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ABSTRACT

Several traffic measurements reports have convincingly
shown the presence of self-similarity in current networks,
inducing a revolution in the stochastic modeling of traffic.
The essence of this behavior can be captured by several
classes of self-similar processes. But the use of these pro-
cesses in performance analysis has opened new problems
and research issues in simulation studies, where the efficient
generation of synthetic sample paths with self-similar prop-
erties is one of the main topics. In this paper, we present an
M/G/∞ generator of self-similar traces, based on a highly
efficient simulation model using the decomposition prop-
erty of Poisson processes and the memoryless property of
geometric random variables.

1 INTRODUCTION

Traffic modeling has traditionally been based almost exclu-
sively on the assumption of independence between the ran-
dom variables that describe arrivals to a network. The funda-
mental reason has been the analytical tractability. However,
several traffic measurements studies (Leland et al. 1994, Be-
ran et al. 1995, Paxson and Floyd 1995) have convincingly
shown the presence of self-similarity in modern networks,
involving long-range correlations over arbitrarily large time
scales, a phenomenon usually referred to as Long-Range
Dependence (LRD). All these findings have contributed to
a very important revolution in the stochastic modeling of
traffic, since the impact of the correlation on the perfor-
mance metrics may be drastic (Norros 1994, Erramilli et al.
1996), and the validity of traditional processes, like Marko-
vian or autoregressive, is in doubt because modeling LRD
through these processes requires many parameters, whose
interpretation becomes difficult. Because of this, the use of
self-similar processes for network traffic modeling purposes
2141-4244-0501-7/06/$20.00 ©2006 IEEE
is essential, due to their capability to exhibit LRD over all
time scales by making use of few parameters (parsimonious
modeling).

The application of self-similar processes in network
simulation studies has opened a wide range of research
topics dealing with new problems. One of the most important
issues is the synthetic generation of sample paths of LRD
processes, since real traces collected by measurements are
of limited length and lack the diversity required to make
flexible enough simulation studies.

An interesting self-similar process is the occupancy pro-
cess of an M/G/∞ queueing model, referred to as the M/G/∞
process. Besides its use in analytical studies (Duffield 1987,
Tsoukatos and Makowski 1997), it has been used in sim-
ulation studies (Krunz and Makowski 1998, Poon and Lo
2001), where it has several important advantages, such as the
possibility of on-line generation. Furthermore, there exists
a trivial method of producing exact sample paths of the pro-
cess with complexity O(n): to simulate the M/G/∞ queue,
sampling the occupancy of the system at integer instants.
Varying the service time distribution many forms of time de-
pendence can be obtained, which makes this process a good
candidate for modeling many types of correlated traffic. In
(Súarez et al. 2002) the authors present a discrete random
variable whose distribution (S distribution) is heavy-tailed
with two parameters, a feature that enables the modeling of
both the short-term and the long-term correlation behavior
of the resulting M/S/∞ process.

The tail of the marginal distribution plays an important
role in performance evaluation (Grossglauser and Bolot
1996). To model the empirical marginal distribution of
some real sequences we need to transform the Poisson
marginal distribution of the M/G/∞ process into a more
appropriate heay-tailed form, and small values of the arrival
rate λ of the Poisson input process are inappropriate for
the transformation process (Poon and Lo 2001). On the
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other hand, the complexity of the generator is an increasing
function of λ , that is directly related to the mean of the
M/G/∞ process. In order to get a highly efficient simulation
model, able to deal with a wide range of input parameters,
in this paper we propose the use of the decomposition
property of Poisson processes, and the memoryless property
of geometric random variables.

The remainder of the paper is organized as follows.
We begin reviewing the main concepts related to LRD and
statistical self-similarity in Section 2. In Section 3 we present
the M/G/∞ process and the S distribution that we use to
model the service time. In Section 4 we describe the method
that we propose in order to improve the efficiency of the
generator of samples of the M/G/∞ process, and evaluate the
improved simulation model applied to the sample generation
of the M/S/∞ process. Finally, Section 5 summarizes the
conclusions.

2 LRD AND SELF-SIMILARITY

It is said that a process exhibits LRD when its autocorre-
lation function is not summable, i.e.,

∑∞
k=1 rk = ∞, like

in those processes whose autocorrelation function decays
hyperbolically:

∃β ∈ (0,1)
∣∣∣∣ lim

k→∞

rk

k−β
= cr ∈ (0,∞) . (1)

Let X = {Xk;k = 1,2, . . .} be a stationary stochastic
process with finite variance and let X (m) be the corresponding
aggregated process (with aggregation level m), obtained by
averaging the original sequence X over non-overlapping
blocks of size m, X (m) = {Xi[m]; i = 1,2, . . .}, where Xi[m] =
1
m ·

∑i·m
j=(i−1)·m+1 X j.

The process X is called exactly second-order self-
similar, with self-similarity parameter H (Hurst 1951), if
the aggregated process X (m) scaled by m1−H has the same
variance and autocorrelation as X for all m, that is, if
the aggregated processes possess the same nondegenerate
correlation structure as the original process.

The autocorrelation function of X and X (m) is:

rk =
1
2
·
[
(k +1)2H−2k2H +(k−1)2H

]
∀k ≥ 1, (2)

where limk→∞
gH

k
k2H−2 = H · (2H−1), that is, it decays hy-

perbolically as in (1), and so the process exhibits LRD (Cox
1984).

If (2) is satisfied asymptotically by the autocorrela-
tion function of the aggregated process, r(m)

k , then the
process is called asymptotically second-order self-similar:
limm→∞ r(m)

k = gH
k ∀k ≥ 1.

It has been shown that a covariance stationary pro-
cess whose autocorrelation function decays hyperbolically
21
is asymptotically second-order self-similar (Tsybakov and
Georganas 1997). For this reason, although LRD and self-
similarity are not equivalent concepts, they are often utilized
without distinction.

3 M/G/∞ PROCESS

An interesting self-similar process is the occupancy pro-
cess of an M/G/∞ queueing model. In such model, cus-
tomers arrive according to a Poisson process with rate λ

to a system of infinitely many servers, and their service
times constitute a sequence of continuous independent and
identically distributed random variables distributed as the
general random variable S with finite mean value E[S].
The number of customers, or busy servers, in the system
at any instant t, {X(t); t ∈ <+}, has a Poisson marginal
distribution with mean value λ E[S]. We are interested
on the discrete-time version of {X(t); t ∈ <+}, that is:
X ∆= {Xi

∆= X(i); i = 1,2, . . .}, a stochastic process referred
to as the M/G/∞ process. The most natural approach to
generate an M/G/∞ process is to simulate the queue in
discrete-time, since its simulation will be more efficient
(Suárez et al. 2002).

3.1 Discrete-Time Model

Let A = {An;n = 1,2, . . .} be a renewal stochastic pro-
cess, where An is a Poisson random variable with mean
value λ and represents the number of arrivals at instant n;
let {{Sn,i; i = 1, . . . ,An};n = 1,2, . . .} be a renewal stochas-
tic process where Sn,i is distributed as a positive-valued
discrete random variable S with finite mean value E[S], and
corresponds to the service time of the i-th arrival at instant
n.

If the initial number of users X0 is a Poisson random
variable of mean value λ ·E[S] and their service times
{Ŝ j; j = 1, . . . ,X0} are mutually independent and have the
same distribution as the residual life of S, then the stochastic
process X = {Xn;n = 1,2, . . .} is strict-sense stationary and
ergodic, and enjoys equivalent properties to those of the
original continuous-time M/G/∞ process:

1. the process X has a Poisson marginal distribution
and mean value:

µ
∆= E[X ] = λ ·E[S] , (3)

2. its autocorrelation function is given by:

rk = 1−

k−1∑
i=0

Pr[S > i]

E[S]
∀k = 1,2, . . . (4)
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3. it exhibits LRD⇐⇒Var[S] =∞, as it may happen
in heavy-tailed service distributions.

3.2 S Distribution

In Suárez et al. (2002) the authors propose to use the S
random variable, having its mean value and the cdf of its
residual life the explicit expressions given in Appendix B. Its
main characteristic is that of being a heavy-tailed distribution
with two parameters, a feature that enables the modeling of
both short-term and long-term correlation behavior of the
occupany process.

The autocorrelation function of the resulting M/S/∞
process is:

rk =

 1− α−1
mα · k ∀k ∈ (0,m]

1
α ·

(
m
k

)α−1

∀k ≥m.

Given the three desired parameters of the process X
(mean value µ , Hurst parameter H and one-lag autocorre-
lation coefficient r1) the parameters of the M/S/∞ model
can be computed as follows:

α = 3−2H (5)

m =


(αr1)

1
α−1 ∀r1 ∈

(
0, 1

α

]
α−1

α
1− r1 ∀r1 ∈

[
1
α ,1

)

λ =

{
µ · αm−mα

mα ∀m ∈ (0,1]
µ · α−1

mα ∀m≥ 1.

4 A HIGHLY EFFICIENT M/G/∞ GENERATOR

The M/G/∞ process has Poisson marginal distribution,
whose tail drops faster than that of the empirical marginal
distribution of some real sequences. The tail of the marginal
distribution plays an important role in performance evalua-
tion (Grossglauser and Bolot 1996). Therefore, we need to
transform the Poisson marginal distribution of the M/G/∞
process into a more appropriate one, but this introduces an
efficiency problem. On the one hand, small values of the
arrival rate λ of the Poisson input process are inappropriate
for the transformation process but, on the other hand, the
complexity of the generator is a linear increasing function
of λ .

In order to improve the efficiency for large mean values
of the M/G/∞ process, that given equation (3) implies also
large values of λ , we propose to use the decomposition
property of Poisson processes and the memoryless property
of geometric random variables.
2148
4.1 Description of the Proposed Method

When we use a discrete-time simulation model of the M/G/∞
system, every sample value Xn requires the generation of
one sample of the Poisson random variable An, with mean
value λ , and An samples of the random variable S. We
denote by N the mean number of random values that have
to be generated for each sample value of the occupancy
process. In this case N = λ +1. For large values of λ , the
computational time can be very high. In Table 1 we can
see the mean number of random values for different values
of the parameters of the M/S/∞ process. We denote this
method Direct Method (DM).

Table 1: DM. N = λ +1
M/S/∞ parameters H = 0.6 H = 0.9

µ = 64 58.6 58.6
r1 = 0.1 µ = 1024 922.6 922.6

µ = 16384 14746.6 14746.6
µ = 64 7.4 7.4

r1 = 0.9 µ = 1024 103.4 103.4
µ = 16384 1639.4 1639.4

In order to reduce N, in Sousa et al. (2002) we have
proposed the use of the decomposition property of Poisson
process, that motivates the Simple Composition Method
(SCM). In this work we propose an improvement of this
method using the memoryless property of geometric random
variables. We denote the improved method Mixed Compo-
sition Method (MCM). This method has to guarantee that
the number of arrivals at each instant n demanding k units
of service time is a Poisson random variable with mean
value λ ·Pr[S = k].

Before explaining and evaluating the MCM, in the
following section we show a very efficient method to deal
with the departure times in an M/G/∞ system with geometric
distribution for the service process.

4.1.1 Service Time with Geometric Distribution

Considering an M/G/∞ queueing system, whose arrival
process is Poissonian with rate λ , and with geometric dis-
tribution for the service process G, with parameter p, in a
discrete-time simulation every sample of the occupancy pro-
cess, Xn, is obtained after adding the instantaneous arrivals,
An, and subtracting the departures happening at instant n,
Ln.

Using the memoryless property of geometric random
variables we divide the users in the system at each instant
n, Xn, in two groups: those which are going to leave at
instant n+1, that we can generate as a sample of a binomial
random variable, B, with parameters p and Xn, Ln+1, and
the rest, Xn−Ln+1.
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If the service time follows a shifted geometric random
variable, G

′
= K+G, an array of size K is needed in order

to delay the departures K units of time and, at each instant
n, Ln+1 can be generated as a sample of a binomial random
variable B, with parameters p and Xn−Dn, where Dn is the
number of users in the array of delays.

Figures 1 and 2 illustrate these situations. In any case,
we reduce the mean number of random values per sample
of Xn from 1+λ to 2 (An and Ln+1).

Figure 1: Geometric Service Time

Figure 2: Shifted Geometric Service Time

4.1.2 Mixed Composition Method

In this method, we divide the arrivals at each instant n into
K+L+1 groups, according to the random variable from
which their service times are generated.

For the K first groups, the mean number of arrivals at
each group is λ ·di; i = 1,2, . . . ,K, being di = Pr[S = i] ; i =
1,2, . . . ,K, and the service times are deterministic, with
values i = 1,2, . . . ,K, as proposed (Sousa et al. 2002).

For the L following groups, we fit the distribution
of the S random variable with the composition of the
distributions of L geometric random variables, with pa-
rameters pi; i = 1,2, . . . ,L and shifted to k = K+1, G

′
i =

K+ Gi; i = 1,2, . . . ,L. We denote by g
′
i ; i = 1,2, . . . ,L the

composition factors. The adjustment has to be such that:
Pr[S = k] ≥

∑L
i=1 g

′
i · Pr

[
G
′
i = k

]
∀k > K. Since each

shifted geometric random variable has two free parame-
ters, pi and the composition factor g

′
i , we choose them

looking for the equality in 2L points. The mean number
of arrivals at each of these L groups is λ ·g′i ; i = 1,2, . . . ,L.
We are interested in maximizing

∑L
i=1 g

′
i , because obtain-

ing their departure times from binomial random variables,
Bi; i = 1,2, . . . ,L, is very efficient, as explained in Sec-
tion 4.1.1.

Finally, we denote by R the random variable obtained
from the difference between Pr[S = k] and

∑L
i=1 g

′
i ·Pr[G

′
i =
2149
k] ∀k > K , where r is the probability that a service time
is generated from this random variable. For the last group,
the mean number of arrivals is λ · r.

As we can see in Figure 3, using the decomposition
property of Poisson processes we divide the original input
process into K+L+1 Poisson processes.

Figure 3: MCM: The Arrivals Input Process

With this method, each sample value Xn requires the
generation of:

• one sample for each Poisson random variable
An,i; i = 1,2, . . . ,K, with mean value λ · di for
i = 1,2, . . . ,K,

• one sample for each Poisson random variable
An,i; i = K+1,K+2, . . . ,K+L, with mean value
λ ·g′i for i = 1,2, . . . ,L,

• one sample for each binomial random variable Bi
for i = 1,2, . . . ,L,

• one sample of the Poisson random variable
An,K+L+1, with mean value λ · r,

• An,K+L+1 samples of the random variable R.

The mean number of random values that have to be
generated for each sample value of the occupancy process
is N = K+2L+1+λ · r. Since our aim is to minimize this
quantity, and now the best value of L is determined by the
best value of K, we begin with K as in the SCM and we
decrease it up to obtain the minimum value of N.

Memory Requirements: If we denote by Xn,G′i
; i =

1,2, . . . ,L the number of users in the system that come from
the second group of arrivals, at each instant n we need
to store, for each shifted geometric random variable, the
number of users that are going to remain in the system
at instant n + 1, Xn,G′i

− Ln+1,G′i
, where Ln+1,G′i

can be
generated as a sample of the binomial random variable Bi,
with parameters pi and Xn,G′i

.
Moreover, since the range of the shifted geometric

random variables begins at k = K +1, we need for each
one an array of size K+1, in order to delay the departures
K+1 units of time and, at each instant n, the number of
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users that are going to leave at instant n+1 are generated
from Xn,G′i

- Dn,G′i
, being Dn,G′i

the number of users in the

array of delays of the ith shifted geometric random variable.

4.2 Evaluation on the M/S/∞ Process

We evaluate this improved simulation model with the M/S/∞
process. In the remaining of this section we check the effect
of the input parameters (µ , H and r1) on the mean number
of random values per sample value Xn, N. We vary the mean
value of the M/S/∞ process in powers of two, µ = 2m, and
fix one of the two remaining input parameters to a moderate
value (r1 = 0.5, H = 0.7), while using a set of values for
the other one (H ∈ {0.6,0.7,0.8,0.9}, r1 ∈ {0.1,0.5,0.9}):
the higher (lower) values for r1 and H are meant to be
representative of strong (weak) correlation and of strong
(weak) LRD behavior.

First, we show the effect of the mean value of the
M/S/∞ process and the Hurst parameter on N in Figure 4
(left). With respect to µ , we observe that N is several orders
of magnitude lower than µ in the studied interval, so the
method is very efficient even for large values of µ . On the
other hand, we can see that asymptotically N seems to be
an increasing function of H for every µ . It is the result
of the higher dispersion of the service time distribution for
lower α (higher H) values when E[S] is constant (same r1
implies same E[S], from (4)).

Figure 4: MCM: N for r1 = 0.5 (Left) and H = 0.7 (Right)

Figure 4 (right) shows the same behavior of N with
respect to µ . Nevertheless, the effect of the parameter r1
on N is clearly stronger than that of H, being an increasing
function of r1 for large values of µ . This behavior is
consequence of a constant dispersion of S (same H implies
same α , from (5)) and E[S] increases as r1 does, from (4)
and λ decreases as E[S] increases, from (3).

The number of geometric random variables is an in-
creasing function of µ , but it is important to stand out that
its highest value is L = 3, for all the combinations of H and
r1 in the studied range of µ .

In Figure 5 we show the number of deterministic and
geometric random variables, K and L, obtained with the
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MCM, when H = 0.7 and r1 = 0.5, as well as the mean
number of random variables, N.

Figure 5: N,K,L for H = 0.7 and r1 = 0.5

As we can see, when µ = 1024, H = 0.7 and r1 = 0.5, the
number of deterministic random variables is 4, the number
of geometric random variables is 2 and N = 10.82. For each
geometric random variable the distribution of the S random
variable is fitted in two points. In this case, 5, 6, 15 and
16. In Figure 6 we observe the distribution of the S random
variable, p[k] = pS[k] = Pr[S = k], and the distribution of
the G

′
1 and G

′
2 random variables scaled by the composition

factors g
′
1 and g

′
2, p1[k] = g

′
1 · pG′1

[k], p2[k] = g
′
2 · pG′2

[k]

and p1 2[k] = p1[k]+ p2[k]. And in Table 2 we show the
decomposition of the arrivals input process for this example.

Figure 6: Distributions for H = 0.7 and r1 = 0.5

Table 2: The Arrivals Input Process for µ = 1024,
H = 0.7 and r1 = 0.5

λ = 512

λ ·d1 λ ·d2 λ ·d3 λ ·d4 λ ·g
′

1 λ ·g
′

2 λ · r
337.79 101.26 30.96 14.06 11.99 14.11 1.82

Finally, in Table 3 we compare the mean number of
random values, N, obtained with each method for different
values of the input parameters, H and r1, and mean value
µ = 16384 of the M/S/∞ process. If the reduction with
the SCM was already substantial, with the MCM it is even
greater.
0
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Table 3: N for µ = 16384
H = 0.6 H = 0.9 H = 0.6 H = 0.9

Method r1 = 0.1 r1 = 0.1 r1 = 0.9 r1 = 0.9

DM 14746.6 14746.6 1639.4 1639.4
SCM 25.4 28.2 67.9 76.6
MCM 12.5 13.8 27.9 45.9

4.3 Time Measurements

In this section, we measure the real performance of our
implementation of the proposed simulation model (briefly
commented in Appendix A). We measured the running
times in seconds (using the Unix command time) for the
generation of sample paths of n = 2 · 106 values of the
M/S/∞ process in a 4-CPU Xeon 2 machine.

First, in Figure 7, we show the improvement regarding
to the DM (Suárez et al. 2002):

R =
running time of DM

running time of MCM
.

Figure 7: MCM: CPU Time Improvement for H = 0.7 and
r1 = 0.5

We observe that the efficiency of the generator based
on the MCM is practically equal to that of the original
method for small values of µ , but significantly better as µ

increases. This is mainly due to the reduction in the number
of samples that we have to generate for each sample value of
the occupancy process: N = λ +1 with the M/S/∞ process
and N = K+2L+1+λ · r with the compound method.

In Table 4 we can see the improvement for different
values of the input parameters of the M/S/∞ process.

Finally, in Figure 8 we observe the effect of µ and H
(left) or r1 (right) on the running time of the simulation
model improved with the MCM.

Compared to Figure 4, we can see how the running
time behaves as a function of the mean number of ran-
dom values per sample value of the M/S/∞ process, N, as
expected, although it also depends of the different types
(and complexity) and mean values of the random variables
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Table 4: MCM: CPU Time Improvement
M/S/∞ parameters H = 0.6 H = 0.9

µ = 4096 32.2 35.6
r1 = 0.1 µ = 8192 53 57.6

µ = 16384 97.6 97.2
µ = 4096 3.3 3.3

r1 = 0.9 µ = 8192 6.2 4.6
µ = 16384 9.7 6.1

Figure 8: MCM: CPU Time for r1 = 0.5 (Left) and H = 0.7
(Right)

(binomials, Poissonians and the R random variable) from
which the random values are generated. We can see that
the time is an increasing function of µ (and so of λ ) but
the complexity is sub O(µ ·n), although it also depends on
the other two parameters, H and r1.

5 CONCLUSIONS

In this paper we have presented a highly efficient generator
of self-similar traces based on the M/G/∞ model. The
model is flexible enough to deal with a wide range of
input parameters. We use the decomposition property of
Poisson process and the memoryless property of geometric
random variables, in order to minimize the mean number
of random values to be generated for each sample value of
the occupancy process. We have checked both analytically
and experimentally the efficiency of the simulator, being
the results very satisfactory.

APPENDIX A: IMPLEMENTATION NOTES

We have completed the C++ class Cox, that follows the
interface of the classRandom of the library GNU libg++ as a
guideline. We have attempted to provide an implementation
as efficient as possible, intending to have approximately the
same level of efficiency as in a generator of any random
variable.
1
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An object of class Cox has the following member
objects:

servers An object of class ListTimes which stores
the number of users in the system, their departure
times (in slots) and the isochronous clock.

deter batches An array of K objects of class
IntPoisson which generate samples of Pois-
son random variables with mean values λ ·di for
i = 1,2, . . . ,K.

geom batches An array of L objects of class
IntPoisson which generate samples of Pois-
son random variables with mean values λ ·g′i for
i = 1,2, . . . ,L.

batch An object of class IntPoisson which gen-
erates samples of a Poisson random variable with
mean value λ · r.

geom demands An array of L objects of class
Binomial which generate samples of the bino-
mial random variables Bi for i = 1,2, . . . ,L.

demand An object of class IntPareto U R which
generates samples of the random variable R.

In order to store for each shifted geometric random
variable G

′
i the parameter pi and the composition factor

g
′
i , the class Cox includes two arrays, geom params and
geom comp factors, of size L.

Moreover, since the range of the shifted geometric
random variables begins at k = K+1 another array, delays,
of size (K+1) ·L is needed in order to delay the departures
K+1 units of time.

IntRandom

Both classes IntPareto U R and IntPoisson are built
from the class IntRandom, which implements a generic
tabular method to invert the distribution function of a non-
negative discrete random variable (Suárez et al. 2002).

Binomial

We use the BTRD algorithm combined to the BIN algo-
rithm (Hormann 1993) to generate binomial random values,
because the resulting algorithm is very fast, has small mem-
ory requirements and is especially suitable for the case that
the parameters are random values themselves, which are
computed in execution time.

APPENDIX B: S DISTRIBUTION

Considering two separate intervals for the parameter m, the
distribution of the S discrete-time random variable Pr[S = k]
is for m≤ 1:
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• 1+
mα

αm−mα
·
h
(k +1)1−α − k1−α

i
k = 1

• mα

αm−mα
·
h
(k +1)1−α −2 · k1−α +(k−1)1−α

i
∀k > 1,

and for m > 1 :

• 1+ k−m+
mα

α −1
·
h
(k +1)1−α −m1−α

i
k = bmc

• 1+m− k +
mα

α −1
·
h
(k +1)1−α −2k1−α +m1−α

i
k = dme

• mα

α −1
·
h
(k +1)1−α −2k1−α +(k−1)1−α

i
∀k > dme.

In Figure 9 we show the form of the distribution for
several values of the parameters H and r1.

Figure 9: Distributions of S for r1 = 0.5 (Left) and H = 0.7
(Right)
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