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ABSTRACT 

Managing telecommunication networks involves collecting 
and analyzing large amounts of statistical data. The stan-
dard approach to estimating quantiles involves capturing 
all the relevant data (what may require significant stor-
age/processing capacities), and performing an off-line 
analysis (what may delay management actions). It is often 
essential to estimate quantiles as the data are collected, and 
to take management actions promptly. Towards this goal, 
we present a minimalist approach to sequentially estimat-
ing constant/changing over time quantiles. We follow prior 
work and devise a fixed-point algorithm, which does not 
estimate the unknown probability density function at the 
quantile. Instead, our algorithm uses the log-odds trans-
formation of the observed fractions, and the exponentially 
smoothed estimates of the standard deviation to update the 
quantile estimate. For large data streams, this algorithm 
can significantly reduce the amount of collected data and 
the complexity of data analysis. 

1 INTRODUCTION 

Managing telecommunication networks involves collecting 
and analyzing large amounts of statistical data, e.g. call du-
rations, transmitted/received bytes per minute, loads on a 
set of interfaces, etc. The standard approach to estimating 
quantiles involves capturing all the relevant data (that may 
require significant storage and processing capacity), and 
performing an off-line analysis (that may be too slow if the 
immediate action is required). It is often essential to esti-
mate and track specific (and often changing over time) 
quantiles along with the associated mean and variance as 
the data are collected so that management action can be 
taken promptly. Frequently, the analyst tries to reasonably 
track, but not necessarily exactly estimate, the targeted 
quantile using the least amount of resources as possible. 
Towards this goal, we present a minimalist approach to se-
quentially estimating and tracking a constant or a changing 
over time quantile, typically defined as percentage target, 
e.g., 95th or 99th percentile. 
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Various algorithms for sequential quantile estimation 
were proposed in earlier papers. Most of them are intended 
for estimating static quantiles (i.e., quantiles that do not 
change over time) (Greenwald and Khanna 2001; Manku 
and Rajagopalan 1998; Lee, McNickle and Pawlikowski 
1998). Several suggested algorithms estimate static quan-
tiles together with static histogram from the collected data, 
e.g., (Chen 2002; Chen and Kelton 2001). The algorithm 
for tracking dynamic quantiles (i.e., quantiles that change 
over time) is described in (Chen, Lambert and Pinheiro 
2000). 

The algorithm we propose estimates static and tracks 
dynamic quantiles. The gain factor is defined differently 
for static and dynamic quantiles (refer to sections 3 and 4 
for more details). In our approach, we follow prior work 
(Tierney 1983; Chen, Lambert and Pinheiro 2000), and de-
vise a fixed-point algorithm, Log Odds Ratio Algorithm 
(LORA), that uses the observed fractions of measurements 
exceeding the most recent quantile estimate to adjust the 
estimate value. Unlike in prior work, we do not try to esti-
mate the unknown probability density function at the quan-
tile. Instead of Newton-Raphson approach, the proposed 
algorithm uses the log-odds transformation of the observed 
fractions, and the exponentially smoothed estimates of the 
standard deviation to update the quantile estimate. These 
data are generally available when monitoring stochastic 
processes. The algorithm stores only the most recent esti-
mates of standard deviation and quantile. For large data 
streams, this can significantly reduce the amount of data 
collected and the complexity of data analysis and storage. 

First, we examine the trivial case with no sampling 
and with known cumulative distribution. For this case, we 
define the sufficient conditions for LORA convergence to 
the true quantile value, when the initial quantile estimate is 
chosen sufficiently close to the true quantile value. We 
show that the convergence conditions are met for several 
common distributions. Second, we examine the case of a 
fixed but unknown distribution. Here we also address the 
standard approaches of estimating quantiles using the Tier-
ney’s Stochastic Approximation (TSA) and Moving Aver-
age (MA) algorithms. We compare how LORA, TSA and 
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MA algorithms estimate 95th percentile for the steady state 
(stationary) case with observation samples drawn from a 
fixed distribution. Third, we enhance LORA for tracking 
quantiles in non-stationary cases, when the underlying dis-
tribution is subject to location and scale changes. We com-
pare the enhanced LORA and Exponentially Weighted 
Stochastic Algorithm, EWSA (Chen, Lambert and Pinheiro 
2000) by tracking 95th percentiles for non-stationary Nor-
mal and Shifted Exponential distributions. Finally, we 
summarize the results and discuss future work. 

2 CASE OF THE KNOWN DISTRIBUTION 

The trivial case assumes that the cumulative distribution F 
and the probability density function f are known. Let s de-
note the standard deviation of F, and Tp denote the true pth 
quantile value, i.e. F(Tp) = p, and q = 1- p. 

The proposed algorithm, Log Odds Ratio Algorithm 
(LORA), is defined as 

 
(1 ( ))( ) ln

( )
old

new old old
old

F T pT h T T s q
qF T

⎛ ⎞
⎜ ⎟
⎝ ⎠

−= = + × × ×
)

) ) )
) . 

 
We note several important properties of LORA: 
 
1. h(Tp) = Tp, that is, Tp is a fixed point of h, 
2. For T > Tp, h(T) < T, and for T < Tp, h(T) > T, 
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When condition 4 is satisfied, an interval I exists such that 
Tp belongs to I, and for any initial Tinit, chosen within I, the 
algorithm convergences to the true quantile value Tp.  

For several commonly used distributions, condition 4 
is satisfied for the typically sought Tp, i.e., for larger p. For 
example: 

 
1. In an Exponential distribution with mean μ, con-

dition 4 is equivalent to requiring 0 2q p< < that 
is satisfied for larger p regardless of the value of 
μ. 

2. In a Normal distribution with mean μ and stan-
dard deviation σ, condition 4 is equivalent to 
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for larger p regardless of the values of μ and σ. 
3. In a Weibull distribution with shape parameter c 

and scale parameter 1, condition 4 is equivalent 
to: 
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When c<0.3, this expression is larger than 2 and conver-
gence is not expected. When c>0.35, the expression is 
smaller than one and the proposed algorithm converges.  

Clearly, any algorithm can converge slowly. It takes 
66 iterations to achieve 1% relative error when estimating 
95th percentile for the Exp(1) distribution estimating the 
95th percentile if the starting value Tinit is 2. Convergence 
can be hastened by adding a gain factor, i.e., 
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If gain factor of 10 is used, the algorithm gets to 1% rela-
tive error after only six iterations. As we show later, the 
choice of the gain factor/function is of prime importance 
when tracking a stochastic process. 

3 STEADY STATE CASE: SAMPLES FROM A 
FIXED UNKNOWN DISTRIBUTION 

Let xi1, xi2… xiM denote the ith observation sample of size M 
from an unknown distribution F. Let 

iTn denote the num-
ber of observations in the ith sample that are larger than a 
given threshold, Ti. Let is)  denote the most recent estimate 
of the standard deviation, obtained, for example, via a sim-
ple Exponential Weighting (EW), i.e. 

1 (1 )i i is s sω ω−= × + − ×) ) , 
 

where 1−is)  is a previous EW estimate of the standard de-

viation and is  is a standard deviation of the ith observation 
sample. We assume that ω = 0.95 for the reminder of the 
paper. 

LORA: We construct the sample estimates for known 
p and q (where p= F(Tp) and q=1-p) as 

( 0.5) /( 1)
ii Tp M n M= − + +) and 1i iq p= −) ) . The update 

procedure for the quantile estimate is 
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For larger (smaller) gains, the algorithm will converge 
quicker (slower), but the variation in the steady state will 
be larger (smaller). In a fixed steady state case, it is desir-
able to reduce the contribution of later observations. This 
can be easily accomplished by defining the gain as a de-
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creasing positive function of the sample index i, for exam-
ple, as i/1 . Then, the quantile update procedure becomes 
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The gain factor is defined differently for non-stationary 
case, which is discussed later. Next, we describe two 
common algorithms of estimating quantiles and, then, 
compare these algorithms with LORA. 

 
MA: One common technique uses the Moving Aver-

age (MA) to estimate the pth quantile (unadjusted to ac-
count for bias). The update procedure is given by 
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where it  is a pth quantile of the ith observation sample. In 
this method, the top [Mq]+1, where q=1-p, elements in the 
ith observation sample must be determined to calculate it . 
Depending on the sample size and value of q, this could 
require significant storage and processing resources.  

 
TSA: Another common technique uses the modified 

Newton-Raphson algorithm with decreasing weights as-
signed to later observations. This algorithm is called Tier-
ney’s Stochastic Approximation algorithm (TSA) (Tierney 
1983). The updating procedure is 
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prior estimate of the density function at quantile, i.e., of 
f(Tp ). The estimate if

)
is updated via 
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where

iTm is the number of the observations in the ith sam-

ple that are located within the distance of 1/ i  or less 
from Ti-1. 

We used three described algorithms, MA, TSA and 
LORA, to estimate the 95th percentile of the normal distri-
bution with mean of 50 and standard deviation of 12.5. 
Typical results are shown below in Figures 1 and 2. The 
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initial estimate of the quantile, 0T
)

, is set to the sum of the 
true quantile value, pT , and normally distributed variable 
with zero mean and unit variance. The initial value of den-
sity function, 0f

)
 , is set to it’s true value of )( pTf . The 

sample size M is set to 120 (first figure), and to 40 (second 
figure). Black straight lines show location of the true quan-
tile value pT . Grey straight lines show locations of 1±pT  . 
LORA estimates are shown in red, TSA estimates are 
shown in blue, and MA estimates are shown in purple. 

 

 
Figure 1: N(50,12.5), M=120, To~N(Tp,1), p=0.95 

 

 
Figure 2: N(50,12.5), M=40, To~N(Tp,1), p=0.95 

 
We observed the following for the chosen sample sizes 
(M=40 and M=120): 

 
o LORA and TSA have significantly smaller esti-

mating bias than MA. 
o LORA and MA settle down faster than TSA. 
o Visibly, LORA performs no worse (or maybe 

even better) than either MA or TSA 

4 NON-STATIONARY CASE: SAMPLES FROM 
AN UNKNOWN CHANGING DISTRIBUTION 

To track changes in the underlying distributions, the 
weights for new observations should not shrink to zero. 
While there are many possibilities for such weight adjust-
ment, we chose to use exponential smoothing. 
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The enhanced update procedure for LORA is 
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iTn  number of observations ijx  in the ith sam-

ple ),....,,( 21 iMiii xxxx =
r

such that 1−> iij Tx ; β and ω are 
the smoothing constants. We observed that gain=10, β = 
0.95 and ω=0.95 yields good results. The initial estimate of 
the quantile, 0T

)
, is set to the sum of the true quantile 

value, pT , and normally distributed variable with zero 
mean and unit variance, i.e., 
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EWSA: We compared LORA to the modified Newton-
Raphson algorithm (NR) that uses fixed weight for 
smoothing and a fixed interval length for estimating the 
probability density function at the quantile. This algorithm, 
Exponentially Weighted Stochastic Approximation 
(EWSA), was developed by Chen, Lambert and Pinheiro 
(2000); we used an estimate of standard deviation instead 
of an inter-quantile range recommended by the authors. 
Our numerical simulations indicate that using standard de-
viation leads to as good or better quantile tracking in cases 
where data contamination is not a concern. The update 
procedure is 
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where 

iTn  is the number of observations ijx  in the ith sam-

ple ),....,,( 21 iMiii xxxx =
r

, such that 1−> iij Tx . 
iTm  is the 
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number of observations ijx  in the ith sample 
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where α, ω are the smoothing constants.  

5 NUMERICAL SIMULATION STUDY 

We compared how LORA and EWSA track quantiles for 
the steady-state and non-stationary cases. The set of 
changes that we often encounter in field are jumps in the 
location, scale or both. While the results depend on the 
choices for smoothing constants α, β and ω, we perma-
nently fixed these to α = 0.95, β = 0.95, and ω=0.95 (we 
observed that α=0.95, β = 0.95 and ω=0.95 usually yields 
good results). We implemented update procedures and 
chose initial values for LORA and EWSA as described in 
the previous sections. In all simulations, 95th percentile was 
estimated. 

5.1 Steady-State Simulation Results 

The measured distribution did not change during the 
steady-state simulation runs. We worked with four expo-
nential distributions with different combinations of two 
means of 30 and 40, and two shifts of 20 and 30. We also 
worked with four normal distributions with different com-
binations of two means of 30 and 40, and two standard de-
viations of 7.5 and 15. In each simulation we chose the 
sample size of 40, 80 or 120, and performed 100 simula-
tion runs (a simulation case) with 200 observation samples 
in each run. After each simulation run we calculated 
RMSE, and after all 100 runs, in each simulation case, we 
calculated an average of 100 RMSEs that are presented be-
low. As the results indicate the LORA’s performance is 
quite similar to the performance of the somewhat more 
complex EWSA, and can serve as the EWSA alternative in 
the cases when algorithm simplicity is essential. The simu-
3
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lation results are presented below in Tables 1 and 2, and in 
Figures 3 and 4. 

 
Table 1: Exp. Distribution-SteadyState 
Experiment: Exponential Steady-State 

Case Mean Shift Sample 
Size 

1 30 20 40 
2 30 20 80 
3 30 20 120 
4 40 20 40 
5 40 20 80 
6 40 20 120 
7 30 30 40 
8 30 30 80 
9 30 30 120 

10 40 30 40 
11 40 30 80 
12 40 30 120 

 
Table 2: Normal Distribution - Steady State 

Experiment: Normal Steady-State 
Case Mean Sigma Sample 

Size 
1 30 7.5 40 
2 30 7.5 80 
3 30 7.5 120 
4 30 15 40 
5 30 15 80 
6 30 15 120 
7 40 7.5 40 
8 40 7.5 80 
9 40 7.5 120 

10 40 15 40 
11 40 15 80 
12 40 15 120 
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Figure 3: Exponential Distribution - Steady State 
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Figure 4: Normal Distribution - Steady State 

5.2 Non-Stationary Simulation Results 

During non-stationary simulation runs, the distribution 
changed between the 100 and 101 observation samples. 
We analyzed the same sets of exponential and normal dis-
tributions and used the same sample sizes as in steady-state 
cases. The distribution changes that we modeled included 
increases in means and/or shifts for exponential distribu-
tions, and increases of means and/or standard deviations 
for normal distributions. The simulation results are pre-
sented below in Tables 3 and 4, and in Figures 5 and 6. 
Once again, the results indicate that LORA is a competitive 
alternative to EWSA. 
 

Table 3: Non-Stationary Exponential Distribution 
Experiment: Exponential Cases 

Case Change in 
Mean 

Change in 
Shift 

Sample 
Size 

1 10 0 40 
2 10 0 80 
3 10 0 120 
4 0 10 40 
5 0 10 80 
6 0 10 120 
7 10 10 40 
8 10 10 80 
9 10 10 120 

 
Table 4: Non-Stationary Normal Distribution 

Experiment: Normal Cases 
Case Change in 

Mean 
Change in 

Sigma 
Sample 

Size 
1 10 0 40 
2 10 0 80 
3 10 0 120 
4 0 7.5 40 
5 0 7.5 80 
6 0 7.5 120 
7 10 7.5 40 
8 10 7.5 80 
9 10 7.5 120 
4
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Figure 5: Non-Stationary Exponential Distribution 
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Figure 6: Non-Stationary Normal Distribution 

6 CONCLUSION AND FUTURE WORK 

We introduced a simple fixed-point algorithm, LORA, for 
estimating quantiles of unknown fixed (steady state) and 
changing (non-stationary) distributions. Based on com-
pleted numerical simulation study, we concluded that, in 
spite of very modest memory requirements and a simple 
sequential update procedure, LORA is quite competitive to 
the algorithms commonly used for estimating a quantile of 
a stochastic process: TSA and MA for processes with fixed 
distributions, and EWSA for processes with changing dis-
tributions.  

We plan to enhance LORA to be able to use a set of 
inter-dependent observations for estimating a process 
quantile. While evaluating 95th percentile of queue length 
for simulated M/M/1 queue, we observed that LORA per-
forms well at the lower server utilization (when the inter-
dependency of queue length observations is weak), but for 
server utilization exceeding 80% (and highly inter-
dependent queue length observations) the convergence to 
the true quantile value is rather problematic. Another 
planned enhancement is adjusting weights assigned to new 
observations based on perceived distance between esti-
mated and true quantile values. 

We also plan to quantify LORA’s performance while 
tracking quantiles of non-stationary distributions that 
change frequently (e.g., every 20-50 samples) and signifi-
cantly (e.g., from exponential distribution to normal one). 
Another area of interest is tuning algorithm parameters 
214
(e.g., sample size, gain factor, smoothing constants) for 
improved performance. 
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