
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A SOCIETY OF SIMULATION APPROACH TO DYNAMIC INTEGRATION OF SIMULATIONS*

Alok Chaturvedi

Purdue Homeland Security Institute
Krannert Graduate School of Management

Purdue University
West Lafayette, IN 47907, U.S.A.

ABSTRACT

A Society of Simulations (SoS) approach defines a seman-
tics-based standard for integrating heterogeneous simula-
tions. Heterogeneity, independent development, and cross-
domain modeling are characteristics of behavior-based si-
mulations that are built to address complex, non-functional
situations. SoS is a dynamic data driven approach wherein
emergent behaviors result from specialized simulations
grouped together as individual members in a society. Each
member simulation independently operates on its own un-
derstanding of reality. Members cooperate with each other
to achieve the goals of the society while satisfying their
own local goals. When members interact, portions of their
models of reality coincide. Such interaction and coordina-
tion among diverse autonomous simulations is enabled
through the implementation of a shared reality. Compre-
hensive, life-like situations can be modeled by applying the
concept of a SoS.

1 THE NEED FOR INTEGRATION

Simulations are increasingly being used for analysis, train-
ing, and courses of action development for complex, real
world problems, such as emergency preparedness and re-
sponse, global corporate strategy development and assess-
ment, and military campaign planning for winning the
hearts and minds of the population. These problems require
multi-disciplinary thinking, multi-scale temporal and spa-
tial representations of forward and inverse problems, mul-
tiple analytical points of view, massive numbers of entities
representing multiple sides with diverse interests, and
emergent behaviors and interactions both among entities
and between entities and the environment. Building such
simulations from scratch is expensive (hundreds of mil-
lions to billions of dollars) and rarely gets completed on
time and within budget (US Department of Defense 1997).

The alternative is integration of existing simulations,
components, and models. The models originate in special-
ized fields and characterize phenomena at diverse levels of
2121-4244-0501-7/06/$20.00 ©2006 IEEE
detail. Furthermore, the components are typically devel-
oped independently and continuously, using different se-
mantics and data structures. Applying traditional require-
ments-driven approaches (Giogini et al. 2004) to building
such comprehensive simulations is inadequate in that the
dependencies between the various components are only
well-defined during the run-time of the simulation.

A Society of Simulations (SoS) is a dynamic data dri-
ven approach to integrating simulations across heterogene-
ous semantics, data formats, and granularities (temporal,
spatial, and otherwise). It allows reuse of independently
developed components and is scalable. SoS approach spe-
cifically addresses situations where the simulations exhibit
dynamic characteristics and have heterogeneous require-
ments. This paper introduces a semantics-based standard
for integration with a SoS. The following section defines
the concept of a SoS. Section 3 outlines the process of de-
veloping a SoS, and Section 4 provides several recent ex-
amples of how a SoS has been applied to address real
world problems.

2 THE SOCIETY OF SIMULATIONS CONCEPT

A SoS is analogous to a society of people as both are
loosely coupled constructs in which independent individu-
als contribute toward a single societal identity. A society
can be defined as an organized group of individuals who
associate for common purposes. Likewise, autonomous si-
mulations in a SoS work together to achieve the common
goal of modeling the system. Each simulation in a SoS is
an autonomously managed member which cooperates with
other members to reach its personal goals. In the process of
meeting its personal goals, a member contributes to socie-
tal goals. Satisfaction of societal goals emerges as all mem-
bers progress towards their personal goals.

A SoS can be heterogeneous in terms of the data the
members produce and consume as well as in terms of how
the members advance their simulation times. Concerning
heterogeneous data representations, members can have un-
equal temporal and spatial granularities, be from various
5

Chaturvedi

fields of science, require different data, use different syn-
tax, and apply different meanings to the same phenome-
non. Despite their nonconformity, members contribute to
the goals of the society and benefit from the society's re-
sources.

A SoS approach consists of an information sharing
mechanism, a framework of linking distributed component
simulations to shared information, and a process of analyz-
ing and assessing a simulation with respect to the overall
goals of the society. These three components are referred
to as shared reality, members, and liaisons.

Figure 1 illustrates the components of a SoS. Each
member is connected to shared reality through a member-
specific liaison. Interactions among members result from
aspects of reality that are represented in multiple simula-
tions. These shared aspects make up the shared reality
component and are accessible by all members. All interac-
tions between members occur as members act on entities
within shared reality.

Figure 1: Illustration Showing the Components of a SoS

2.1 Shared Reality

Producer members and consumer members are linked to
shared information instead of to each other. Decoupling
producers and consumers enables heterogeneous time
management styles among members. Consequently, the
time management mechanisms employed by producers do
not dictate how consumers must manage their times.

Shared reality is distributed, enabling localized ex-
change of data between dependent members. Each member
senses changes to the portions of the shared reality that are

Member

Liaison

Shared
Reality

Member

Liaison

Member

Liaison

Member

Liaison
2126
relevant to its execution. The regions of the shared reality
that a member depends on can change during run time.

What data a member requires and when to incorporate
new data during its execution are characteristics of a mem-
ber and the scenario that is unfolding in the simulation.
Therefore, the intelligence for transforming information
within shared reality into a form a consumer can digest and
for synchronizing a consumer with produced data is pushed
from the data exchange mechanism of shared reality onto
the member-specific liaisons that connect members to
shared reality.

Consequently, shared reality is light weight in the
sense that the overhead a member experiences when ac-
cessing shared reality is not due to the time management of
the other members in the society since shared reality does
not manage the members. Nor is the overhead for access-
ing shared reality proportional to the number of members
in the society since shared reality is not keeping track of
the members that are accessing its data.

2.2 Members

Each member in a SoS accesses shared reality through a
member-specific liaison. A liaison consists of the intelli-
gence needed to interact with and control a member and to
interact with the rest of a society. A liaison is configured to
use member-specific mechanisms—initializations, inputs,
outputs, and control mechanisms. In this way, the same
member can be used in different societies and be continu-
ously developed without being forced to address society-
specific characteristics, enabling reuse and distributed de-
velopment.

2.3 Liaisons

All conversions and transformations are performed by the
liaisons of the consuming members. Producing members
create data within shared reality without accommodating
the potentially diverse representations used by other mem-
bers. By doing so, the overhead of accommodating the var-
ious member formats is performed by each consuming
member asynchronously. A liaison performs the following
tasks:

• Synchronizes the member with data the member

depends on.
• Starts, stops, restarts, and checkpoints a member.
• Gathers data from shared reality, transforms its

syntax, converts its granularity, and translates its
semantics.

• Places the member’s outputs into shared reality
coupled with semantic information describing the
syntax, granularity, and semantics of the data.

Chaturvedi

A SoS provides a means whereby independent mem-
bers with diverse representations of information and di-
verse methods for advancing a member’s internal simula-
tion time can interact.

3 ARCHITECTING A SOCIETY OF
SIMULATIONS

Building a SoS follows six fundamental steps:

1. Analyze the society: The simulation users and the

sponsors define and agree on a set of objectives
and required simulation members to achieve these
objectives.

2. Analyze the members: Each member is studied
with respect to its potential contributions to the
goals of the society, dependencies on the types of
information that will be represented in the society,
its timing and performance features, and the ab-
stract program interface (API) that a liaison will
use to connect to the member. Each input and
output of a member is described in terms of three
dimensions: semantics, granularity for each di-
mension, and syntax.

3. Build shared reality: A domain-specific ontology
is placed within shared reality to facilitate seman-
tic matching that liaisons of consumer members
will perform. Producing members extend the on-
tology as needed to describe the semantics of the
data they provide to shared reality. Also, the total
capacity for a shared data type can be estimated to
determine the required storage space based on the
amount of data persistence needed by the mem-
bers.

4. Design the liaisons: A liaison is customized for
each member to perform the translation of seman-
tics between the information produced in shared
reality the information that satisfies a member’s
input requirements. A liaison must be equipped to
convert granularities when the member consumes
data at a different granularity than it is produced.
The liaisons are also constructed to perform the
task of transforming between syntaxes.

5. Design the system: Required resources are allo-
cated for execution of a SoS. The resources in-
clude software tools and hardware facilities re-
quired for the members to execute, memory for
shared reality, initialization data, and required
network access for distributed members to access
shared reality.

6. Execute, test and optimize the society: The society
is executed and the output is collected and ana-
lyzed to ensure the correctness. Optimistic simula-
tion performance can be tuned to address per-
formance bottlenecks.
2127
Note that a SoS enables distributed development of the
member simulations. The goals of the society established
in the first step do not dictate how the members are to be
designed.

Also note that since the data exchange occurs emer-
gently in a SoS, there is no step to link the members to-
gether in an explicit manner. To establish explicit links af-
ter global analysis of the entire society would not be
scalable as more members are added or as the design of
members change.

Describing the ontology of data that will be housed by
shared reality enables liaisons for consumer members to
perform semantic translation of information. For example,
a fire simulation member may consume changes to a build-
ing layout, since the layout of items influences the flow of
air which impacts the oxygen supplied to a fire. A human
simulation member may take actions on doors or windows
in an effort to escape. The actions taken by human simula-
tion members must be translated into the movement of cer-
tain obstacles in a building layout in order for the human’s
actions to impact the spread of fire.

3.1 Execution-Time Development of a Society

Since the design of members are decoupled and the seman-
tics of data that resides is shared reality is accessible by all
members, new members can join an existing society during
execution-time. A new member is analyzed with respect to
the society, just as the members gathered at the initializa-
tion of a society are analyzed in Step 2 above.

New information produced by the new member is de-
scribed within the ontology in shared reality, enabling liai-
sons of consumer members to recognize the relevance of
the new data to their members’ inputs.

The process of adding new members and having an
existing society adjust automatically is not fully automated.
Existing liaisons may not have the utilities available to per-
form the translation, conversion, and transformation neces-
sary to enable the data to be consumed. However, libraries
of utilities for many of the common semantic translations,
granularity conversions, and syntax transformations devel-
oped for one society can often be reused in societies with
similar domains.

4 RECENT APPLICATIONS OF A SOCIETY OF
SIMULATIONS

The SoS approach has been implemented to address a
number of different problems, three of which are described
below. The first two instances show how a SoS approach
has been applied to integrating a behavior-based simulation
modeling human behavior with a HLA federation of tacti-
cal, military simulations to achieve the goal of modeling
reconstruction operations. The third instance addresses a
fire evacuation scenario where the members have hetero-

Chaturvedi

geneous characteristics and the outcome of the evacuation
is an emergent property of the society.

4.1 Multi-National Experiment 4

Synthetic Environment for Analysis and Simulation
(SEAS), the behavior-based simulation, generates the Po-
litical, Military, Economic, Social, Information and Infra-
structure (PMESII) impacts of actions taken at local, na-
tional, and global levels. SEAS is described in more detail
in Chaturvedi et al. 2004.

Using a SoS, SEAS is integrated with Joint Semi-
Automated Forces (JSAF), which models the real-time tac-
tical activity in a specified city or nation. This integration
of SEAS and JSAF provides a model of how local events
influence populations that in turn can positively or nega-
tively impact stability operations.

Multi-National Experiment 4 used a SEAS-JSAF soci-
ety to implement a full synthetic world that allows human-
in-the-loop (HITL) players to interact with a broad range
of actors in a strife torn region of the world, including coa-
litions of forces, non-government organizations (NGO),
local government agencies, terrorist networks, media out-
lets, internally displaced persons (IDPs), and local admini-
strations. The synthetic world is designed so that the out-
comes of players’ actions emerge much like they do in the
real world.

Figure 2: The MNE4 Scenario

The MNE4 scenario investigates the impact that well

being of internally displaced persons (IDP) can have on the
coalition’s objectives. Approximate locations of a number
of IDP camps are indicated in Figure 2. The coloring in the
map indicate areas of risk with respect to stability and ter-
rorist activity, (blue is low risk, yellow is medium, and red
is high). Though the population of the IDP camps is much
smaller than the population of the country of interest,
health and security issues within IDP camps can require

Kandahar

Farah

Herat

Kabul
2128
military resources, influence the effectiveness of NGOs,
and sway world public opinion.

SEAS is used to construct a virtual international sys-
tem (VIS) consisting of a number of virtual states. A Vir-
tual State is represented by four primitive constructs: Indi-
viduals, Organizations, Institutions, Infrastructures, and
Geographies (IOIIG). These four primitives are used to
model higher order constructs such as geographical entities
(nations, provinces, cities), political systems (type of gov-
ernment, political parties/factions), military (soldiers, insti-
tutions), economic system (formal and informal structures),
social system (institutions, groups), Information systems
(print, broadcast, internet), and critical Infrastructures
(banking, oil and gas, electricity, telecommunications,
transportation).

For many of the SEAS models used in MNE4, a day
tick temporal granularity was used, capturing international
alliances, media broadcasts, and changes in the economy,
for example. Within the country of interest, a one-to-one-
thousand sampling of agents to people was used to repre-
sent the population.

However, finer grained models had to be employed to
address the health and security issues surrounding IDP
camps. Within an IDP camp, an hourly temporal granular-
ity is used to capture health crises and crowd violence that
can result from basic needs not being met and ethnic or
class differences within a camp. In an IDP camp, each of
the approximately 100,000 individuals is modeled as an
agent.

The multi-granularity models employed by SEAS
were able to interact with real-time events in JSAF through
a SoS. The security of an IDP camp is influenced by the
presence of coalition forces within reach of the camp. The
presence of forces is communicated from JSAF to a JSAF
Liaison which, in turn, keeps the representation of troops
in shared reality up to date. Additionally, JSAF communi-
cates whenever an explosion occurs, which is also placed
within shared reality.

The SEAS-VIS liaison (daily tick granularity) ac-
cesses shared reality and takes the explosions into account
to determine the security in a region, which impacts the
supply of medical and food resources to camps in the area.
Changes in the rate of provisions is communicated to
shared reality and is consumed by the SEAS-Near-Real-
Time (SEAS-NRT, used to model the IDP camps) liaison.

The SEAS-JSAF society used in MNE4 shows the
ability of the SoS approach in handling heterogeneous gra-
nularities in time, space, and population sampling.

4.2 Urban Resolve 2015 (UR)

A SEAS-JSAF SoS is also being used to facilitate the mili-
tary decision-making process in complex, urban environ-
ments. Initial work on constructing this society was de-
scribed in Chaturvedi et al. 2005. Many different models

Chaturvedi

are used by SEAS-VIS in UR than in MNE4 to represent
terror cell groups, IED attacks, interconnections among in-
frastructure, emergent organization restructuring, and mili-
tia recruiting, to name a few. Additionally, JSAF and
SEAS share more information due to the complex, tactical
issues faced in an urban context, such as the locations,
health, and activities of key, influential individuals, the
damage or repair of selected buildings within the city, ill-
ness due to chemical attacks, and tactical activity taken to
incite or calm specific people groups in an area.

The UR SoS involves the following members: JSAF,
SEAS, a persistent data storage and experiment initializa-
tion for multiple runs of the experiment, and a user inter-
face for analyzing and interacting with networks that
emerge in real-time. SEAS models the structure of the or-
ganizations and leaders’ attitudes to the friendly and op-
posing forces. JSAF represents certain leaders in a detailed
city environment. When actions are taken against a leader
in JSAF changes to organizations can occur in SEAS. The
persistent data storage liaison senses significant changes in
shared reality, such as deaths of key individuals or organi-
zation restructuring, and persists the change for this ex-
periment run. The user interface also senses changes to
leaders and organizations. These changes are immediately
propagated to the client visualization to reveal the new or-
ganization structure in real time.

4.3 Evacuation Society

A SoS was built (named Evacuation Society) to model the
influence of human behavior on an emergency evacuation
in the event of a fire, taking into account both the physics
of fires as well as the activity and health of the humans
evacuating (Foong et al. 2005). The Evacuation Society
consists of one fire simulation member and four synthetic
human members, all placed within a virtual townhouse.
The outcome of an evacuation in the Evacuation Society is
emergent, depending on the decisions the human members
make as they interact with their environment and with each
other.

The fire member is a fluid dynamics simulation mod-
eling the spread of fire across materials and the flow of
gases within a layout of obstacles. The human members are
built to model a person’s implementation of intentions
within a physical environment, such as moving around ob-
stacles, rescuing other people, routing to and searching for
a location. The human members react to smoke and their
health is influenced by toxic fumes from the fire and ex-
treme temperatures. The human members can influence the
fire by opening doors and windows, changing the air flow
within the house.

The Evacuation Society exhibits heterogeneity in
terms of the time management, temporal granularity, and
semantics used by a the members. The fire simulation is
governed by an optimistic, continuous-time model while
212
the human simulations are conservative, discrete event si-
mulations. The fire member operates at a millisecond of
precision whereas the human members operate at a second
temporal granularity. The actions taken by the humans on
the items in the house are translated by the liaison of the
fire member into changes in the layout of the obstacles.

5 RELATED APPROACHES TO INTEGRATION

A variety of approaches have been proposed to integrate
diverse simulations. SIMNET is one of the earliest efforts
to integrate many autonomous components together in or-
der to build a large, distributed simulation (Miller 1995).
SIMNET consists of a bus-like communication network
upon which all messages are broadcast to all simulations.
An autonomous simulation in SIMNET is not aware of
which other simulations are connected to the network. Any
simulation that can connect to the network can participate
in the simulation. Moreover, simulations can be attached to
and removed from the network dynamically during the ex-
ecution of the simulation. SIMNET does not require a cen-
tral controller that regulates the time management of the
simulations. Rather, each simulation synchronizes itself
with every event that is published on the network.

However, the performance of SIMNET is limited by
the bandwidth of the network as each simulation in the
network consumes events broadcast by all other simula-
tions. The experiences with SIMNET led to the develop-
ment of the High Level Architecture (HLA) (Fujimoto
2001, IEEE Std 1516-2000, 1516.1-2000, 1516.2-2000,
1516.3-2003). In HLA, time and data management are
used to refine the communication a simulation receives
based on a publish-subscribe mechanism.

HLA defines an interface between a simulation and a
set of management tools that enable interactions among ar-
bitrary simulations. To connect different simulations
(called federates in HLA), a Run Time Infrastructure (RTI)
is used. The HLA standard specifies the interface between
the RTI and constituent federates. A RTI is given only
enough knowledge of the specifics of the federates in order
to allow them to interact, such as the data a federate sub-
scribes to and what a federate’s next time step will be. Fe-
derates are not aware that other federates are connected in
the same federation. Federates interact only through the
RTI. Separating the design of federates from the imple-
mentation of the RTI facilitates reuse of federates and the
RTI.

To address scalability issues, time and data manage-
ment mechanisms of the RTI have to be tuned. Computa-
tion of the lowest bound time stamp (LBTS) is necessary
for enabling parallel execution, but its computation re-
quires coordination among all federates.

Data management can also cause significant overhead
in HLA when the portion of data a federate consumes
changes dynamically during the simulation. The HLA me-
9

Chaturvedi

thod of combining simulations relies on a push-based pro-
tocol wherein newly produced data is pushed onto the con-
sumers, resulting in production of duplicate and irrelevant
messages. Duplicate messages occur when a federate is no-
tified more than once of a change to data, which occurs
when the data manager decomposes the data into too fine
of a granularity. Irrelevant messages result from a federate
receiving an update that it does not need, which occurs
when the data manager decomposes the data into too
coarse of a granularity.

Approaches have been proposed to alleviate the time
and data management limitations, such as implementing
the LBTS computation as a repeated reduction (Fujimoto et
al. 2000, Perumalla et al. 2003). For data management, a
proposed remedy is to use a hybrid scheme which divides
up the data space into a fine grid and then keeps track of
the coarser portion of the grid that each federate produces
and consumes (Fujimoto et al. 2000). Yet, the RTI is still
burdened with the overhead of bookkeeping the local times
of the federates and the sets of federates to which updates
of data should be broadcast.

The performance of a HLA federation is further lim-
ited when the RTI must assume the existence of depend-
ences among the federates at each time step, such as when
the federates have no known look ahead values. To syn-
chronize simulations while avoiding delays due to unnec-
essary blocking, an approach was developed to enable op-
timistic simulation (Jefferson 1985). Optimistic simulation
occurs when a simulation is allowed to progress beyond a
simulation time, even if doing so may violate a causality
condition. Causality is violated when events are processed
out of order.

Time Warp enables optimistic simulation by causing
the simulations to roll back to a simulation time in the past
when a causality violation occurs. A simulation periodi-
cally checkpoints its state and records the messages it
sends in each period. When a simulation must roll back to
a time in its past, it will restore an old state prior to the roll
back time and send out anti-messages (messages that can-
cel the effects of their counterparts) for every message it
had sent after the roll back time. Time Warp avoids much
of the centralized time management of HLA by allowing
each simulation to manage its own state and time.

The optimistic execution enabled by Time Warp
comes at the expense of an overhead in space and time.
Memory space is required to checkpoint as the space re-
quired to save each simulation's state continues to increase
as more time steps are simulated. Execution time overhead
is accrued each time a roll back occurs.

To offset the memory use problem, a Global Virtual
Time (GVT) is calculated and broadcast to each simula-
tion. The GVT is the minimum time any future roll back
can occur, similar to the LBTS calculation of HLA. It can
be calculated by taking the minimum simulation time from
2130
every simulation and every message that is not yet proc-
essed.

Any checkpoint or recorded message before the GVT
can be discarded or saved to disk because no roll backs
will occur with a simulation time less than the GVT. In or-
der to calculate an accurate GVT, synchronization is re-
quired from each simulation, which is essentially a barrier
synchronization. The overhead of calculating GVT is par-
tially alleviated using an approximate GVT value through a
distributed broadcast.

Besides the overhead required to enable roll backs,
Time Warp simulations face the challenge of instability. A
simulation becomes unstable when continuous roll backs
occur, causing the simulation to fail to complete. In re-
sponse to the potential instability and to address the over-
heads involved with frequent checkpointing, Avril and
Tropper propose a method of grouping Time Warp simula-
tions into clusters, checkpointing and rolling back at the
cluster level (2001). The goal of their techniques is to
achieve a balance between memory use and execution
time.

Creating a system in which diverse simulations can in-
teract is a complex problem with the many interacting tra-
deoffs described above. The SIMNET approach is limited
by the network bandwidth and the small, packet-like mes-
sage size allowed. The performance of a HLA-compliant
federation can suffer from delays that are not necessary for
correct coordination of federates and from unexpected
overheads in the RTI mechanisms. The optimistic approach
used by Time Warp simulations potentially exhibits insta-
bility. Additionally, the Time Warp simulations communi-
cate directly with each other, requiring the producers of
messages to know who the consumers are.

A SoS approach specifically addresses simulation in-
tegration when the simulations exhibit dynamic character-
istics and have heterogeneous requirements. A member in
a SoS can be developed independently and concurrently
with other members without requiring reprogramming of
the other members since the linkages between members are
emergent properties of the society instead of presupposed
characteristics of the society’s design.

6 CONCLUSION

A SoS approach enables solutions to multi-domain prob-
lems while facilitating distributed development and inde-
pendent design of domain-specific simulations. Collabora-
tion among heterogeneous simulations is likened to
members of a society working together to achieve common
goals. Simulations are regarded as members of a SoS. A
SoS enables distributed development since members are
autonomously managed. Changes to members do not re-
quire changes to the design of a SoS, making distributed
development possible. Autonomous management is en-

Chaturvedi

abled by linking members to information instead of to
other members.

Many approaches to simulation integration have reuse,
heterogeneity, and scalability as goals. However, the un-
derlying data exchange mechanisms hinder these goals. A
SoS approach allows simulations to cooperate yet remain
autonomous, an inherent and scalable approach for linking
heterogeneous simulations.

In this paper, we have described the concept of a SoS
and the basic six step process one can follow to build a
SoS. The process outlines how SoS facilitates the integra-
tion of heterogeneous and independently developed mem-
ber simulations.

7 ACKNOWLEDGMENT

This research was partially funded by National Science
Foundation DDDAS program grant # CNS-0325846, the
Indiana State 21st Century Research and Technology
award #1110030618, and several awards from US Joint
Forces Command Experimentation Directorate, J9.

REFERENCES

Avril, H., and C. Tropper. 2001. On Rolling Back and
Checkpointing in Time Warp. IEEE Transactions on
Parallel and Distributed Systems 12 (11): 1105—
1121.

Chaturvedi, A. R., D. Dolk, R. Chaturvedi, C. Foong, M.
Mulpuri, D. Lengacher, et al. 2004. Agent-Based
Computational Model of a Virtual International Sys-
tem. In Proceedings of the Conference on Agent 2004:
Social Dynamics: Interaction, Reflexivity and Emer-
gence. Chicago, IL: 677—692.

Chaturvedi, A., D. R. Snyder, C. M. Foong, and B. Arm-
strong. 2005. Bridging Kinetic and Non-Kinetic Inter-
actions Over Time and Space Continua. Interser-
vice/Industry Training, Simulation, and Education
Conference (I/ITSEC) 2005. Paper 2123. Orlando, FL:
1—11.

Foong, C., B. Armstrong, D. Dilley, J. Grahn, K. Krull, A.
Chaturvedi, et al. 2005. Towards Enabling A Distrib-
uted And Scalable Society Of Simulations. In Pro-
ceedings of the 2005 Agent-Directed Simulation Sym-
posium. Simulation Councils, Inc.: 11—18.

Fujimoto, R., T. McLean, K. Perumalla, and I. Tacic. 2000.
Design of High Performance RTI Software. In Pro-
ceedings of the Fourth IEEE International Workshop
on Distributed Simulation and Real-Time Applica-
tions. IEEE Computer Society: 89—96.

Fujimoto, R. M. 2001. Parallel simulation: parallel and
distributed simulation systems. In Proceedings of the
33nd Conference on Winter Simulation. IEEE Com-
puter Society: 147—157.
2131
Giorgini, P., M. Kolp, J. Mylopoulos, and M. Pistore.
2004. The Tropos Methodology: An Overview. Meth-
odologies And Software Engineering For Agent Sys-
tems. Kluwer Academic Publishing: 1—20.

IEEE Std 1516-2000. 2000. IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA)—Framework and Rules: i—22.

IEEE Std 1516.1-2000. 2001. IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA)—Federate Interface Specification: i—467.

IEEE Std 1516.2-2000. 2001. IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA)—Object Model Template (OMT) Specification:
i—30.

IEEE Std. 1516.3-2003. 2003. IEEE Recommended Prac-
tice for High Level Architecture (HLA) Federation
Development and Execution Process (FEDEP): 1—
32.

Jefferson, D. R. 1985. Virtual time. ACM Transactions on
Programming Languages and Systems. 7 (3): 404—
425.

Miller, D. C., and J. A. Thorpe. 1995. SIMNET: The Ad-
vent of Simulator Networking. In Proceedings of the
IEEE 83 (8): 1114—1123.

Perumalla, K. S., A. Park, R. M. Fujimoto, and G. F. Riley.
2003. Scalable RTI-Based Parallel Simulation of Net-
works. In Proceedings of the Seventeenth Workshop
on Parallel and Distributed Simulation. IEEE Com-
puter Society: 97—104.

U.S. Department of Defense, Office of the Inspector Gen-
eral. 1997. Requirements Planning for Development,
Test, Evaluation, and Impact on Readiness of Training
Simulators and Devices, a draft proposed audit report,
Project No. 5AB-0070.00, January 10, Appendix D.

AUTHOR BIOGRAPHY

ALOK R. CHATURVEDI is a Professor of Management
Information Systems at the Krannert Graduate School of
Management, Purdue University; the Director of Purdue
Homeland Security Institute, and the founder and Chief
Executive Officer of Simulex, Inc. Dr. Chaturvedi has also
served as an Adjunct Research Staff Member at the Insti-
tute for Defense Analyses (IDA). He received his Ph.D. in
Management Information Systems and Computer Science
from the University of Wisconsin-Milwaukee. Dr. Chatur-
vedi has been working on multi-agent synthetic environ-
ments for over sixteen years.

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

