulation model, this may involve simply linking

VPPS-UMI and the UMIs whose behaviors were replaced, or

it may require creation of some number of UMIs working

to adapt the behavior of the VPPS-UMI to the behavior

expected from the UMIs whose behaviors were replaced.

At this point the RTR of the simulation model extended

with the VPPS is set up and ready to be run. The main

CUI sends the INITIALIZE and RUN messages to the

SIM-CUI, and the simulation runs. When the simulation is

finished, the main CUI will have to do necessary clean-up

tasks for the UMIs that the SIM-CUI is not aware of, such

as the VPPS-UMI, and the UMIs used for adapting the

VPPS-UMI to the simulation model. This concludes our

first scenario.

7 SCENARIO FOR SIMULATOR

INTEROPERATION

In our second scenario, we will discuss how two simu-

lators, each of which works on AMINES-HLA-RTI, can

be interoperated. We will not give a detailed step-by-step

description as was done in the previous section, but we will

focus on differences from the previous scenario.

Let us name the two simulators we have in this scenario

as SIM-1 and SIM-2. In a stand-alone normal run, these

simulators follow the sequence of steps described in the

previous section when we described the stand-alone normal

run of the simulator SIM. Therefore, each of these simulators

have their own CUIs similar to the SIM-CUI in Figure 2.

A new main CUI for the combined SIM-1 SIM-2 system

is also needed. This main CUI will create the SIM-1-CUI

and SIM-2-CUI, in the same was as the main CUI in our

previous scenario creates the SIM-CUI. Then the main CUI

will find and modify certain UMIs in each of the RTRs

of models built by the simulator SIM-1 and SIM-2, by

replacing their customized behavior, again as discussed in
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the previous section. Then the main CUI will create the

necessary adapter UMIs, set up their links, and send the

INITIALIZE and RUN messages to the SIM-1-CUI and

SIM-2-CUI.

Although the mechanism for interoperating two simu-

lators can be described with relative ease at the architectural

level where the AMINES-HLA lies, architectural interop-

erability is not the only issue. How the adapter UMIs and

their connection to the simulators should be implemented,

is a problem whose solution depends on various design

details of the simulators involved. These design details can

be categorized under two main groups. The first category

of design details relates to the specifics of the meta-model

of the target domain, and the mapping between the simula-

tion model and the RTR. The other category relates to the

structure of the RTR.

Modeling causal relationships, or in other words time, is

one of the most important meta-model related issues, which

we can cite as an example to the first category of design

details. The AMINES-HLA regards time management as a

normal part of the simulation model. Therefore, unlike other

simulation architectures and systems, AMINES-HLA does

not define a simulation executive which provides time man-

agement services. Instead, the time management services

have to be designed as part of the simulation meta-model

assumed by the simulator built on AMINES-HLA, and im-

plemented using model instances on AMINES-HLA-RTI.

This means that the mechanics of making the schedulers

of two different simulators interoperate, would involve the

same mechanics described before with respect to virtual pro-

gram and protocol stack example in the previous section.

The solution to the problem of designing and employing

the suitable adapter UMIs will have to be tackled case by

case. This is because although general solutions can be pro-

vided to the problem of how to make two simulators with

different time models can be formulated at the meta-model

level, there is more than one way to implement RTRs of

various time models.

As an example to the second category of design details,

we can mention the specifics of how the control flow is

established in the RTR of the simulation model, and the

relationship between this control flow and the semantics of

interactions between the models instances in the simulation

model. By control flow here, we refer to the sequence of

execution of the various code fragments representing the

model instances in the simulation model at run-time. One

solution to the control flow problem, might be running the

simulators in their own execution units, therefore running

them concurrently. Then each simulator would run exactly

in the way it would if run in a stand-alone fashion. Another

alternative would be to transfer control flow from one sim-

ulator to the other when messages are carried through the

adapter UMIs. The solution to the problem would again be

dependent on specifics of the RTR of the simulators.
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8 CONCLUSIONS

In this paper, we have shortly presented the high level

architecture we have developed for network simulators,

and described two scenarios for model replacement and

simulator interoperability. Our main contribution in this

paper is the demonstration, through the detailed description

of the scenarios, of the feasibility to realize just-before-

run modifications in and across network simulators, by

employing a suitable high level architecture in simulator

design.

We argued that for simulator interoperability and model

interreplaceability, the simulators must conform to additional

behavioral restrictions in addition to working on AMINES-

HLA. One such restriction is that the customized behavior

running on the AMINES-HLA fundamental entities, the

unit model instances and constructor unit instances, must

be confined to locally available information in their process-

ing, and communicate only through AMINES-HLA if it is

necessary. This restriction causes a considerable challenge

in re-factoring network simulators such as OMNeT++ and

NS-2, which allow for arbitrary communication between

modules, and objects respectively. Our currently ongoing

work covers this problem.

Another considerable limitation which was required by

our scenarios, is that the topology of the unit model instances

must not change once the simulation model starts to execute.

Most, if not all, network simulators also allow such topo-

logical reconfigurations of the base elements of the run-time

representation of the model, to be made anytime. Although

such reconfigurations can be incorporated in the simulator

design by using constructor unit instances actively in the

run-time representation of the simulation model, AMINES-

HLA is designed with focus toward simulators that keep the

topology of the unit model instances in the simulation model

constant after initial construction. Assessment of the impact

of having to support dynamic run-time representations due

to requirements of the re-factored simulator, remains as one

of possible future research directions.

Subjects for future work are many. The literature on

network simulators is large, and mainstream network sim-

ulators are complex programs that take time to master.

Comparing AMINES-HLA to SSF and SSFNet, and to Par-

allel/Distributed NS (PDNS) is possible. We are looking

into re-factoring OMNeT++ and NS-2 on AMINES-HLA.

We currently have a single-threaded RTI for AMINES-HLA,

and we are in the process of implementing an RTI that will

support the concurrency extensions, with a focus towards use

of multi-core processor architectures. Implementing small

scale special-purpose network simulators is also considered,

but not preferred, as there already is an inflation of such

small scale special-purpose network simulation projects.

Analyzing performace currently remains as future work, as

the performance of the RTI would be based mainly on the
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optimizations in the RTI implementation and structure of

the models simulated on this architecture.
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