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ABSTRACT 

In today’s competitive and dynamic business environment, 
companies need to continually evaluate the effectiveness of 
their supply chain and look for ways to transform business 
processes to achieve superior customer service and higher 
profitability. In this paper we propose a novel availability 
management process called Available-to-Sell (ATS) that 
incorporates demand shaping and profitable demand re-
sponse to drive better operational efficiency through im-
proved synchronization of supply and demand. We develop 
an order fulfillment simulation model to assess how the 
proposed availability management system affects supply 
chain performance, and apply the model in a server com-
puter manufacturing environment.  The simulation plays an 
important role in making strategic business decisions that 
impact customer service, revenue and profitability.  

1 INTRODUCTION 

In 2003 AMR Research described several key principles of 
21st century supply chain management and introduced the 
concept of Demand-Driven Supply Networks (DDSN). A 
Demand-Driven Supply Network is a system of technolo-
gies and business processes that senses and responds to 
real time demand across a network of customers, suppliers, 
and employees  (O’Marah and Souza 2004; Cecere et al. 
2005). DDSN principles require that companies shift from 
a traditional push-based supply chain to a pull-based, cus-
tomer-centric approach. Companies that have adopted the 
DDSN business strategy have become more demand sens-
ing, have more efforts on demand shaping and focus on a 
profitable demand response. Lee (2004) describes how 
leading companies have effectively built DDSN capabili-
ties into their supply chains to attain a sustainable competi-
tive advantage. 

In this paper we describe a novel availability manage-
ment process, called Available-to-Sell (ATS), that incorpo-
rates demand shaping and profitable demand response to 
drive better operational efficiency. The proposed process 
directly applies demand and supply data to better respond 
to changes in the marketplace. It utilizes intelligent product 
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substitutions to mitigate short-term misalignments of sup-
ply and demand to enable companies to take full advantage 
of a “sell-what-you-have” strategy. The process involves 
generating an availability outlook that allocates available 
component supplies into Available-To-Promise (ATP) 
quantities of saleable end products based on current supply 
and demand. It is directly supported by an analytical opti-
mization model that enables on demand up-selling, alterna-
tive-selling and down-selling to better integrate the supply 
chain horizontally, connecting the interaction of customers, 
business partners and sales teams to the procurement and 
manufacturing capabilities of a company. The business 
process is most effective in an assemble-to-order (ATO) 
environment where end products are configured from 
pluggable components. 

The models and capabilities described in this paper 
enable companies to maintain a financially viable, profit-
able, and marketable product portfolio, take effective ac-
tions to avoid excess and surplus component inventory, 
and articulate marketable alternate product offerings. They 
can easily be imbedded into supply chain operations to im-
prove day-to-day flexibility. For example, direct sales 
businesses that deal with customers directly through their 
website or telesales system can highlight featured products 
on-the-fly based on current component availability and 
steer customers towards product configurations that they 
can supply easily and profitably. 

Ball et al. (2004) develop a general modeling frame-
work for availability promising and present examples of 
ATP business practices from electronics companies includ-
ing Dell and Toshiba. Chen et al. (2002) present a mixed in-
teger programming model that provides an ATP order prom-
ising and fulfillment solution for batch orders that arrive 
within a predefined time interval. Ervolina and Dietrich 
(2001) describe an application of the implosion technology 
for ATP order promising in assemble-to-order (ATO) and 
configure-to-order (CTO) manufacturing environments. The 
goal is to create a feasible production plan that can be used 
to schedule or promise customer orders. Chen-Ritzo (2006) 
studies the availability management process for CTO system 
with order configuration uncertainty and formulates a two 
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stage stochastic linear program with recourse that is solved 
using a sample average approximation method. Dietrich et 
al. (2005) describe an Available-To-Sell (ATS) implosion 
model that finds marketable products that consume the ex-
cess while minimizing additional component purchasing 
costs. Akcay and Xu (2004) develop a two-stage stochastic 
integer program with recourse to allocate constrained com-
ponents so as to maximize the fraction of orders assembled 
within a quoted maximum delay. Balakrishnan and Geunes 
(2000) and Hale et al. (2001) study component and product 
substitution problems in ATO systems. Ettl et al. (2006) 
formulate the problem of finding marketable product alter-
natives in a given product portfolio as a non-linear program 
and develop an efficient column generation procedure for 
solving the problem. Balakrishnan et al. (2005) apply con-
cepts from revenue management to investigate how a firm 
can maximize profits by shaping demand through dynamic 
pricing.  

Industry best practices for demand shaping and de-
mand response include identifying entry level products 
suitable for up-selling, changing marketed products based 
on supply position, providing product alternatives, and 
methods of continuous up-selling and cross-selling to meet 
financial objectives. To this end, a strong management sys-
tem willing to make the nearly instantaneous decisions to 
drive the business forward is necessary, and must be sup-
ported by an integrated process and tool suite with sense 
and respond technologies, dynamic creation of up-sell and 
cross-sell relationships, and robust end-to-end analytics. 
Entry level products are often highlighted to customers to 
provide an interesting price-performance point that will es-
tablish a sound brand image and elicit a favorable customer 
response (i.e., buy decision) to direct or indirect marketing 
materials.  These marketed entry level products are usually 
forecasted at a lower rate that actual demand, driving 
longer product availability lead times. The seller must have 
a reasonable supply line for the entry level products to 
meet regulatory and country specific business practices.  
The goal is to have customers contact the seller which pro-
vides the opportunity to up-sell the customer to a more 
richly configured solution, normally at a higher price-
performance point, usually thought of as the market “sweet 
spot” for the product category.  One of the advantages of 
the sweet spot products is the improved lead time to ship or 
delivery availability over the entry level products deter-
mined due to forecasting greater sweet spot volumes.  In a 
consumer society driven by having a product in next to real 
time, improved shipment or arrival lead times can be a 
compelling factor in a purchase decision. 

The remainder of this paper is organized as follows. In 
section 2 we present the underpinning principles of avail-
ability management and discuss the advantages and disad-
vantages of different management approaches. In section 3 
we present the problem definition and develop a simulation 
framework for modeling order fulfillment with product 
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substitutions in an assemble-to-order supply chain. Nu-
merical findings and discussions of results are presented in 
section 4. This produces several insights into how ad-
vanced availability management can help proactively coor-
dinate supply and sales, and it quantifies several business 
benefits in the context of assemble-to-order manufacturing. 
Section 5 concludes this paper. 

2 AVAILABILITY MANAGEMENT BUSINESS 
PROCESSES 

Availability management is the overarching task of balanc-
ing the planning of supply and demand and the execution 
of supply and demand. To achieve this task, companies 
have developed business processes that coordinate the flow 
of subtasks along with the use of information technology 
and decision support. 

2.1 Available-to-Promise (ATP) 

The planning side of availability management is adminis-
tered by a Sales and Operations Planning (S&OP) process. 
The goal of S&OP is to generate a single plan of product 
availability that incorporates a company’s revenue targets, 
unbiased demand forecasts, and the capacity of its supply 
chain. This plan is called the Available-to-Promise (ATP) 
schedule. The ATP schedule establishes a unified direction 
to which the sales and marketing teams will drive selling 
activities, the supply chain will plan to procure supply, and 
the finance teams will target revenue and earnings.  

The execution side of availability management deals 
with a real-time stream of customer orders where each or-
der must be scheduled or promised. As a customer request 
arrives, the order scheduling process must promise an 
availability date to the customer. This task involves check-
ing the contents of the order against the ATP schedule, de-
termining an availability promise date to the customer, and 
decrementing the ATP to accurately reflect the supply 
committed to new customer orders. The ATP schedule is 
the main linkage between availability management plan-
ning and execution as shown in Figure 1. 

 

Figure 1: Availability Management with Available-To-
Promise (ATP) 
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The ATP process utilizes an analytical technique 
called implosion to generate an optimized ATP schedule 
that takes into account supplier commitments and limited 
manufacturing capacities (e.g., Dietrich et al. 2005). Be-
cause the implosion technology has no means of dealing 
with unallocated supply, a separate non-integrated business 
process is often created to manage inventory excess and 
overages, e.g. by exercising buy-back agreements with 
component suppliers or other procurement related tech-
niques. 

2.2 Available-To-Sell (ATS) 

We propose a new concept for advanced availability man-
agement, called Available-to-Sell (ATS) that is gaining 
more and more traction with high-technology manufactur-
ers that rely on suppliers to provide various materials and 
components needed to build finished products. ATS is de-
signed to intelligently find alternative product configura-
tions that best consume excess supply while minimizing 
additional procurement investments to build “squared” sets 
of components (i.e., complete sets of components needed 
to produce the finished products). Figure 2 illustrates the 
integration of ATP and ATS into an event-driven availabil-
ity management process. 
 

 

Figure 2: Availability Management with Available-To-Sell 
(ATS) 

 
 ATS seeks to ensure that the additional product avail-
ability is sellable and not in conflict with sales and market-
ing goals. The key output of the integrated process is a 
“conditioned” ATP schedule that comprises optimized 
ATP quantities of core products as well as ATP quantities 
of saleable product alternatives. The conditioned ATP 
schedule may take advantage of up-sell, alternate-sell or 
down-sell opportunities. An up-sell opportunity is where a 
customer or business partner is sold a more richly config-
ured solution above the customer’s initially selected price 
range. Incentives may be used to entice the customer to 
agree to an up-sell. An alternative-sell relates to a sale of a 
similar product that falls within the selected price range. 
An alternative-sell is performed when an up-sell is not 
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available or the customer opts for a similarly priced prod-
uct. A down-sell opportunity refers to a sale of a product 
that falls below the price range selected by the customer.  

The integrated process is most effective in an assem-
ble-to-order (ATO) supply chain environment where end 
products are configured from pluggable components and 
where customers can configure personalized products by 
selecting options from different feature categories such as 
hard disks, microprocessors, video cards, etc. In an ATO 
environment component supply is generally more flexible 
and the simplified product structure makes it more likely 
that product substitutions will drive customer demand.  

3 MODELING APPROACH 

In this section we formulate a mathematical programming 
model for ATS that generates the conditioned ATP. We 
also define the customer behavior model and describe the 
simulation framework that we have developed for conduct-
ing numerical experiments.   

3.1 Notation 

Before we state the problem formulation, we define the no-
tation that is used throughout the paper.  

 
Products and components 
I   : set of components  
P  : set of end products  
C  : set of core end products (core portfolio)   
S  : set of alternative end products (extended portfo-
lio) where PSC =U . 
 
Demand and supply 

jtD  : demand forecast for product Cj ∈ in period t 
max
jtD  : upside demand flexibility for product Cj ∈  in 

period t  (note that jtjt DD ≥max ) 

itS   : supply of component Ii ∈  in period t 
 
Bills-of-materials 

ijB   : 1 if product j requires component i , 0 otherwise 

PjIi ∈∈ ,  

jkA  : 1 if product  Sk ∈  can be sold as a substitute 

for product Cj ∈ , 0 otherwise. 
 
Costs and profit 

jp   : price of end product Pj ∈  

jw   : profit of end product Pj ∈  
4
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jka   : penalty cost of substituting one unit of product 

Sk ∈  for one unit of product Cj ∈ in the ATP schedule 
where 1=jkA . 
 
Decision variables 

jtY   : ATP quantity for Pj ∈  in period t. 

itE   : excess inventory of component Ii ∈  in period t. 

jktX  : ATP quantity of end product Sk ∈  used as a 

substitute for end-product Cj ∈  in period t. 

3.2 ATS Problem Formulation 

Inputs to the optimization model are a core product portfo-
lio, and extended product portfolio, and the demand fore-
cast for core products. The core portfolio contains cur-
rently featured products that are offered by the seller 
whereas the extended portfolio contains alternative prod-
ucts. The alternative products may be used to fulfill unsat-
isfied demand for core products with additional substitu-
tion cost incurred. The components used to configure a 
saleable product are divided into feature categories where 
each component belongs to exactly one category. A bill-of-
material describes the set of components needed to produce 
each product in the core portfolio and the extended portfo-
lio.  
 The goal of the optimization is to build enough vol-
ume to satisfy the demand forecast for each core product. 
If that can not be achieved, the model creates a conditioned 
ATP schedule with alternate products. The objective 
shown in (1) is to maximize a financial objective in period 
t comprising of profit from sales, inventory holding costs 
and product substitution costs. Product substitution costs 
model any costs incurred for using an alternative product 
to fulfill demand for a core product. Backlogging is mod-
eled as a lost profit opportunity. 
 
 ∑∑∑∑

∈∈ ∈∈

−−
Ii

iti
Cj Sk

jktjkjt
Pj

j EhXaYwmax    (1) 

 
 Let us now formulate the constraints. The ATP quan-
tity for product j, jtY , is allowed to exceed the demand, 

jtD , but is strictly bounded by the upside demand flexibil-

ity limit max
jtD . An internal cost discount is applied to the 

portion of the ATP quantity that exceeds the demand. This 
forces ATS to build up to the nominal demand of a product 
before building upside flexibility for any other product. 

 
CjDXY jt

Sk
jktjt ∈∀≤+∑

∈

,max        (2) 
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 The ATP schedule must be feasible with respect to the 
component supply, i.e., the number of components con-
sumed plus any unallocated inventory must be equal to the 
available component supply: 

 
IiSEYB itit

Pj
jtij ∈∀=+∑

∈

,         (3) 

  
 Finally we impose non- negativity constraints on the 
decision variables: 

 
PjY jt ∈∀≥ ,0            (4) 

 IiEit ∈∀≥ ,0            (5) 

 SkCjX jkt ∈∈∀≥ ,,0           (6) 

 
 The optimization problem (1)-(6) is a linear program 
that can be solved very efficiently even for large problem 
sizes. Notice that there is no explicit demand forecast for 
products in the extended portfolio, and core products are 
not sold as alternatives for other core products. Further-
more, while there is an upside flexibility limit on the de-
mand for each core product, there is no limit on how many 
alternative products can be made available in the ATP 
schedule.  However, observe that the total ATP quantity 
across all products in period t is limited to sum of the up-
side demand flexibility values max

jtD for all Cj ∈ . 

3.3 Customer Behavior Model  

Demand is principally shaped by performance, price and 
availability. Sound conditioning relies upon shaping client 
perceptions and expectations of the seller’s product portfo-
lio’s value. We next describe our customer behavior model 
and explain how customers evaluate alternative products if 
their initial product selection is unavailable.  
 Each customer has an associated price sensitivity pa-
rameterα that determines the incremental price that the 
customer is willing to pay for an alternative product, and a 
quality sensitivity parameter β that determines the cus-
tomer’s valuation of quality. The customer’s price sensitiv-
ity is modeled by a reservation price. In particular, if a cus-
tomer’s initial purchase is for product j and jp denotes the 
price of product j, the customer’s reservation price is 
drawn uniformly from the interval ])1(,[ jj pp α+ . Simi-
larly, the customer’s quality sensitivity is modeled by a 
reservation utility. If jq denotes the quality level of product 
j, the customer’s reservation utility is drawn uniformly 
from the interval ],)1[( jj qqβ− . Following standard prac-
tice, we compute the quality level of a product as the 
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(weighted) average of the quality scores of the components 
used in its configuration. Each component in a commodity 
group is assigned a quality score (a value between 0 and 
100) based on its quality relative to all other components in 
the same commodity group. Higher scores are assigned to 
components with higher parts worth, e.g., a 120GB hard 
disk will score higher than a 60GB hard disk.       
 The price sensitivity and quality sensitivity together 
determine whether customers will consider an alternative 
product k if their initial selection j is currently unavailable. 
Customers are willing to purchase an alternative product if 
its price does not exceed their reservation price and if its 
quality is no less than their reservation utility. If no alterna-
tive selections in the desired quality range are available or 
exceed the customer’s reservation price, we assume that 
customers place a backorder for their initial selection.  

3.4 Simulation Framework 

The simulation model was built using the Availability 
Management Simulation Tool (AMST) that has been used 
for several years at IBM to develop various availability 
management simulation models (Lee 2006). AMST was 
developed using the simulation capabilities of IBM’s WBI 
Modeler® as a simulation modeling framework for avail-
ability management processes.  

The simulation framework consists of reusable com-
ponents and methods which are easily adapted for various 
availability management environments.  The tool has been 
instrumental in evaluating and deploying several availabil-
ity management transformation opportunities at IBM. The 
simulation model developed for this study interfaces with 
the ATS optimization engine to obtain ATP quantities, 
generates and schedules customer orders against the ATP, 
and simulates supply chain dynamics such as customer 
shopping behavior, reservation price, customer buying 
preferences, and variability of customer demand. Figure 3 
illustrates the simulation model and its interaction with the 
ATS optimizer described in the previous subsection. 

 

 
Figure 3: Availability Simulation Model and Interface to 
ATS optimization.  
2016
 Customer orders are generated according to a demand 
forecast and other attributes such as product specification, 
price sensitivity and quality sensitivity. The orders are then 
processed and scheduled against ATP quantities. Here 
various order scheduling policies, such as up-sell policies, 
down-sell policies, priority scheduling, and incentives are 
simulated. When an order is scheduled, the ATP quantity 
of the scheduled product is decremented, and correspond-
ing components are decremented from the inventory of 
components according to the bills-of-materials.  At the end 
of a period, the supply-demand task is triggered to invoke 
the ATS engine which computes optimized ATP quantities 
based on the updated information on supply and demand 
and a new set of customer orders is generated.  The simula-
tion collects statistics on all relevant business performance 
metrics such as order backlog, serviceability, inventory 
holding costs, sales revenue and profit. 

4 SIMULATION STUDY 

We implemented the availability management models de-
scribed in the previous section and applied them to an as-
semble-to-order (ATO) system for mid-range server com-
puters. Through simulation analysis we examine the 
question of when ATS outperforms traditional availability 
management approaches such as ATP. In this section we 
present our numerical findings. First, we examine the ef-
fect of supply variability on the performance of the supply 
chain and compare ATS and ATP in terms of expected 
profit and delivery availability. Second, we investigate 
how a seller can take advantage of up-sell opportunities to 
advertise more richly configured solutions to customers for 
increased profit. Finally, we analyze the effect of custom-
ers’ price sensitivity on profitability and examine how it 
influences the seller’s demand shaping strategy.   

4.1 Model Description 

The example scenario for the numerical study is derived 
from a real-world problem compiled from actual server 
computer manufacturing data. The product portfolio con-
sists of eight server computer products that represent a 
wide spectrum of price-performance points. The products 
and their bills-of-materials are depicted in Table 1. Product 
configurations M1 and M2 are entry-level products, M3 to 
M6 are mid-range systems, and M7 and M8 are high-
performance computers. Each product is assembled from 
one component of each of six different commodity groups: 
system processors, memory, hard drives, optical drives, 
video adapters and software preloads. For example, prod-
uct M1 is assembled from a 2.8GHz system processor, a 
30GB hard drive, 128MB memory, a 48X CD-RW optical 
drive, an Extreme 3D video card and a system software 
preload B. 
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 The table also shows the quality score and the cost of 
every component. The quality score of a component de-
pends on its parts worth relative to the other components in 
the same commodity group. Components with the highest 
parts worth are assigned the highest quality score. We as-
sume that the quality score of product j, jq , is the average 
of the quality scores of all components used in its bill-of 
material. The sales price of product j, jp , is the cumula-
tive cost of the components after applying a 20 percent 
profit margin. The quality scores and sales prices of the 
product portfolio are displayed in the two bottom rows of 
Table 1.   
  

Table 1: Bill-of-Materials Structure Used in the Simulation 
Study.  

 
 
 To model demand, we assume that 000,1=jD  cus-
tomer orders for product j arrive on average in each time 
period. For every customer order, the simulator randomly 
generates a reservation price and a reservation utility as de-
scribed in section 3.3 to model the customer’s propensity 
to purchase an alternative product. The price and quality 
sensitivity parameters used in the customer behavior model 
are assumed to be 25.0=α  and 10.0=β  respectively. 
 To enable product substitutions, we defined five alter-
native products for each product configuration in the core 
portfolio. These include one down-sell product with a 5-
10% lower price point than the core product, two alterna-
tive-sell products with a similar price and quality score, 
and two up-sell products that are priced 10-20 percent 
higher than the core product. For each customer order, the 
simulator first queries the conditioned ATP for the avail-
ability of an up-sell product within the reservation price of 
the customer. If none of the up-sell products are on hand, 
the simulator checks the ATP schedule for the customer’s 
initial selection or an alternative-sell, and as a last resort 
for a down-sell product. Finally, if neither the customer’s 
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initial selection nor any qualified product substitution is 
available the order is backlogged. For all scenarios in our 
numerical study we conducted 15 independent replications 
and captured statistical outcomes for several performance 
metrics pertaining to supply chain responsiveness, order 
fulfillment performance, and profitability.    

4.2 Effect of Supply Variability 

Our first set of experiments shows that the ATS model can 
perform better than a traditional ATP model when the 
component supply deviates from the ideal net component 
requirements. We calculated the net component require-
ments by “exploding” the demand forecast through the bill-
of-materials in a standard MRP-type calculation (e.g., 
Hopp and Spearman, 2000). This calculation yields an un-
biased component mix for each commodity group which 
we used as a baseline. Subsequently we generated random 
supply scenarios and allowed the supply mix to deviate 
from the unbiased supply mix. The mean absolute percent-
age deviation from the unbiased supply mix varied be-
tween 10 and 25 percent across all components. Table 2 
shows the simulation results for customer serviceability 
(i.e., the fraction of orders filled from on-hand inventory), 
order backlog, and sales profit. 
   

Table 2: Performance Comparison Between ATP and ATS 
Under Different Supply Scenarios.  

 
 
We find that the percentage decrease in backlog resulting 
from ATS order scheduling over ATP is as high as 31%. 
The relative improvement in total gross profit increases 
with the deviation from the ideal supply mix and is as high 
as 6.1%. The reason is that the ATS optimizer can more 
effectively mitigate supply-demand imbalances and allo-
cate supply to saleable product alternatives, thus reducing 
backlog and increasing sales, whereas ATP is restricted to 
allocating supply to products in the core product portfolio. 

4.3 Effect of Supply Skew 

As indicated in the introduction, sellers often feature entry 
level products in their marketing materials to provide a 
competitive price-performance point, but usually forecast 
these products at a lower rate than actual demand. Once 
contact with the customer is established (either via tele-
sales personnel or a direct sales website), the seller ex-
plores the opportunity to up-sell the customer to a more 
7
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richly configured product at a higher price-performance 
point for increased revenue and profitability. Table 3 
shows three supply scenarios that are increasingly skewed 
towards higher value components within the three com-
modity groups processors, hard drives and memory. The 
ideal supply mix, derived from the net component re-
quirements, is shown in the second column as a baseline.     

 

Table 3: Scenarios for Low, Moderate and Heavy Compo-
nent Supply Skew 

 
 

Figure 4 displays the attainable profit and the number 
of alternative product purchases under an ATS regime 
when the seller takes advantage of up-sell opportunities. In 
addition to utilizing reservation prices and reservation utili-
ties to determine whether a customer will consider an al-
ternative product, we assume that a fraction of customers 
are committed to their first product choice and will not ac-
cept an alternative configuration. We assume that the first-
choice probability is 0.3 for customers of entry-level prod-
ucts M1  and M2, 0.5 for mid-range products M3 to M6 and 
0.7 for high-performance products M7 and M8. 
  

 
Figure 4: Expected Profit and Number of Substitutions 
with ATS Under Increasing Supply Skew. 

 
 It is clear from the figure that a skewed supply mix 
can result in 2-3% higher profitability over the unbiased 
case when supply is allocated intelligently to enable up-sell 
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purchases. Slightly more than 3,000 customer orders - or 
38% of the total orders - are filled with alternative products 
in the three biased supply scenarios. This number is largely 
independent of the degree of supply skew. 

The fact that the relative profit increase is not more 
dramatic can be explained by noting that under the above 
first-choice model assumptions only 50 percent of custom-
ers consider an up-sell product alternative. Since a cus-
tomer’s price sensitivity is sampled from the interval 
[0,.25], the average potential profit increase per up-sell is 
12.5%. A theoretical upper bound on the total profit im-
provement is thus 6.25%. However, the attainable profit 
uplift is lower for several reasons: first of all, because the 
seller maintains a limited portfolio of alternative configura-
tions, an up-sell purchase will normally not realize the res-
ervation price of the customer; secondly, the majority of 
up-sell opportunities pertain to entry-level products that 
produce lower profits; and thirdly, customer orders with 
low sampled reservation prices may result in backlog (or 
down-sells) if the price point of the up-sell configurations 
offered by the seller is above the customer’s price range.   

4.4 Effect of Price Sensitivity 

To analyze how the reservation price of customers can 
affect the seller’s profitability, we used the heavily skewed 
supply scenario from the previous experiment and simu-
lated the supply chain performance under different settings 
of the price sensitivity parameterα . We examined four 
scenarios where 75,.50,.25.=α and ∞=α . Higher values 
of α  imply that customers are less price sensitive. In the 
last scenario customers are price insensitive, i.e., they will 
accept an up-sell product regardless of price as long as the 
quality score meets or exceeds their reservation utility. 
Figure 5 shows the expected profit and number of alterna-
tive product purchases as a function of price sensitivity.   

 

 
Figure 5: Expected Profit and Number of Substitutions for 
Different Values of the Price Sensitivity Parameter α .   
8
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 In these examples, the ATS process results in substan-
tially improved profits. When customers are price insensi-
tive, the profit gain is as much as 11 percent above the 
baseline scenario with unbiased supply (recall that in our 
experiments the up-sell products are priced on average 15 
percent higher than the corresponding core product). The 
boost in profitability is driven by the increased number of 
up-sell purchases, because as α increases the reservation 
price becomes a less dominant factor for completing a sale. 
 Figure 6 displays the effect of price sensitivity on or-
der backlog and customer serviceability. As the reservation 
price parameter increases, the order backlog decreases be-
cause higher reservation prices translate into fewer cus-
tomers rejecting an up-sell configuration when their first 
choice selection is unavailable. At the same time the re-
duced order backlog drives up customer serviceability as 
shown in the figure.   
 

 
Figure 6: Order Backlog and Customer Serviceability for 
Different Values of the Price Sensitivity Parameter α .   

5 SUMMARY AND OUTLOOK 

In this paper we have developed and simulated an ad-
vanced ATS availability management process for assem-
ble-to-order supply chains and have outlined the business 
requirements for incorporating such a process into supply 
chain operations. The proposed approach aims at finding 
marketable product alternatives in a product portfolio that 
best utilize inventory surplus and replace demand on sup-
ply-constrained products. We have highlight the advan-
tages of ATS through simulations with realistic production 
data. The models featured in this paper have already con-
tributed to substantial business improvements in real-world 
supply chains. IBM has implemented an ATS process in its 
complex-configured server supply chain in 2002. The real-
ized savings include $100M of inventory reduction in the 
first year of implementation and over $20M reduction an-
nually in the subsequent years. 
2019
 Credible product alternatives must be contained in any 
product portfolio and be presented to customers during the 
sales process. The business benefits of doing so in conjunc-
tion with an optimized ATS process are increased revenue, 
profitability, market share, and client satisfaction. Some 
additional financial benefits that directly impact the profit 
and loss statement are the cost avoidance of brokering, 
scrapping and inventory obsolescence, reduction of inven-
tory carrying costs, return cash for additional investments, 
and improved cash-to-cash cycle times.   

Future work would include the assessment of gaps 
within the product portfolio relative to performance, price 
and/or both, and the effect on profitability and the backlog.  
The product portfolio in this work had sufficient product 
alternatives for the demands placed. If a business had 
failed to provide adequate product coverage or prematurely 
withdrew the products from active marketing, then a de-
termination on financial performance would be very inter-
esting for the product development, sales, finance and de-
mand/supply communities. Additionally, improvements in 
customer analytics such as propensity to buy and share of 
the wallet would provide greater insight into customer buy-
ing behavior and enhance the sound foundation of the cur-
rent ATS modeling. 
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