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ABSTRACT

We report on two ongoing efforts to build Dynamic Data

Driven Application Systems (DDDAS) for (1) short-range

forecasting of weather and wildfire behavior from real time

weather data, images, and sensor streams, and (2) con-

taminant identification and tracking in water bodies. Both

systems change their forecasts as new data is received. We

use one long term running simulation that self corrects using

out of order, imperfect sensor data. The DDDAS versions

replace codes that were previously run using data only in

initial conditions. DDDAS entails the ability to dynamically

incorporate additional data into an executing application,

and in reverse, the ability of an application to dynamically

steer the measurement process.
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1 INTRODUCTION

We describe the current state of a dynamic data driven

application system (DDDAS) for simulating wildland fires

and identifying and tracking contaminants.

DDDAS is a paradigm whereby application (or sim-

ulations) and measurements become a symbiotic feedback

control system. DDDAS entails the ability to dynamically

incorporate additional data into an executing application, and

in reverse, the ability of an application to dynamically steer

the measurement process. Such capabilities promise more

accurate analysis and prediction, more precise controls, and

more reliable outcomes. The ability of an application to

control and guide the measurement process and determine

when, where, and how it is best to gather additional data has

itself the potential of enabling more effective measurement
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methodologies. Furthermore, the incorporation of dynamic

inputs into an executing application invokes new system

modalities and helps create application software systems

that can more accurately describe real world, complex sys-

tems. This enables the development of applications that

intelligently adapt to evolving conditions and that infer

new knowledge in ways that are not predetermined by the

initialization parameters and initial static data.

The motivation for our research is the following:

• The obvious societal value of an accurate fore-

cast compounded with the inherent challenge in

modeling nonlinear, rapidly changing phenomena.

• The difficulty in obtaining remote or in situ data.

• The challenges of communicating the on site, out

of sequence data of unknown quality to remote

supercomputers and using it to steer simulations.

The work necessarily extends beyond data assimilation work

in progress in atmospheric or ocean sciences due to the spe-

cific application challenges: the model is strongly nonlin-

ear and irreversible, the data arrives out of sequence from

disparate data sources, and error distributions cannot be

considered Gaussian. Our two DDDAS eamples are built

upon previously existing models and codes.

Components have been developed and added to the

coupled atmosphere-wildfire model which

• save, modify, and restore the state of the model,

• apply ensemble data assimilation algorithms to

modify ensemble member states by comparing the

data with synthetic data of the same kind created

from the simulation state,

• retrieve, process, and ingest data from both novel

ground-based sensors and airborne platforms in the

near vicinity of a fire, and

• provide computational results visualized in several

ways adaptable to user needs.

Components have been developed and added to the

contaminant-ocean model which

• apply multiscale interpolation to a hydrodynamic

and some contaminant transport models,

• correct incorrect earlier forecasts and initial

guesses,

• retrieve, process, and ingest data from novel sensors

in water bodies that can be on buoys or on a drone,

and

• provide computational results visualized in several

ways adaptable to user needs.

DDDAS requires sensors capable of dynamically sup-

plying data to a simulation. An ideal sensor would be

sensitive, selective, and able to communicate high level
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spatial and chemical information to the simulation rapidly

using negligible bandwidth. Integrated Sensing and Process-

ing (ISP) aims to replace current sensor designs with such

DDDAS optimized sensor system architectures, comprising

interdependent networks of functional elements, each of

which may span the roles and functions of multiple separate

subsystems in present generation sensor systems. ISP sim-

plifies sensing in DDDAS through spanning those multiple

roles and functions. ISP research is developing mathemati-

cal tools that facilitate the design and global optimization of

systems that interactively unite usually independent func-

tions of sensing, signal processing, communication, and

exploitation. ISP achieves diminution of crucial degrees

of freedom in sensing system design and operation with-

out regard to traditional subsystem limits and interconnect

structures. This reduction is realized by applying modern

systematic methods from physics based computational mod-

eling and fast data adaptive representations to discover and

take advantage of structure present in the data across every

stage of the sensor system. In many instances, ISP enables

an instantaneous dimensionality reduction to a tractable op-

timization problem that is far more deferential to the end

to end structure of the problem than the traditional sensing

approach.

One such ISP sensor is the Solid-State Spectral Imager

(SSSI). The SSSI is a lens-free optical sensor with no

moving parts that is configurable by a simulation, which

chooses specific Integrated Sensing and Processing (ISP)

light pulse sequences designed to probe and to resolve

chemical uncertainties in the system being simulated. The

sequences selected by the simulation are downloaded into

the SSSI sensor to enable location and quantification of

specific chemical analytes. The SSSI has been used to study

water quality when outfitted with conventional LEDs (light-

emitting diodes) of various wavelengths. By substituting

laser diodes for the LEDs the SSSI becomes a multivariate

DIAL (differential absorption LIDAR, or Light Detection

And Ranging) for analyses of airborne particulates and gases

like oxygen and carbon dioxide.

Data that come into the data center must go through a

process consisting of up to six steps.

1. Retrieval: Get the data from sensors. This may

mean receiving data directly from a sensor or indi-

rectly through another computer or storage device

(e.g., a disk drive).

2. Extraction: The data from some sensors may be

quite messy in raw form, thus the relevant data

may have to be extracted from the transmitted

information.

3. Conversion: The units of the data may not be

appropriate for our application.
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4. Quality control: Bad data should be removed or

repaired if possible. Missing data (e.g., in a com-

posite satellite image) must be repaired.

5. Store: The data must be archived to the right

medium (or media). This might mean a disk,

tape, or computer memory, or no storage device at

all (or only briefly) if data is not being archived

permanently or only temporarily.

6. Notification: If a simulation is using the data as it

comes into the data center, the application needs

to be informed of the existence of new data.

ISP simplifies DDDAS by performing data extraction

and data conversion at the detector in the sensor, eliminating

steps 2 and 3 in the previous paragraph. ISP also presents

the data as high-level information tokens that require very

little communication bandwidth. Bad data may be edited

or removed as data are tokenized, potentially eliminating

step 4 in the data center as well.

In Sections 2 and 3, we describe the wildland fire model,

the identification and tracking of contaminant model, and and

their DDDAS components, respectively. In Section 4, we

draw some conclusions about the commonality of DDDAS

components in these two examples.

2 WILDLAND FIRE MODEL

The original modeling system is composed of two parts:

a numerical weather prediction model and a fire behavior

model that models the growth of a wildfire in response

to weather, fuel conditions, and terrain (Clark, Coen, and

Latham 2004, Coen 2005). These models are two way

coupled so that heat and water vapor fluxes from the fire

are released into the atmosphere, affecting the winds in

particular, while the fire affected winds feed back upon the

fire propagation. This wildfire simulation model can thus

represent the complex interactions between a fire and the

atmosphere.

The meteorological model is a three-dimensional non-

hydrostatic numerical model based on the Navier-Stokes

equations of motion, a thermodynamic equation, and conser-

vation of mass equations using the anelastic approximation.

Vertically-stretched terrain-following coordinates allow the

user to simulate in detail the airflow over complex terrain.

Gridded national weather forecasts are used to initialize the

domain and update lateral boundary conditions. Two-way

interactive nested grids capture the outer forcing domain

scale of the synoptic-scale environment while allowing the

user to telescope down to tens of meters near the fireline

through horizontal and vertical grid refinement. Weather

processes such as the production of cloud droplets, rain,

and ice are parameterized using standard treatments.

In the original model, local fire spread rates depend

on the modeled wind components, fuel properties, and
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terrain slope through an application of the semi-empirical

Rothermel fire spread formula (Rothermel 1972). We are

replacing the Rothermel model with a simple physics and

PDE based model (Mandel, Chen, Franca, Johns, Puhalskii,

Coen, Douglas, Kremens, Vodacek, and Zhao 2004). This

PDE model uses the reaction-convection-diffusion equation

for the temperature T and fuel supply S,

c
∂T

∂t
= −∇d∇T − av · ▽T + e

∂Sk

∂t
− b (T − Ta) , (1)

∂S

∂t
= − f(T )S. (2)

(1) is the balance of heat. The term −∇d∇T models the

heat diffusion, −av · ▽T is the convection by wind with

speed v, e∂Sk

∂t
is the heat generated by burning the fuel, and

−b (T − Ta) is the heat lost to the ambient environment

with temperature Ta. (2) is the balance of fuel. This simple

model is capable of producing a reasonable fire behavior

with an advancing fire front. A more advanced version

of this model is under development, which will include

several species of fuel, radiative heat transfer between fuel

species, and evaporation of moisture. It is anticipated that

this model will replace the empirical fire model and it will

be coupled to the atmospheric model. For related physics

based fire models in the literature, see, for example, Linn,

Reisner, Colman, and Winterkamp (2002), Serón, Gutiérrez,

Magallón, Ferragut, and Asensio (2005).

Forecasting with the coupled atmosphere fire model is

achieved using the Ensemble Kalman Filter (EnKF). En-

semble filters work by advancing in time a collection of

simulations started from randomly perturbed initial con-

ditions. When the data is injected, the ensemble (called

forecast) is updated to get a new ensemble (called analy-

sis) to achieve a least squares fit using two conditions: the

change in the ensemble members should be minimized, and

the data d should fit the ensemble members state u,

h(u) ≈ d, (3)

where h is called the observation function. The weights in

the least squares are obtained from the covariances of the

ensemble and of the data error. For comprehensive surveys

of EnKF techniques, see Evensen (2003), Evensen (2004),

Tippett, Anderson, Bishop, Hamill, and Whitaker (2003).

In general, EnKF works by forming the analysis ensemble

as linear combinations of the forecast ensemble.

We are using filters based on the EnKF with data per-

turbation (Burgers, van Leeuwen, and Evensen 1998). But,

even with the simple wildfire model (1)-(2), the data as-

similation produces an ensemble with nonphysical solutions

causing the simulations to break down numerically. There-

fore, we have proposed a regularization by adding a term

involving the change in the spatial gradient of ensemble
9
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members to the least squares (Johns and Mandel rint). Ex-

isting ensemble filter formulas assume that the observation

function is linear, h(u) = Hu, and then compute with the

observation matrix H . To simplify the software, we have

derived a mathematically equivalent ensemble filter that only

needs to evaluate h(u) for each ensemble member.

For the issue of assimilating of out-of-order data we

will use system states that combine states at several times

(Mandel, Chen, Franca, Johns, Puhalskii, Coen, Douglas,

Kremens, Vodacek, and Zhao 2004). The parallel computing

framework we have developed was designed with this in

mind.

Data comes from fixed ground sensors that measure tem-

perature, radiation, and local weather conditions (Kremens,

Faulring, Gallagher, Seema, and Vodacek 2003). These

systems will survive burn-over by low intensity fires and

are intended to supplement other sources of weather data

derived from permanent and portable automated weather

stations. The temperature and radiation measurements pro-

vide the direct indication of the fire front passage and the

radiation measurement can also be used to determine the

intensity of the fire.

Data also come from images taken by sensors on either

satellites or airplanes. The primary source of image data is

the Wildfire Airborne Sensor Project (WASP) (Li, Vodacek,

Kremens, Ononye, and Tang 2005). This three wavelength

digital infrared camera system is carried on an airplane

that is flown over the fire area. Camera calibration, an

inertial measurement unit, GPS, and digital elevation data

are used in a processing system to convert raw images to a

map product with a latitude and longitude associated with

each pixel. The three wavelength infrared images can then

be processed using a variety of algorithm approaches (Li,

Vodacek, Kremens, Ononye, and Tang 2005, Dozier 1981)

to extract which pixels contain a signal from fire and to

determine the energy radiated by the fire (Wooster, Zhukov,

and Oertel 2003, Smith, Wooster, Drake, Perry, Dipotso,

Falkowski, and Hudak 2005).

The data are related to the model by the observation

equation (3). The observation function h maps the system

state u to synthetic data, which are the values the data

would be in the absence of modeling and measurement

errors. Knowledge of the observation function, the data,

and an estimate of the data error covariance is enough to find

the correct linear combinations of ensemble members in the

ensemble filter. The data assimilation code also requires

an approximate inverse g of the observation function. For

a system state u and data d, g (h(u) − d) is the direction

in which the system state can change to decrease a norm

of the data residual h (u)− d. For an observation function

that is simply the value of a variable in the system state,

the natural choice of approximate inverse can be just the

corresponding term of the data residual, embedded in a zero

vector.
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Building the observation function and its approximate

inverse requires conversion of physical units between the

model and data and conversion and interpolation of physical

coordinates. In addition, synthetic data at instants of time

between the simulation time of ensemble members need to

be interpolated to the data time. The data injection itself

is done by updating the ensemble to minimize a weighted

sum of the data residual and the change in the ensemble.

The data items enter in a pool maintained by the data

acquisition module. The assimilation code can query the

data acquisition module to determine if there are any new

data items available, request their quantitative and numerical

properties, and delete them from the pool after they are no

longer needed.

3 CONTAMINANT MODEL

The DDDAS contaminant tracking system consists of sen-

sors, a hydrodynamic and contaminant transport models,

a data assimilation system, and computers, network and

software to integrate the capabilities of the various com-

ponents into a unified system for disaster management and

mitigation. Here we give a brief overview of the different

components while highlighting their most pertinent features.

The new ISP sensor is a Solid-State Spectral Imager

(SSSI) designed to gather, among other things, hydrological

and geological data, and to perform chemical analyses. The

sensor is suitably small and light enough to be mounted

on various roving platforms to be used in remote-sensing

situations, and can scan ranges of 10−100 meters in distance.

Using a laser-diode array, photodetectors, and on-board

processing, the SSSI combines innovative spectroscopic

integrated sensing and processing with a hyperspace data

analysis algorithm (Lowell, Ho, and Lodder 2002).

The SSSI detects and identifies contaminants in water

using near-infrared, visible, and ultraviolet light. Absorp-

tion, fluorescence, and even Raman spectrometry can be

implemented, but absorption spectrometry is the most com-

mon. Virtually every organic compound (e.g., polycyclic

aromatic hydrocarbons, paraffins, carboxylic acids, and sul-

fonic acids) has a near-IR spectrum that can be measured,

including two classes of terrestrial biomarkers, lipids, and

amino acids. Near-infrared spectra consist of overtones and

combinations of fundamental mid-infrared bands, giving

near-infrared spectra a powerful ability to identify organic

compounds while still permitting some penetration of light

into samples (Dempsey, Davis, R. G. Buice, and Lodder

1996).

The SSSI uses Walsh-Hadamard or CRISP (Comple-

mentary Randomized Integrated Sensing and Processing)

encoding sequences of light pulses to further increase the

signal-to-noise ratio. In a Walsh-Hadamard sequence mul-

tiple laser diodes illuminate the target at the same time,

increasing the number of photons received at the photode-
0
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tector and the signal-to-noise (S/N). The Walsh- Hadamard

sequence can be demultiplexed to individual wavelength re-

sponses with a matrix-vector multiply operation (Silva and

Pasquini 2001). CRISP encoding uses orthogonal pseudo-

random codes with unequal numbers of on and off states.

The duty cycle of each code is different and the codes are

selected to deliver the highest duty cycles at the wavelengths

where the most light is needed and lowest duty cycle where

the least light is needed to make the sum of all of the trans-

mitted (or reflected) light from the samples proportional to

the analyte concentration of interest.

The hydrodynamic model consists of the Spectral Ele-

ment Ocean Model (SEOM) in its two-dimensional shallow

water version. The spatial discretization relies on the spectral

element method, an h-p type finite element discretization,

which relies on relatively high degree (5-8th) polynomials

to approximate the solution within each element. The main

features of the spectral element method are: geometric flexi-

bility due to its unstructured grids, dual paths to convergence:

exponential by increasing polynomial degree or algebraic

via increasing the number of elements, dense computational

kernels with sparse inter-element synchronization, and ex-

cellent scalability on parallel machines. The model can be

forced through winds, tides, and lateral injection of mass

at inflow boundaries (e.g., river input). The model is sup-

plemented with an advection-diffusion equation to simulate

the trajectory of contaminants as they are carried along by

the simulated flow.

The initial deployment of the sensor and model will

focus on estuarine regions where water quality monitoring

is critical for human health and environmental monitoring.

The authors will capitalize on an existing configuration of

the model of the Hudson-Raritan Estuary to illustrate the

model’s capabilities. A sample tidal calculation is performed

using a grid that encompasses the Newark/New York bays

regions, the Long-Island sound, and a substantial portion of

the Hudson River. The model is forced with tidal elevation

obtained from tide gauges located on the eastern edge of

the Long Island Sound in Montauk, NY and in Sandy

Hook, NJ. Runs without data assimulation have shown

good comparison with observation (Figure 1) and previous

modeling results. However, for DDDAS the use of data

assimilation is imperative to inject observational data in the

model while accounting for model and observational errors.

The data assimilation reduces the computational errors

associated with initial data, essentially the solution at pre-

vious time step, and improves the predictions. Using the

first set of measurements, the approximation of the initial

data is recovered. As new data are incorporated into the

simulator, the initial data are updated using an objective

function. We note that the formulated problem is ill-posed

because there are fewer sensors than the finite dimensional

space describing the initial data. The objective function

is set up based on both a measurement error as well as
2121
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Figure 1: Comparison of Tidal Elevation in Bridgeport, CT

a penalization term that depends on the prior knowledge

about the solution at previous time steps (or initial data).

The prior information is refreshed using the updated initial

data. The penalization constants depend on time of update

and can be associated with the relative difference between

simulated and measured values. In the simulations, both

the prior and penalization constants change in time.

To account for the errors (uncertainties) associated with

sensor measurements, we consider an initial data update

within a Bayesian framework. The posterior distribution is

set up based on measurement errors and prior information.

This posterior distribution is complicated and involves the

solutions of partial differential equations. We could use a

Metropolis-Hasting Markov chain Monte Carlo (MCMC)

method to generate samples from the posterior distributions.

However, a sampling with MCMC is expensive since it

requires iterative steps and the acceptance rate is typically

low. We developed an approach that combines least squares

with a Bayesian approach that gives a high acceptance

rate. In particular, we can prove that rigorous sampling can

be achieved by sampling the sensor data from the known

distribution, thus obtaining various realizations of the initial

data. Our approach has similarities with the Ensemble

Kalman Filter approach, which can also be adapted to an

initial data update.

The SSSI is reprogrammable in the field. When an

interesting chemical trace is discovered, the reaction from

the application overseeing the SSSI is two-fold: (a) invoke

an appropriate application, and (b) request that the SSSI

look for specific other chemical traces using other specific
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pulse sequences. There is a symbiotic relationship between

the sensor network and the application simulation that is

typical in a DDDAS.

Consider finding hydrocarbon fuel in a body of water.

Gasoline can be a sign of innocuous pollution from a small

boat. Heavier fuel oils could be an indication that a larger

boat leaked or sank recently nearby. Jet fuel could come

from a downed aircraft. The SSSI needs to be reprogrammed

in the latter case and a search and locate application must

be invoked to find the accident and rescue any people that

may be in danger. Emergency services, the coast guard,

and the news media may need to be automatically informed

of progress.

The SSSI has a modest amount of memory and com-

puting capacity on board. USB2 and Ethernet will be put

onto the SSSI over time, thus reducing the amount of time

needed to reprogram the device.

A programmable, portable low-cost sensor and network

for DDDAS in extreme aqueous environments must be able

to perform chemical analyses to be effective in terrorist attack

and accident scenarios. Most oil sensing in the oceans is

already done by remote sensor systems (Fingas and Brown

2000).

Once the spectrum of a sample has been collected, it

must be classified to determine the substance present. The

Bootstrap Error-adjusted Single-sample Technique (BEST)

(Dieter, Lodder, and James E. Lumpp 2006) is the analytical

basis of SSSI, and the foundation for the chemical library.

Spectra recorded at n wavelengths are represented as single

points in a n-dimensional hyperspace. In this scheme, similar

samples produce similar spectra that project as “probability

orbitals” or “clusters” into similar regions of hyperspace.

The BEST metric is a clustering technique for exploring

these distributions of spectra in hyperspace.

Oil droplets can travel nearly anywhere in the ocean.

The droplet size exerts a major effect on droplet motion

(OSB 2005). The rise velocity of oil droplets extends from

about 2.5 × 10−7 m/s for a diameter of 2 µm to 4.3 ×

10−3 m/s for a diameter of 260 µm. Droplets traveling

at 2.5 × 10−7 m/s will ascend only 0.001 m and 0.02 m,

over periods of 1 hour and 24 hours, while over equivalent

periods, droplets ascending at 4.3 × 10−3 m/s will climb

15 m and 370 m. In the meantime, a vertical diffusivity

of 51 cm2/s will distribute oil droplets (equally upward

and downward) about 6 m and 30 m over the same time.

Therefore, the smallest oil droplets act as though they are

neutrally buoyant (transported only by diffusion), while the

largest droplets are advected largely by their buoyancy.

Using multiple linear regression the BEST classification

algorithm can be performed in situ, allowing a rover to

classify many samples, only notifying the simulation when

an interesting substance is found. An initial library can

be computed based on substances likely to be found in

the target environment. When a substance unknown to
2122
the BEST library is found, the sensor can sample nearby

points with similar spectra to create a new library entry

for the new substance. Scientists can determine the type of

substance present by further analyzing raw spectra of the

substance provided by SSSI and by using data from their

other instruments, apply these data to update the simulation.

The SSSI chemical library will comprise substances expected

to be in the environment in which the SSSI operates.

4 CONCLUSIONS

The two DDDAS applications described in this paper have

many things in common:

• The correct sensor needs to be chosen to get the

right data at a given time.

• The sensors must be placed in the right locations

• Data is not necessarily accurate nor does it arrive

on time in the correct order. Hence, data must be

filtered before use and error distributions in the

data must be known.

• The sensors should be reprogammable in some

sense by the application.

• The potential for rapid error growth without data

steering.

• The application’s models, numerical methods, and

major item to be tracked may need to be changed

as a result of the incoming sensor data or a human

in the loop.

• Long term simulations are possible using dynamic

data instead of having to run many short term ones

with incoming, but static initial guesses.

In the future, we hope to apply both projects to envi-

ronmental issues arising in the Amazon region. Flooding

of parts of the Amazon occurs for up to ten months in a

year. Numerous nutrients and contaminants are transported

long distances during the flooding of the várzeas. There are

substantial petroleum deposits in the region that leak into

the rivers. We hope to apply the SSSI concepts to each of

these problems.

In addition, 90% of the population in the region lives in

the várzeas. The method of choice to clear land for building

is to burn the jungle. While the fire model is different for

a mountainous wildland fire than a flat surface jungle fire,

we hope to extend our DDDAS to this case.
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