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ABSTRACT

Dynamic data-driven application systems (DDDAS) inte-

grate computer simulations with experimental observations

to study phenomena with greater speed and accuracy than

could be achieved by either experimentation or simulation

alone. One of the key challenges behind DDDAS is au-

tomatically adapting simulations when experimental data

indicates that a simulation must change. Coercion is a

semi-automated simulation adaptation approach that can be

automated further if elements of the simulation called flex-

ible points are described in advance. In this paper, we use

a number of DDDAS adaptation examples to identify the

information that needs to be captured about flexible points

in order to support coercion.

1 INTRODUCTION

Experimental data has always been one of the most valuable

resources for building and validating computer simulations.

Simulations are often used to understand phenomena that

have not been observed in the real world. However, when

real-world experimental data is available, it is usually ex-

pected that the simulation agrees with the data. As more

experiments are conducted, the simulation must be corrected

to reflect each experiment. This leads to an iterative process

where

1. a simulation is run to gain insight about a phe-

nomenon,

2. this insight is used to determine what new obser-

vations should be collected, and

3. the simulation is adapted to reflect these observa-

tions.

Dynamic data-driven application systems (DDDAS) aim to

improve this process by automating steps 2 and 3 (Darema

2004). Instead of requiring a subject matter expert (SME)

to analyze the simulation output and determine what new
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experiments should be conducted, the system would per-

form this interpretation automatically. Likewise, instead

of expecting developers to manually modify the simulation

code, the adaptation step would also be automated.

Dynamically producing valid simulation adaptations in

response to new experimental data poses a significant chal-

lenge. Current simulation adaptation techniques usually

involve either manually modifying the code or applying

optimization to change the value of one or more of the

simulation’s parameters. Unfortunately, manually modify-

ing the simulation code does not change a simulation fast

enough to meet DDDAS’ needs. Meanwhile, parameter

tuning requires the developers of the simulation to provide

parameters to control every possible aspect of the simu-

lation that might be affected by new data. Generalizing

software to anticipate every possible way it could change

is difficult, and attempting to do so usually interferes with

performance and makes the code unmanageably complex

(Parnas 1979). Also, even if parameters can be used change

the simulation’s behavior, it may not be clear which ones

need to change in response to the new data nor what all the

consequences of changing them might be.

For DDDAS to work, we need improved methods for

automatically adapting simulations. In general, automating

software adaptation is difficult (Bartholet, Reynolds, and

Brogan 2005). However, software engineers have observed

that by taking advantage of the properties of a particular

domain, the problem of software adaptation can be simplified

(Czarnecki and Eisenecker 1999). Most simulations fall into

a domain that we call coercible software, which has several

properties that affect their flexibility (Carnahan, Reynolds,

and Brogan 2005).

1.1 Automating Adaptation with Coercion

Coercible software is distinguished by the presence of flexi-

ble points, which reflect choices in the design of the software

about how to represent phenomena outside of the software.

Most software implicitly models the context in which it is
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expected to operate. However, in coercible software, deci-

sions about context modeling tend to be more flexible. For

example, in a hardware device driver, the software must

issue exactly the commands that the device expects. In

contrast, a simulation of a device could represent the device

in many different ways, using either a detailed model that

tracks each of the device’s components or a simple model

that replaces the device with a black box that generates

events according to a random distribution. At the same

time, the choice of a model is not arbitrary. It is made with

the simulation’s requirements in mind, and it is constrained

by expert knowledge about the subject being simulated.

This combination of flexibility and constraints makes

it possible to automate many parts of simulation adapta-

tion. Without flexibility, automatic adaptation is impossible

because there is no way to know what alternatives should

be considered. Without constraints, automatic adaptation

is infeasible because there are too many alternatives to

consider all of them in a timely fashion. Coercion is a

semi-automated adaptation approach that exploits the flexi-

bility and constraints of model abstraction opportunities to

automate simulation adaptation. Coercion has been demon-

strated in several successful experiments (Drewry, Reynolds,

and Emanuel 2002; Carnahan, Reynolds, and Brogan 2003).

By capturing expert insight about flexible points in formally

defined constructs, coercion can be automated even further

(Carnahan, Reynolds, and Brogan 2004).

1.2 Applying Coercion to DDDAS

In this paper, we explore coercion as a means to accomplish

the simulation adaptation step of DDDAS. By searching for

the best abstractions to select at each flexible point, coercion

offers the automation that DDDAS requires. At the same

time, flexible points can be used to describe complex changes

more elegantly than straightforward parameters. Also, by

leveraging SME insight about the simulated phenomenon,

coercion can also be more efficient than naive parameter

sweeps. Hence, coercion provides an excellent starting point

for the simulation adaptation component of DDDAS.

As it currently stands, coercion is still a semi-automated

adaptation approach, relying on SME input to select flexible

points and guide the search process. For coercion to be

used in DDDAS, it will be necessary to capture this SME

insight in advance, allowing coercion to take advantage of

this insight as soon as new data arrives. To accomplish this,

formal language constructs for describing flexible points

must be developed. Using a number of DDDAS examples

as case studies, we have identified key requirements for

flexible point language constructs. These include

• connecting flexible points to the part of the model

that they represent,
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• capturing both direct and indirect effects of flexible

points on simulation behavior,

• identifying constraints on how flexible points can

change,

• providing implementations so that flexible point

changes can be applied automatically, and

• being able to add and remove information about

flexible point effects and interactions.

With language tools that meet these requirements, we can

use coercion to adapt simulations in support of DDDAS.

2 DDDAS EXAMPLE: SUPPLY CHAIN

SIMULATION

To better understand how coercion can be used to adapt

simulations for DDDAS, we have analyzed simulations in

several domains, including combustion modeling (Zambon

2005) and high-energy physics. For this paper, we will

concentrate on a single example domain, namely make-to-

order supply chains (Strader, Lin, and Shaw 1998; Ball and

Fu 2006). In these systems, customers design the products

that they want to order as they order them. The large number

of different product configurations makes it prohibitively

expensive to keep all of the possible configurations in stock.

Therefore, we would like to use simulation to predict which

products will be ordered and what parts will be needed in

the near future.

The supply chain simulation becomes a DDDAS when

we integrate the simulation with incoming reports about

customer ordering and product shipping. The simulation

would typically be built using past data, with the assumption

that purchasing patterns remain roughly the same from year

to year. However, factors like changes in the economy

or introduction of new products could render the old data

obsolete. To maintain the validity of this simulation, it must

be continually updated using available data from customer

orders and factory status reports.

We have chosen to use the supply chain example in

this paper for several reasons. First, many quantities in

the system are discrete, allowing us to change how they

are computed without concern for introducing floating-point

precision errors. Second, there are a number of obvious

ways to collect useful data about a supply chain, including

reports from store managers, accounting data, and market-

ing research. All of this data would already be collected as

good business practice. Lastly, the supply chain example

is relatively accessible, making it a better vehicle for pre-

senting insights that generalize to other DDDAS simulation

adaptation problems.
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2.1 Details of the Supply Chain Example

An example supply chain is diagrammed in Figure 1. This

simple example includes three kinds of parts that are used

in assembling products, two plants where products are as-

sembled, and five stores where products are ordered and

delivered. The system works as follows:

1. A customer places an order at a store for an instance

of a particular product. The order includes a list

of included parts and a due date when the product

should be delivered.

2. The store handles the order. If an instance of

the product is not in the store’s inventory, then the

store must order at least one instance of the product

from its assembly plant. If the store already has

the needed product, it may still place an order to

the plant to replace the product that is about to be

removed from its inventory.

3. When an assembly plant gets an order from a store,

it selects the parts needed for the product from its

inventory, assembles the product, and ships it to

the store. Depending on how many of each part

remain in the inventory, the plant may place an

order to its suppliers for more parts.

4. Finally, when the order’s due date is reached, an

instance of the product is removed from the store’s

inventory. If the store does not have the product,

then the store is assessed a penalty to reflect the

cost of paying for rushed shipping or the indirect

cost of upsetting customers.

In addition to the penalty for delivering late products, there is

also a holding cost for keeping items in inventory. Therefore,

we would like to find the ideal inventory policies that

minimize both the size of the inventories and the number

of late product deliveries.

2.2 Modeling the Supply Chain

To simulate the supply chain, we must develop a conceptual

model. Event graphs are a well-accepted formalism for

discrete event simulation (Schruben 1983). An event graph

model of the supply chain is given in Figure 2. From

this model, code for an implementation could be generated

and run to evaluate different inventory policies. However,

a SME on supply chain design is more likely to provide

information in terms of the events in this graph than in

terms of the generated code.

Note that we have not filled in all of the details of this

formal model. For brevity, we have omitted the changes

to state variables that occur at each node. Also, note that

we could have used a variety of other formalisms, such as

process-based modeling, Petri nets, or other representations.
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Figure 2: Event Graph for the Supply Chain Model

The purpose of this example model is to provide a context

for discussing simulation adaptations: As coercion leverages

SME insight to automatically adapt simulation code, these

adaptations need to be described in terms of a conceptual

model that a SME might use.
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2.3 Abstraction Opportunities in the Supply Chain

Model

There are a number of opportunities for selecting different

abstractions in a model of the supply chain described in

Figure 2. These model abstraction opportunities include

deciding how to represent

• the assembly process,

• the shipping of parts and products,

• customer ordering behavior, and

• the consequences of late deliveries.

Depending on the details of the situation, each of these

aspects of the system will have different effects on inventory

costs and late product deliveries. Those parts of the system

that have the most significant effects need to be modeled

both accurately and precisely if the simulation is to be used

to evaluate inventory policies and other business decisions.

To build a simulation of the supply chain, a particular

abstraction must be selected for each of these model abstrac-

tion opportunities. The implementation of each abstraction

is a flexible point, meaning that we may want to reevaluate

that part of the simulation later when new data prompts us

to change our choice of model abstractions.

Table 1 describes some of the flexible points in the

supply chain simulation. Let us examine one flexible point

as an example, namely Customer Ordering Behavior. When

building the simulation, we realize that accurately modeling

customer ordering behavior will be crucial for minimizing

late product deliveries. However, we may not know what

structure or equations to use to represent customer ordering.

Can we afford to model the number of orders on a given

day as a constant, or should we run the simulation for

each day many times with randomly chosen numbers of

orders? If numbers of orders are picked randomly, then

what distribution should we use? Are ordering behaviors

more similar to the previous day’s orders, the same day’s

orders on a previous year, or some combination of the

two? Each of these alternatives is a possible binding for

the customer-ordering flexible point.

Note that some flexible points are subsumed by other

flexible points. For instance, the question of what distribu-

tion to use for determining the rate of orders at each store is

only raised when the Random Ordering binding is selected

for the Customer Ordering Behavior flexible point.

3 REQUIREMENTS FOR COERCING THE

SUPPLY CHAIN SIMULATION

We are interested in flexible points in the supply chain

simulation because we anticipate that new data will require

the simulation to adapt automatically. In this section, we

consider a number of these adaptations and discuss how sim-
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ulation coercion could be used to accomplish them. Then,

we generalize from these examples to identify information

about flexible points that would be needed for coercion to

work effectively in DDDAS.

3.1 Correcting Inventory Cost Predictions

Suppose we use the supply chain simulation to select a

policy for ordering parts at each assembly plant. We do

this because the simulation indicates that a particular policy

will minimize average inventory costs. However, accounting

reports indicate that the real inventory costs are higher than

predicted. This triggers a search for why the inventory cost

predictions are incorrect. We will use coercion to adapt the

simulation, bringing its predictions into agreement with the

real inventory cost data.

First, to leverage SME insight in coercing any simu-

lation, flexible points must be identified in terms that the

SME can understand. In the supply chain example, the

SME can recognize that inventory costs are affected by

specific events in the conceptual model, such as “Customer

places order”, “Plant orders parts”, and “Compute inventory

costs”. In turn, the coercion process needs to be able to

apply this information to automatically determine which

flexible points must change, such as Customer Ordering

Behavior, Shipping Model, and Inventory Unit Cost.

This leads to the first requirement for flexible point

descriptions:

Requirement 1 Flexible points must be described

in terms of changes to the model in a way that can be easily

understood by subject matter experts in the domain of the

simulation.

To correct the inventory cost predictions, the coercion

process must be able to determine which flexible points

affect the inventory cost calculation. This leads to another

flexible point description requirement:

Requirement 2 The effects of changing flexible

points must be captured, including

1. which simulation variables may take on different

values,

2. what non-functional characteristics (e.g. perfor-

mance) may be affected, and

3. how the conceptual model may need to change.

Flexible point effects on variables are of two kinds: direct

and indirect. A flexible point has a direct effect on a

simulation variable if that variable’s value is changed by

the code associated with the flexible point. Likewise, it has

an indirect effect on a variable if the variable is not changed in

the flexible point’s code but is changed through some chain

of intermediate variables or other flexible points. These

networks of effects can be relatively complex, as depicted

in Figure 3.
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Flexible Point Possible Bindings Related Model Events

Late Delivery Lose customers “Handle late product” and

Modeling Pay a flat cost “Customer places order”

Shipping Model Constant delay “Plant orders parts”,

Uniform random delay “Plant builds, ships product”,

Exponential delay and “Store gets product”

Uniform chance of loss

Customer Ordering Scripted “Customer places order”

Behavior Random and associated edges

Random Ordering Normal “Customer places order”

Distribution Uniform

Exponential

Table 1: A Selection of Flexible Points and Bindings from the Supply Chain Simulation
Graph Key:
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Figure 3: Flexible Points and Relationships to Inventory

Cost Predictions

Other flexible point effects of interest include changes

to the conceptual model and changes to non-functional char-

acteristics, such as performance and memory requirements.

For instance, a possible flexible point change may need to

be ruled out because of its effects on performance, while

another flexible point may be ruled out because it changing

it would remove an event from the model that the SME

considers to be essential.

Given that so many flexible points have an impact on

the inventory costs, the coercion process needs as may

ways as possible to constrain the search for the right set

of flexible point bindings. This motivates the next flexible

point description requirement:

Requirement 3 Coercion needs information about

flexible point constraints to guide its search for automatic

adaptations.

These constraints can come in several forms. First, we

may have expert insight on which flexible points or parts

of the model have the largest effects on inventory costs.

If the Shipping Model flexible point is known to have a
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greater effect on part inventory sizes than the Part Ordering

Rate, then the search for a better simulation should start by

examining how shipping delays are modeled. Second, some

flexible points may make assumptions that depend on other

flexible points. For instance, we cannot change the ratio of

stores to assembly plants without also changing either the

number of stores or the number of plants. Other constraints

may be provided by the incoming data, such as information

that per-unit inventory costs are correct and should not be

changed.

3.2 Handling Variations in Store Popularity

Different stores at the end of the supply chain each handle

different numbers of orders each day, which affects the

amount of inventory that each store has to maintain. Suppose

that we try to simulate the variation between stores by picking

a distribution and randomly choosing where to place each

order in the simulation based on this distribution. This would

allow us to evaluate how well our store inventory policies

adapt to some stores being more popular than others.

Eventually, sales data may indicate that stores do not

always stay popular or unpopular, as different stores do

more business at different times of the year. Our adaptive

inventory policies might already handle these variations

optimally, but we cannot be certain because the simulation

currently represents customer ordering behavior as fixed

over time.

Customer Ordering Behavior is a flexible point that

we have already identified in this simulation (see Table

1) in connection with the “Customer places order” event

(see Figure 2). In order to explore other abstractions for

customer ordering, the coercion process must have access

to information about other possible valid abstractions. For

instance, a subject matter expert might be able to tell us

that customer ordering behavior shifts gradually over time.

To prevent ordering behavior from changing too quickly,

orders at time t would have to be a function of orders at

time t − 1. Also, for comparison of alternative customer
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ordering abstractions to occur during the coercion process,

the implementations of these alternatives must already be

available.

Requirement 4 For analysis of different flexible

point alternatives to occur during coercion, alternatives

must already be implemented in such a way that they can

automatically replace the simulation’s current flexible point

bindings.

Requirement 4 could be accomplished a number of

ways, such as with object oriented subtyping (Rentsch 1982)

or aspects (Kiczales et al. 1997). It could also be accom-

plished by describing changes to the model (such as adding

new event graph nodes and arcs) and automatically gen-

erating code from the new model. One way or another,

coercion needs a way to automatically integrate its changes

with the rest of the simulation code.

3.3 Simulating Customer Reactions to Late Deliveries

Another source of data in the supply chain simulation is

marketing research. Suppose we are currently simulating

the penalty for late deliveries as a flat cost for each delivery,

which could represent either rush-order shipping costs or

a discount offered to the customer on late products. How-

ever, suppose surveys indicate that customers who receive

products late will probably never shop at our stores again.

This could have more dire consequences than a flat cost,

as it could mean that we are driving customers away faster

than we can attract new ones.

This marketing data indicates that our representations

of the “Handle late product” and “Customer places order”

events need to change (see Figure 2). We have already iden-

tified flexible points associated with these events, namely

Customer Ordering Behavior and Late Delivery Modeling.

To change these flexible points, the coercion process still

needs access to alternative algorithms for representing cus-

tomer ordering that let the number of customers change

over time (Requirement 4). There is also a new dependency

between these two flexible points, where representing the

number of customers as increasing is only valid if the num-

ber of late deliveries is kept below a certain level. To

keep track of new dependencies, the coercion process must

be capable of verifying or updating the information about

flexible points after applying each adaptation.

Requirement 5 It must be possible to add and re-

move information about flexible points during and after

coercion.

4 DISCUSSION

As a semi-automated adaptation process, simulation coer-

cion can be improved by increasing the fraction of adapta-

tions that can be accomplished automatically. DDDAS calls

for fully-automatic adaptation of simulations in response to
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experimental data, which defines a goal for coercion tech-

nology research. Based on the example DDDAS problems

considered in this paper, we observe that the following

information about flexible points will be required for the

coercion process to proceed automatically:

1. the relationship of the flexible point to the SME’s

conceptual model,

2. the direct and indirect effects of changing a flexible

point,

3. any constraints on how the flexible point may be

changed,

4. a description of how to automatically replace the

implementation of one flexible point binding with

another, and

5. how changing one flexible point potentially affects

information that we have captured about other flex-

ible points.

To meet the requirements, we are designing a coercible

software development framework. This framework includes

both the visualization and user interface tools that enable

SMEs to describe flexible points and the language tools

that enable coercion to automatically process this informa-

tion and leverage it in performing simulation adaptations.

By supporting automatic adaptation through coercion, this

framework supports the development of DDDAS.

4.1 Related Work

Coercion is not the only approach to automatic simulation

adaptation. Compositional modeling uses a similar approach

of explicitly identifying model abstractions to search for the

right set of equations to use in a simulation (Falkenhainer and

Forbus 1991). Compositional modeling supports automatic

model construction in polynomial time, given the assumption

that the user has complete knowledge of all equations that

could ever be used in the model (Nayak and Joskowicz 1996).

Unfortunately, compositional modeling’s assumptions are

too strict for most DDDAS applications, meaning that a

more flexible approach is needed.

A number of DDDAS-related research projects are

currently underway, including applications of DDDAS to

oceanography, geography, structural engineering, meteo-

rology, thermodynamics, combustion modeling, astronomy,

medicine, and many other fields (Douglas 2006). Coercion

is a cross-cutting technology that can support all of these

fields by providing tools and a framework for performing

data-driven simulation adaptations.

4.2 Future Work

Given the requirements for flexible point language constructs

presented in this paper, the next step is to evaluate existing
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languages and tools to determine how well they meet these

requirements. For instance, can all of the code changes

associated with flexible points be described using aspect-

oriented languages, or will something more powerful be

needed? How well do current techniques for handling

uncertainty work for describing the unpredictable effects

of flexible point changes? Identifying the right tools will

make it possible to implement the adaptations described in

this paper.

We are also investigating other ways to improve coer-

cion. These include finding the best visualization tools for

interfacing with SMEs, optimization tools to search over the

space of possible flexible point bindings, and verification

and validation tools to ensure that automatic adaptations do

not have any undesirable and unexpected effects.

4.3 Conclusion

Coercion is a semi-automated simulation adaptation process

that leverages subject matter expert insight to efficiently

search for the best set of abstractions to use in a model. To

automate more of the coercion process, language support

is needed for describing simulation flexible points. Con-

sidering DDDAS’ fully-automated adaptation as a goal, we

have identified information about flexible points that must

be captured to support coercion. With a framework of tools

that meet these requirements, it will be possible to develop

coercible simulations that can be automatically adapted to

incorporate new experimental data.
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