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ABSTRACT

This paper presents a brief exposition of three underempha-

sized issues concerning modeling and simulation as they

relate to Dynamic Data Driven Application Systems. One

issue concerns the fact that conventional procedures for

validation of data-driven models and simulations are un-

necessary as they intrinsically contain validation in that they

have been constructed according to acquired data. Another

issue concerns the inherent coupling between the exper-

imental frame used to measure system response and the

system itself. This coupling can lead to an unrealistic

simulation of the system in that the data contains the in-

teraction of the system with the experimental frame. The

final issue concerns the inherent pluralism of parametric

representation and of potential mappings from data space

into model space. This inherent pluralism imposes the need

for optimal model and data space navigation procedures

that are structured for appropriate sampling of data space

and specification of faithful model parameterizations.

1 INTRODUCTION

High fidelity simulation of realistic size and complexity

systems have motivated studies concerning methodologies

for the development of Dynamic Data Driven Application

Systems (DDDAS) by various groups. The National Science

Foundation has taken a leadership role in fostering research

on such efforts through the initiative on DDDAS (Darema

2004).

Recent advances in DDDAS facilitated by the present

level of computational achievements, as well as advances

in data-driven modeling and simulation, impose the need

for a critical evaluation of paradigms underlying Qualifi-

cation, Validation and Verification (QV&V). Furthermore,

there is a plethora of underlying issues associated with the

development of DDDAS as articles related to Modeling and

Simulation (M&S) that span the analytical, algorithmic,

programming and problem solving contexts that practition-
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ers are sensitive to. However, the goal of this paper is

to increase the awareness of the research community with

regard to three of these issues related to the quality of the

final simulations of physical systems in the area of DDDAS.

The first issue concerns the fundamental irrelevance

of conventional validation procedures with respect to data-

driven models and simulations. This follows since conven-

tional validation procedures are based on paradigms and

associated terminology, that are historically biased and re-

lated to concepts and implementations that do not necessar-

ily correspond to today’s advanced computational practices

and possibilities within the context of DDDAS. An initial

attempt to explore this issue along with its historical rela-

tionship to the various scientific methods has been given in

(Michopoulos and Lambrakos 2005).

There are formal aspects of “data-driven system mod-

eling” that are related to methods of “system identification”

and “parameter estimation,” which are based on systems

theory. In the discussions that follow, the concept of sys-

tem identification has been extended to include that of

data-driven modeling. Further, “dynamic” data driven is

to be understood as implying system identification within

the context real-time input of data, which is considered as

having been obtained most recently from sensors. Sim-

ilarly, the use of most recently obtained data for adap-

tive simulation control or steering, constitutes the second

use of the term “dynamic data driven” as has been dis-

cussed elsewhere (Michopoulos, Tsompanopoulou, Houstis,

Rice, Farhat, Lesoinne, and Lechenault 2003, Michopou-

los, Farhat, Houstis, Tsompanopoulou, Zhang, and Gul-

laud 2005, Michopoulos, Tsompanopoulou, Houstis, Farhat,

Lesoinne, Rice, and Joshi 2005).

A key aspect of our discussion concerns the concept of

“weak termination” that implies informally the incomplete

character of validation with respect to the predictive capabil-

ity of a model. A rigorous examination of the mathematical

foundations of this concept is beyond the scope of this

presentation in that it relates to temporal and ontological

formalisms of logical meta-systems (Van Benthem 1949).
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In this paper, we first present the definitions and origins

of the particular QV&V terms. We subsequently identify

how weak termination undermines the fidelity, accuracy

and reusability of models. We further demonstrate how the

application of data-driven M&S avoids weak termination and

enables reusability of models and simulations. We further

demonstrate that when an experimental frame is involved

in exercising and measuring the physical system then the

acquired data contain the aggregate behavior of the coupling

between the experimental frame and the system itself thus

leading to an inaccurate model creation that in turn forces a

refactoring of the internal structure of the system. The last

issue discussed is the fact that the data and model spaces

are not necessarily one-dimensional and that there is large

variety of possibilities corresponding to selection of loading

paths and sampling schemes (from the data space) as well as

representational models (from the model space). Therefore,

the inescapable question for the “best choice” becomes an

important issue of research. The effects these issues may

have on from a V&V are also discussed. We conclude with

a brief description of the three main issues.

2 DATA-DRIVEN SIMULATIONS DO NOT NEED

CONVENTIONAL VALIDATION

2.1 Qualification, Validation and Verification

Model fidelity, accuracy, and high confidence in predictabil-

ity requires that contemporary M&S are subject to various

QV&V procedures. There are many descriptions of how

QV&V relates to modeling and simulation. Figure 1 rep-

resents the modeling and simulation process along with

the associated QV&V in terms of logical flow. This logi-

cal flow represents a unification of the abstractions defined

by many organizations such as the AIAA (AIAA 1998),

ASME (ASME-JFE 1993), DoD’s Defense Modeling and

Simulation Office (DMSO) (DoD ) and DOE Defense Pro-

gram’s (DOE/DP) Accelerated Strategic Computing Initia-

tive (ASCI) (Pilch, Truncano, Moya, Froelich, Hodges, and

Peercy 2001). The dotted arrows shown in this figure rep-

resent human activities that are implemented with various

degrees of automation, allowing a transitioning from the

physical system to the system’s conceptual model (via anal-

ysis), next to the computational model (via computational

methods), and then back to the physical system (via simu-

lation). A conceptual model is constructed by analysis of

the behavioral structure of the physical system within an

application context.

The conceptual model can be a set of partial differen-

tial equations (PDEs) representing conservation laws with

appropriate constitutive equations. Typically, this type of

mathematical representation is known as an analytical model

that encapsulates the conceptual model. This model repro-

duces the behavior of the physical system and belongs to the
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class of models designated as “explicit” or “physics-aware”

(Michopoulos 2004).

Another form of conceptual model is that of a “physics-

agnostic” model such as rule-based (e.g. Cellular Automata

or Genetic Algorithms) or input-output associator tech-

nologies (e.g. Neural Nets, Perceptrons, Support Vector

Machines). The corresponding analytical or mathemati-

cal model introduces errors associated with its underlying

idealized assumptions.

The computational model is encapsulated by the soft-

ware that implements the conceptual model within the com-

putational infrastructure. It is constructed by a variety of

programming techniques based on various degrees of com-

putational automation ranging from manual to automated

software generation that exploits the ability of commercial

design tools. The computational model justifies the need for

verification because it introduces additional uncertainty that

is associated with space and time discretization, i.e. errors

associated with the discrete representation of differential

operators and machine truncation.

The formal definitions of the QV&V terms are as follows

(AIAA 1998):

• Qualification is the process of determining that a

conceptual model implementation represents cor-

rectly a real physical system.

• Verification is the process of determining that

a computational model implementation represents

correctly a conceptual model of the physical sys-

tem.

• Validation is the process of determining the degree

to which a computer model is an accurate represen-

tation of the physical system from the perspective

of the intended uses of the model.

Both validation and qualification attempt to establish the

representational fidelity of the conceptual (qualification) and

computational (validation) models relative to the physical

system. For this reason, qualification may be considered

another form of validation. This consideration explains why

most of the bibliography concerns verification and valida-

tion (V&V). Verification attempts to determine the error

and accuracy between two models (conceptual and com-

putational). The modeling of uncertainty has to address

the error originating from various sources extending from

sensor device noise to algorithmic approximation and com-

putational implementation of mathematical primitives by

particular hardware architectures.

Shown in Figure 1 are QV&V concepts in terms of a

comparison between the behavior of the physical system

(via experimentation), and the conceptual and computa-

tional systems (via simulation). In addition to complexity,

the most critical issue associated with this data-driven behav-

ioral comparison among the various system representations
4
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Figure 1: Flow Chart of the Traditional QV&V for the M&S Process
is “weak termination”. Unfortunately, termination of the re-

cursive process of minimizing the differences between model

predicted data sets and data sets generated by the physical

system, is not guaranteed for the user defined accuracy (as

a measure of fidelity of simulation) in a finite time, nor is

it guaranteed that there is a unique model prediction that

converges to the physical system behavior with a desirable

speed. This is represented clearly by the fact that as long

as the comparison modules in Figure 1 evaluate to “no,”

the methodology will continue to iterate. This situation

forces the user in general, to employ “engineering approx-

imations.” That is to say, attitudes of accepting models

within “acceptable bounds” for specific applications, which

consequently lead to a plethora of low-confidence models

that vary according to the personal modeling assumptions

of the specific user.

2.2 Embedded Validation of Modeling and Simulation

Addressing weak termination as well as moving towards

a realistic approach that guarantees relative fidelity in a

model requires considering an alternative approach. This

approach involves implementing an M&S methodology that

can utilize: (1) data-streams of controlled continuous sys-

tem behavior (stimulus-response pairs of all observables

regardless of their field or non-field nature); (2) analytical

representations of the model that can accurately reproduce a

subset of the acquired data via system identification through

successive dynamic model adaptation with the help of op-

timization techniques (encoding intrinsically the validity of

the derived model); and (3), derived models for simulating

the predictive response of the originally modeled system
209
or any other system that shares the identified continuous

behavior with the original system.

Figure 2 shows the data driven M&S process as a mod-

ification of that shown in Figure 1. The modules located

within the dashed-line region constitute an alternative con-

ceptual model that is defined by the optimization structure

comprising these modules. This approach effectively em-

beds data associated with observed behavior of the physical

system, into the conceptual model, thus guaranteeing the

intrinsic validity of the conceptual system. For continuous

systems, this model usually refers to the mathematical for-

mulation representing the conservation laws and associated

constitutive equations. Since no comparative module exists

between the physical and simulated data (see Figure 2) this

methodology eliminates entirely the weak termination prob-

lem. Termination is strong because the adaptively computed

model is trained on the behavioral data and therefore must

terminate if it satisfies the optimization criteria, including

any acceptable error tolerance between actual and simu-

lated data. Accordingly, termination occurs prior to using

the model for prediction of behavior.

3 DATA MAY CONTAIN COUPLING BETWEEN

EXPERIMENTAL FRAME AND PHYSICAL

SYSTEM

The process of forming a system model based on measure-

ments associated with the behavior of a physical system

with the aid of an experimental frame falls in the area of

inverse modeling and is depicted schematically by Figure

3(a). Repeating the loop of he validation comparison many

times is a direct consequence of the dynamic character of

a DDDAS. This perspective reflects the most commonly
5
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Figure 2: Evolved QV&V for Data-Driven M&S Process
accepted representation of the interaction between the ex-

perimental frame, the physical system and the corresponding

model as they have been introduced by the the theoretical

foundations of M&S (Bernard P. Zeigler 2000).

When the optimizer’s tests have been terminated then

the established model can be used within the simulator

to interact with the experimental frame and adjust certain

preferred features of the data acquisition and control process

in the context of the continuous interaction of measurements

with simulation as predicated by the DDDAS context as

shown in Figure 3(b). It is conceivable that any given

DDDAS can alternate from the model formation scheme on

the left to the data acquisition and control scheme on the

right as many times as the validation acceptance criteria are

violated during the life of the entire simulation.

However, the experimental frame itself is comprised

from the actuation, sensing and control subsystems. Fur-

thermore, all measurements are achieved through the sensing

layer of the experimental frame and all excitation of the sys-

tem is also achieved through the actuation layer subsystem

of the experimental frame. Thus, these subsystems appear

more as subsystems of the measured and actuated physical

system from the perspective of the data used to construct

the model. Therefore the acquired data used to identify the

model of the physical system in the optimizer, are carrying

the interaction of the sensing and actuating layer with the

physical system. Thus, the identified system is not really

the physical system of interest, but rather a coupled sys-

tem corresponding to the composition of the sensing and

actuating subcomponents of the experimental frame with

the actual physical system as shown in Figure 4(a) for the

case of the model identification and in Figure 4(b) for the
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case of the simulator that dynamically adjusts the remaining

control layer of the experimental frame. The uncertainty

introduced from error propagation of statistically definable

noise or deterministically definable deviations through the

sensing and actuation subsystems is contained in the data

and inescapably will be attributed to the physical model

while this is not true in reality. This refactored view of

the identified system suggests that in order to isolate the

behavior of the actual physical system one has to be able to

decompose the sub-behaviors of the sensing and actuating

layers of the experimental frame. Thus, identifying the be-

havior of these subsystems ahead of time as well as during

the actual system identification (because it may depend on

it) is a direction not to be forgotten in DDDAS development

and application practices by the respective researchers and

practitioners. Of course, this depends always on the strength

of the interaction and its effects on the data. In other words,

for some cases it may be ignored but for some other ones

it has to be considered.

4 EXISTENCE OF DATA AND MODEL SPACES

SUGGEST SEEKING OPTIMAL CHOICES

The two most important concepts of a DDDAS are the data

used to make the model or/and adjust the simulation and

the model associated with the underlying physical system.

In fact, in the inverse problem and system identification

bibliographies there is a scarce reference to the data and

model spaces (Tarantola 2004). The isomorphic aspects

between these disciplines and DDDASs as described else-

where (Michopoulos and Lambrakos 2005) directly suggest

by implication that data space and model space play a
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Figure 3: Conventional Coupling among Physical System, Experimental Frame and System Model Optimizer Components

(a) and Data Acquisition and Control Simulation Optimizer (b)

Figure 4: Actual Coupling among Physical System, Experimental Frame and System Model Optimizer Components (a) and

Data Acquisition and Control Simulation Optimizer (b)
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very important role in the development and application of

DDDASs.

Spaces in general, are characterized by their respective

dimensionality and the associated basis. Determining both

of these attributes for both the data and model space such

as one achieves the DDDAS simulation objectives can be

a central problem when fidelity of simulation depends for

example on the tradeoff of accuracy with efficiency as

markers of the quality of the simulation.

4.1 The Data Space

Data-space is the space containing all the data that can be

generated by observing the systemic behavior via various

sensing technologies. It has both a discrete and continuous

character as its basis is formed by the parameters (discrete

or continuous in time) that constitute the input and output

vectors of a given system. Its dimensionality is determined

by the total number of these parameters. Ideally, one would

prefer that these input-output variables or parameters are

independent from each other. In many system analysis

approaches like in the case of continuum mechanics, the

data space of a system coincides with the state space of

the measurable state variables characterizing the behavior

of the system. The data-space provides us with the data

to be used to identify the system model and/or correct the

simulation in real time.

In Figure 5 a section R ⊆ R
3 of a data space is shown

spanned by the basis (im, in, oi), where im, in represent two

arbitrary input variables of the system and oi an arbitrary

output of the system. Any trajectory in this space such as the

one denoted by the black line reflects a behavioral expression

of the system. Any data acquired from this space will have

to lie one such a trajectory. For systems that the inputs are

controllable by the experimental frame the stimulus paths

can be defined on the subspace P ⊆ R
2 spanned by the

basis (im, in). One such path corresponding to the black

trajectory is the green path on this input subspace.

Important issues that arise within this context are the

determination of the data sampling distance along the behav-

ioral trajectory, its variability, the shapes of the proposed

excitation paths and their sequencing. More importantly

one may ask if indeed the dimensionality and type of basis

selected is appropriate, underspecified or overspecified for

determining the behavior of the system. A case in point is

shown when one considers yet another subspace Q ⊆ R
2

spanned by the basis (i′k, o′
n
), where the projection of

the actual trajectory (in the higher dimensional superspace

R ⊆ R
3) appears as a line without undulations (blue line in

Figure 5). This clearly indicates that it may be dangerous

to underspecify the observation space because it will yield

to an unrealistic system determination. Overspecification

of the system also is problematic because it yields to less

efficient and more costly system identification or simulation
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Figure 5: Data Space Section and Potential Subspaces

in order to capture redundant and unimportant features of

the systemic behavior.

4.2 The Model Space

Following the inverse-problem approach, a system is repre-

sented by a model and associated set of adjustable parame-

ters. The particular choice of a model (or equivalently, model

and associated set of parameters) is termed a “parameteriza-

tion” of the system. The choice of a parameterization to be

used to describe a system, however, is in general not unique.

In order to address the property of non-uniqueness of system

parameterization, inverse problem theory has adopted the

concept of ”model space,” where each point of this space

represents a “conceivable” parameterization of the system.

Given a model space for a specific system, quantitative

system identification is further enhanced, or optimized, by

isolating those regions of model space corresponding to pa-

rameterizations that establish a well-conditioned mapping

between model and process parameters, i.e., between model

and data space, over a sufficiently wide range of values of

the parameters. Specification of a well-conditioned mapping

between model and data space is equivalent to (or implies)

the specification of a complete set of basis functions. It

follows that one may establish a correspondence between

an optimal system parameterization and an optimal set of

basis functions for parametric representation.

The concept of a model space and optimal parameter-

ization establishes a foundation for providing a relatively

more rigorous definition of the term “data-driven model.”

Accordingly, the general relationship between data space
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and model space is such that the vector space character of the

data space as determined by the functional representation of

the data is what determines what are the optimal regions of

model space to be adopted for model representation. This is

in contrast to using a particular model parameterization to

determine what regions of the data space are to be sampled.

4.3 Important Questions

The existence of an optimal parameterization imposes the

need to examine what are the practical considerations for

development of numerical procedures for effecting an opti-

mal model representation. Among these considerations are:

1) what are the optimal dimensionalities and sets of basis

functions for both the data and model spaces, or equiv-

alently, can a subspace be defined in practice that tends

minimize data sampling, while still maximizing the encod-

ing of system response characteristics of interest; 2) can one

in practice isolate the optimum path(s) and determine the

best path sequencing for acquiring data from the data space

and isolating optimal regions of model space; and 3) can

one in practice determine those regions of data and model

space that tend to satisfy distinct performance criteria.

A reasonably optimal system parameterization having

been established, it follows intuitively that not every segment

of the data space will be mapped into the associated region

of model space. Accordingly, the existence of any reason-

ably optimal parameterization will imply the existence of

a reasonably optimal subspace within a given data space.

It is significant to note that the structure of the subspace

establishes a criterion for optimal filtering of data, which

can be interpreted as a projection operation with respect to

the subspace. It follows that regions of data space that can-

not be projected onto the subspace should not be sampled.

The existence of a reasonably optimal subspace within data

space implies that numerical procedures whose algorithmic

structure is such that they sample regions of data space that

do not project onto the optimal subspace will tend to be ill

conditioned.

This line of thinking indicates that another optimization

scheme is necessary. It lies above the level of the one used

to determine the values of the parameters of a model and it

rather determines the optimal parameterization in the model

space and the optimal subspace characteristics and sampling

data path features in the data space. For this reason it may be

called “meta optimization” to denote the next hierarchical

level of its application.

5 CONCLUSIONS

Our discussion has examined several significant aspects of

validation related to M&S. In particular, that a posteri-

ori validation is unnecessary for data-driven adaptive M&S

methods because validation is implicit in these methods.
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This implicit validation makes data-driven methods very

desirable with respect to reliability and suggests that when

sufficient data is available, data-driven methods are prefer-

able. In addition, one must be aware of a fundamental

property of causality, i.e. that any measurement process

influences the system being measured. This awareness is

important owing to the fact that the bias introduced by the

character of the coupling between measuring system and

the physical system itself, may be significant.

Finally, an important point of this paper is that DDDAS

implementations have been intimately associated with data

and model spaces. These spaces have certain properties

and features suggesting that there may be a wide range of

methodologies for exploiting their vector space properties.

Seeking the optimal methodologies is therefore a desirable

goal. The associated questions introduced by this final

point suggest that a meta-optimization process should be

considered for establishing the suitable restricted neighbor-

hoods within the data space and model space relating to the

DDDAS being considered.
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