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ABSTRACT 

This research explores analytical models useful in the de-
sign of vehicle-based Automated Material Handling Sys-
tems (AMHS) to support semiconductor manufacturing.  
The objective is to correctly estimate the throughput and 
move request delay.  This analysis proposes a computa-
tionally effective analytical approach to multi-vehicle 
AMHS performance modeling for a simple closed loop.  A 
probabilistic model is developed, based on a detailed de-
scription of AMHS operations, and the system is analyzed 
as an extended Markov chain.  The model tracks the opera-
tions of one vehicle on the closed-loop considering the 
possibility of vehicle-blocking. This analysis provides the 
essential parameters such as the blocking probabilities in 
order to estimate the performance measures.  A numerical 
example is analyzed and simulated using Automod to 
demonstrate and validate the queuing model. 

1 INTRODUCTION 

Within the past decade, the semiconductor industry has tran-
sitioned from 200mm to 300mm wafer fabrication.  The 
shift to 300mm wafers is a challenging and expensive transi-
tion.  Full factory automation, required to maximize the pro-
ductivity of the capital, to satisfy ergonomic restrictions 
caused by the weight and volume of 300mm wafer lot carri-
ers, and to reduce the particle contamination and vibrational 
shocks on the wafers (Nadoli and Pillai 1994), depends fun-
damentally on automated material handling systems 
(AMHS) as the medium through which factory operations 
control is implemented.  AMHS performance is critical to 
achieving the planned return on investment (ROI) for the to-
tal capital investment.  In other words, it is not AMHS cost, 
it is the AMHS impact on performance that is crucial.  
AMHS may introduce lot delays or cause tool idle time by 
failing to move lots in the planned and allotted time.  In fact, 
according to the International Technology Roadmap for 
Semiconductors  (ITRS Report 2005), the key focus areas 
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and issues for 2005 and beyond is to increase throughput for 
AMHS, reduce average delivery times, and improve its reli-
ability. 

Contemporary simulation technology can produce ac-
curate assessments of fab production performance, includ-
ing the contribution by the AMHS.  However, the corre-
sponding simulation models are both expensive and time-
consuming to construct, and require long execution times 
to produce statistically valid estimates.  These attributes 
render simulation ineffective as a decision support tool in 
the early phase of system design, where system configura-
tions are likely to change often. 

A typical 300mm AMHS has a spine layout, illustrated 
in Figure 1, with a central material handling spine and 
loops branching on both sides to serve production equip-
ment.  There are two distinct operating scenarios: (1) the 
spine and the loops are decoupled, and vehicles are dedi-
cated to the spine or to one of the loops; or (2) the spine 
and the loops are integrated, and vehicles may move freely 
between them (Pillai et al. 1999).  In this research, we con-
sider only the first case, which means a wafer lot moving 
from a tool on one loop to a tool on a different loop must 
travel through the main spine, and will use three different 
vehicles, one in each loop and one in the spine.  Automated 
storage units, referred to as stockers, are used to provide 
both temporary buffering for work-in-process and transfer 
between the bay and spine transport systems. 

Because of the space restrictions in the 300mm wafer 
fab bays, vehicle travel is on a unidirectional closed loop 
without the ability for vehicles to pass each other, even 
when a vehicle stops to drop-off/pick-up a lot at the in-
put/output port of a process tool or a stocker.  Thus, failure 
to carefully synchronize vehicle movements on a given 
loop can lead to significant amounts of vehicle blocking 
and the possibility of lot delay as well as induced vehicle 
idle time. 

Overhead hoist transport (OHT) system serves the 
move requests originating from the stocker(s) and the 
processor tools in the bay.  Each machine —either stocker 
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or tool— has two load ports:  an input port where loads are 
dropped off by the vehicle and an output port where loads 
are picked up by the vehicle to be delivered to their next 
destinations.  Each port can accommodate one vehicle at a 
time.  We use the term station to refer to the input and out-
put ports of the machines.  Thus, a loop serving M ma-
chines, denoted by mi, consist of s = 2M stations.  Without 
loss of generality, we assume that the loops starts at the 
stocker (m1), and the vehicles’ route is assumed to be m1, 
m2,.., mi, mi+1,…, mM, m1, m2,.. 

 

 
Machine mi has two stations: the drop-off station sd

i , 
and the pick-up station s p

i .  We model an OHT system 
configured as a simple loop, in which vehicles continu-
ously travel the loop, when a vehicle approaches an mi, it 
passes through the drop-off station sd

i , then travels to the 
pick-up station s p

i .  Loads are served by vehicles based on 
the First-Encountered-First-Served (FEFS) rule.  FEFS is a 
decentralized policy, first presented by Bartholdi and Platz-
man (1989).  In FEFS, the vehicles are constantly circulat-
ing on the unidirectional loop.  When an empty vehicle ap-
proaches an mi, it inspects the output buffer, if there is a 
load (job) waiting at s p

i , the vehicle picks it up, which re-
quires time delay l for loading the job and then delivers it 
to its destination, say machine mj, visiting machines mi+1, 
mi+2,…, mj-1, and finally the load’s destination the drop-off 
station of mj, denoted by sd

j .  The vehicle does not stop at 

machines mi+1, mi+2,…, mj-1 unless it is blocked by other 
vehicles.  If the output port  of s p

i is empty, the vehicle 

 
Figure 1: Closed-Loop Unidirectional Interbay and Intra-
bay AMHSs 
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travels to sd
i 1+ , then inspects the output port s p

i 1+    and so 
forth until it encounters a waiting load. 

In order to estimate the throughput accurately, we 
need to estimate the blocking delays at each machine—
either stocker or tool.  The main objective of the models to 
be developed is to quantify the duration of this type of de-
lay as a function of the layout of the transportation system, 
the demand rates, the speed of the vehicles and the number 
of vehicles circulating the loop.  In this paper, a queuing 
network type model is developed, based on a detailed de-
scription of AMHS operations, and the model is analyzed 
as an extended Markov chain.  With this approach we are 
able to estimate both AMHS throughput and move request 
delays. 

2 LITERATURE REVIEW 

2.1 Models of 300mm Material Handling 

Throughout the literature, the importance of AMHS in 
300mm wafer fabs has been repeatedly addressed, and re-
search in this area can be broadly categorized into: (1) de-
sign optimization, targeting the guide path network layout 
design and calculating a feasible fleet size, and (2) per-
formance evaluation of various AMHS methods or differ-
ent AMHS configurations via simulation modeling. 

In the area of design optimization, Peters and Yang 
(1997) propose a network flow formulation to determine 
the number and location of shortcuts for the interbay trans-
port system in a spine layout fab.  The objective function 
minimizes the tradeoff between the increase in shortcut 
construction cost and the decrease in material handling 
costs.  Ting and Tanchoco (2000) propose an analytical 
procedure to construct a unidirectional circular layout for 
the interbay system in 300mm fabs under the assumption 
that not all the stockers can be connected by a simple loop.   
Steele (2002) proposes an algorithm to estimate the per-
formance of an AMHS during the design process.  Each 
design alternative is modeled as a network of nodes.  The 
algorithm estimates the minimum number of vehicles re-
quired to deliver the required number of wafer lots and the 
average delivery times between each pair of source and 
destination nodes.  The algorithm assumes infinite capacity 
queues and thus does not consider blocking. 

To date, discrete event simulation has been the only 
methodology shown to give reliable estimates of fab-level 
AMHS performance.  At the system design stage, however, 
large scale, high-fidelity simulation models are not a prac-
tical approach, because they take too long to develop, and 
require multiple lengthy executions to produce statistically 
valid estimates.  Different approaches have been taken to 
overcome this problem.  For example, Mackulak et al. 
(1998) propose developing a generic model that can be re-
configured according to the specific problem at hand, 
thereby reducing the model building time.  Gaxiola and 
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Mackulak (1999) describe the use of simple deterministic 
calculations in situations where the process requirements 
have not yet stabilized. 

Pillai et al. (1999) discuss the issue of linking the in-
terbay and intrabay tracks for a 300-mm fab layout.  Rust 
et al. (2002) and Mackulak and Savory (2001) investigate 
the same problem through simulation by focusing on the 
impact of this decision on several AMHS performance 
measures.   

Lin et al. (2003) propose using four different vehicle 
types to carry out the transport tasks from tool to tool.  
Type A vehicles move in an intrabay system and deliver 
the lots within the bay.  Type B vehicles carry lots between 
the stockers.  Type C vehicles carry lots from a tool in any 
bay to a stocker in the lot’s destination bay.  Type D vehi-
cles move lots from a tool in any bay to a tool in any other 
bay.  Three different transport methods using combinations 
of the four vehicle types were examined.   

The conclusions in most of the studies depend on the 
specifications of the fab being modeled, and thus do not 
constitute generic design guidelines.  At the system design 
stage, therefore, large scale, high-fidelity simulation mod-
els are not a practical approach and system designers are 
limited in the range of alternatives they can expect to 
evaluate in detail. 

2.2 Analytical Models of Material Handling Systems 

Analytical models of AMHS are usually based either on 
deterministic optimization models or queuing models.  The 
former fails to capture queuing in the system which is es-
sential to accurately estimate the key performance meas-
ures.  Often, in analytical factory modeling, the material 
handling system is modeled by defining a “virtual” work-
station between the processing tools in a product’s routing.  
The delay associated with material handling is approxi-
mated by the processing time on this virtual workstation, 
which has a capacity equal to the number of vehicles avail-
able.  This approach is appealing because it exploits well-
understood queuing models.  However, it has some inher-
ent weaknesses.  First, it assumes that the response time of 
the AMHS to a move request does not depend on the loca-
tion of the load, nor on the vehicle distribution across the 
network.  Second, it fails to capture the impact of vehicle-
to-vehicle blocking, which, by consuming some of the 
available vehicle time, will degrade the capacity of the 
AMHS.  Vis (2004) provides a survey of work in this area.   

Johnson (2001), Johnson and Brandeau (1994, 1995), 
and Kobza et al. (1998) analyze AMHS using M/G/c queu-
ing models; these models give good approximations pro-
vided vehicle assignments are based on a First Come First 
Served (FCFS) discipline.  However, queuing results devi-
ate considerably from simulation results when the vehicle 
dispatching is system state-dependent, such as Nearest Ve-
hicle Rule (NVR).  In Johnson (2001), a queuing model is 
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used to estimate the performance of a multi-vehicle AMHS 
with NVR Dispatching.  Johnson first develops an ap-
proximation for the distribution of the empty vehicles 
among the stations, then uses an M/G/c model to estimate 
the waiting time of loads.  The latter results tend to be in-
accurate because of the assumption of state-independent 
service time.  

Curry et al. (2003) propose a more accurate service-
dependent queuing network model that generates approxi-
mations that are close to the simulation results but the time 
to solve the analytic model grows exponentially with the 
number of vehicles.   

Bakkalbasi (1990) develops analytic models to ap-
proximate the empty vehicle travel times for the following 
dispatching rules: FCFS, Closest Load First, Closest Load 
with Time Priority, and Furthest Load First.  Srinivasan et 
al. (1994) propose a single-vehicle queuing model to esti-
mate the throughput of the vehicle where the vehicle dis-
patching to move request is based on a modification of the 
FCFS rule.   

Hodgson et al. (1987) have attempted to model single-
vehicle systems using Markov decision processes. Due to 
the large number of states in even a relatively simple 
AGVS, several constraints were applied to make the Semi-
Markov problem tractable. 

In Bozer et al. (1994), the throughput approximation is 
used to estimate the waiting time of move requests at each 
station; their estimates are quite close to the simulation re-
sults.  The authors propose an extension of their model to 
multi-vehicle systems by adjusting the travel times assum-
ing that an AMHS that has K vehicles can be replaced by a 
single device that travels K times faster.  Results indicate 
good throughput estimates but significant errors in waiting 
time estimates because congestion and blocking delays are 
not modeled. 

Bartholdi and Platzman (1989) propose the First 
Encountered First Served (FEFS) decentralized policy for 
closed loop vehicle-based system.  Bozer and Srinivasan 
(1991) approximate the throughput capacity of single-
vehicle system operating under the FEFS policy. 

Roeder et al. (2004) propose a simulation of a simpli-
fied closed queueing network to model intrabay AMHS in 
semiconductor manufacturing.  The approach has fewer 
data requirements than an explicit detailed simulation 
model of the system.  The authors use an information tax-
onomy to quantify the differences between the explicit 
AMHS simulation and the queueing network approxima-
tion.  The approximation captures the movement of the ve-
hicles, interaction of the vehicles with the machine load-
ports, and processing of lots at machines.  Vehicle 
blocking, however, is not modeled. 

In summary, analytical models developed under the 
assumption that loadports have ample capacity for vehicles 
ignore vehicle-blocking in multi-vehicle systems, a critical 
characteristic of the system we study, where there are no 
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offline-docking locations (spurs) and blocking of vehicles 
is not only possible but very likely.  Modeling the AMHS 
as a single server oversimplifies the system because it as-
sumes that every move request has the same response and 
travel time.  Estimates for AMHS throughput capacity 
and/or response times based on such models will generate 
designs that deviate significantly from the actual system.  

In an earlier paper (Nazzal and McGinnis 2005), we 
develop a probabilistic model based on a detailed descrip-
tion of AMHS operations, and analyze the system as an ex-
tended Markov chain.  The model tracks the operations of 
all the vehicles on the closed-loop considering the possibil-
ity of vehicle-blocking.  Steady-state analysis provides es-
timates of empty-vehicle.  The resulting large-scale model 
provides reasonably accurate estimates; however, it pre-
sents some computational challenges.  These computa-
tional challenges motivated the development of the model 
we present here that also analyzes the system as an ex-
tended Markov chain but with a much reduced state space.  
The model tracks the movement of a single vehicle in the 
system with additional assumptions on vehicle-blocking.  
This reduced-state model offers computationally fast, fairly 
accurate estimates of the performance measures. 

3 MODELING APPROACH 

Our objective is to estimate the expected throughput capac-
ity of the AMHS for a given set of input parameters ex-
pressed by the throughput requirements, the travel times, 
the layout of the stations on the AMHS closed loop track, 
and the fleet size.  The analytical model provides estimates 
of a specific set of AMHS output variables that are essen-
tial to calculate the throughput capacity.  These output 
variables are the proportion of time the vehicles spend 
traveling (empty and loaded), in service (loading and 
unloading), and being blocked (empty and loaded).    

Rather than tracking the location of every vehicle 
while keeping a record of all the events that change the lo-
cation and status of the vehicles, we focus on a subset of 
vehicle operations;  operations that vehicles go through 
only at the drop-off  and pick-up stations, eliminating the 
travel operations that occur on the track segments.  Next, 
we enumerate the vehicle conditions relevant to our analy-
sis.  We choose to include the vehicle conditions that iden-
tify whether the vehicle has just arrived at the station 
(empty or loaded), is in service (loading/unloading), or is 
blocked (empty or loaded).   

In Nazzal and McGinnis (2005), we use a transition 
matrix to track the changes in the locations and the condi-
tions of all the vehicles.  Each possible location-condition-
vehicle combination is identified as a state.  The approach 
proposed here follows similar logic to the previous work 
but differs in that the Markov chain tracks one vehicle 
while assuming that there are n vehicles operating in the 
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AMHS and the move requests are equally distributed 
among these vehicles. 

The transition matrix tracks the changes in the loca-
tions and the conditions of one vehicle.  In the matrix, each 
distinct possible location-condition pair is identified as a 
state (in the previous model, a state is identified by loca-
tion-condition-vehicle combination because every vehicle 
was tracked).  The transition between the states is probabil-
istic and depends on the move requests rate, the number of 
vehicles, the sequence of the machines on the AMHS loop, 
and on the possibility of vehicle-blocking.  Assumptions 
on the arrival process of move requests allow us to analyze 
the transition between the states as a Markov chain.  

Some of the transition probabilities are known because 
they are easily calculated from the given problem parame-
ters (such as the probability that a loaded vehicle will be 
dropping off its load at some station), while other transition 
probabilities are only partially determined by the problem 
parameters, but also influenced by the output variables that 
we are trying to calculate, specifically the arrival rate of 
empty-vehicles to stations.  We also have a set of transition 
probabilities that will determine whether the vehicle will 
get blocked in the next state or not.  We did not need these 
in the previous model because the state specifies where 
every vehicle is located. 

The Markov chain steady-state analysis is combined 
with necessary conditions that ensure that the AMHS is 
able to meet the required throughput imposed by the ma-
chines.  These conditions provide constraints on some of 
the unknown variables in the Markov chain.  

The blocking probabilities that are introduced in this 
model are estimated by assuming that the probability that a 
vehicle gets blocked increases linearly with the number of 
vehicles.    

One advantage of this model is that there is no need to 
create the virtual stations if the travel times and loading 
times are not equal in order to synchronize the vehicles’ 
movements.  However, this implies that unlike the previous 
model, the transition time between each pair of states is not 
equal.  Therefore, the next step in the new approach is to 
approximate the transition time between the states, which 
will depend on the transition probabilities and the given 
travel and service times. 

The Markov chain model combined with the stability 
conditions, the assumptions on the blocking probabilities 
and the expected transition times results in a non-
conventional Markov chain that has additional sets of un-
known variables that were not present in the previous 
model.  However, the new model has a significantly 
smaller state-space, which does not grow with the number 
of vehicles in the system.  We call this model the reduced-
state Extended Markov Chain model.  The reduced-state 
extended model provides a full rank system of equations 
that can be solved to give a unique set of estimates for the 
output parameters of the AMHS. 
4
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4 THE REDUCED SEMI MARKOV CHAIN 

MODEL 

4.1 Notation 

M: set of tools and stockers in the system. 
mi : machine i, which could be either the output buffer 

of the input buffer of a tool or a stocker Mmi ∈ . 

s p
i : pick-up station of mi. Mi ∈ . 

sd
i : drop-off station of mi. Mi ∈ . 

t ii 1, + : time to travel from s p
i  to sd

i 1+ ; Mi ∈ . 

ti : time to travel from sd
i  to s p

i ; Mi ∈ . 
l: loading time at s p

i ; Mi ∈ . 
n: number of vehicle in the AMHS. 
λ i : mean arrival rate of move requests from s p

i . 
qi : probability that an empty vehicle arriving at a 

pick-up station s p
i  will find a load waiting for 

pick-up, Mi ∈ . 
ri : probability that a loaded vehicle arriving at drop-

off station sd
i will drop off its load at sd

i , Mi ∈ . 

p p
i : the probability that a vehicle is blocked by a ve-

hicle occupying pick-up station s p
i , Mi ∈ . 

pd
i : the probability that a vehicle is blocked by a ve-

hicle occupying drop-off station sd
i , Mi ∈ . 

R : Set of Markov chain states. 
υ r : the visit ratio to state r, Rr ∈ . 
Cr : the expected time between two consecutive visits 

to state r. 
T r : the time from the instant the system enters state r 

until the instant it enters the next state. 
  

We characterize a state by specifying the condition and lo-
cation of a vehicle.  We propose to consider only those 
points in time where a vehicle is located at a station.  A 
state is defined by three characters: 

 
),,,,(),,(),,...,2,1,( skbfedpMimi = . 

 
The first and second characters describe, respectively, the 
machine occupied by the vehicle and the station type (pick-
up or drop-off), and the third character specifies the condi-
tion of the vehicle (empty, full, blocked/empty, 
blocked/loaded, and receiving service).   
187
4.2 Transition Probabilities  

Let pd
i 1+ denotes the probability that the vehicle will be 

blocked by a vehicle at sd
i 1+  and cannot move from s p

i to 

sd
i 1+ , and let p p

i  denotes the probability that the vehicle 

will be blocked by s p
i  and cannot move from sd

i  to s p
i .   

Let qi  denote the probability that an empty vehicle arriv-

ing at a pick-up station s p
i  will find a load waiting, and ri  

the probability that a loaded vehicle arriving at drop-off 
station sd

i will drop off its load at sd
i .   

The transition matrix R specifies the movement of the 
vehicle between the states.  The position and type of the 
vehicle (e, f, b, k, or s), the possibility of a vehicle blocking 
its path, and the presence of a load to be picked-up or 
dropped-off, determine the system transitions. Let 

xx −=1 .  In Figure 2 below, consider the transitions 
from state ),,( edi , an empty vehicle arriving to a drop-off 
station sd

i will move empty to the next pick-up station s p
i , 

entering state ),,( epi  if it was not blocked by another ve-

hicle, which happens with probability p p
i .  With probabil-

ity p p
i , the vehicle gets blocked and transitions to state 

),,( bdi .  From state ),,( epi , the empty vehicle will leave 
empty if there was no load waiting at s p

i , which happens 

with probability qi , and also if there is no vehicle at sd
i 1+  

blocking its way, with probability pd
i 1+ , thus, the vehicle 

moves from state ),,( epi  to state ),,1( edi +  with prob-

ability pq d
ii 1+ , and to the blocked state ),,( bpi with prob-

ability pq d
ii 1+ .  However, if the empty vehicle encounters a 

load at s p
i , it moves to state ),,( spi and starts the pick-up 

process, with probability qi .  Similarly, a loaded vehicle 

arriving to a drop-off station sd
i 1+ , a state denoted by 

),,1( fdi + , will drop-off its load, thus entering state 
),,1( sdi + with probability ri 1+ , or move to states 

),,1( fpi +  and ),,1( kdi +  with probabilities pr p
ii 1+  and 

pr p
ii 1+ , respectively. 
5



Nazzal and McGinnis 
 

 
Figure 2: Part of the State Transition Diagram for the Reduced-State Extended Markov Chain 
An empty vehicle arriving to a drop-off station will 
move to the next pick-up station provided that there was no 
other vehicle blocking its way, and so is the case for a loaded 
vehicle arriving to a pick-up station.  We assume that after a 
vehicle is blocked, it gets unblocked and moves to the down-
stream station with probability 1.  The justification for this 
assumption is that a vehicle gets blocked because somewhere 
downstream another vehicle is in service, this vehicle can be 
either the one directly downstream from the blocked vehicle 
or several stations downstream given that there are vehicles 
occupying all the station in between.  The vehicle does not 
get blocked twice at the same station because the vehicle that 
was in service has finished its job and will move, unblocking 
all the vehicles that were waiting behind it. 

4.3 The Reduced Markov Chain Steady-State Analysis 

Let Cr be the expected time between two consecutive vis-
its to state r, r=1,…,|R|.  Without loss of generality, assume 
that C is the expected time between two visits to some ref-
erence state, say state ),,1( ep .  Let υ ={ υr} r=1, …, |R|, 
where υr denotes the visit ratio to state r, which is the num-
ber of times the system visits state r between two succes-
sive visits to the reference state ),,1( ep , by this definition, 

1),,1( =υ ep .  For a finite state, positive recurrent Markov 
Chain, the visit ratios can be uniquely obtained by solving 
the square system of equations (Ross 2000):  
1876
 υRυ =  (1) 
 1),,1( =υ ep  (2) 

 
The elements in the transition matrix are the transition 

probabilities between states.  Some of these probabilities 
are unknown, specifically, the load-encountering probabili-
ties Miqi ,...,1},{ ==q , and the blocking probabilities 

Mipp p
i

pd
i ,...,1},{},{ === ppd . 

The load-drop off probabilities at drop-off stations, 
Miri ,...,1},{ ==r  are known.  In Nazzal and McGinnis 

(2005), we demonstrate that they can be easily calculated 
from the given problem instance parameter using the ex-
pression: 

 Mir d
i

i ∈∀= ,
α
λ  (3) 

Where dα denotes the rate of loaded vehicles arrivals to 
drop-off stations. Notice that this parameter is not depend-
ent on the drop-off station since we assume a simple closed 
loop, and that every load dropped off at d

is will be picked 
up from p

is , and therefore the flow of loaded vehicles is 
equal for every station. 

4.4 Stability Conditions 

Bozer and Srinivasan (1991) presented stability conditions 
for a single-vehicle material handling system, we now ex-
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tend those conditions for a multi-vehicle system.  For a 
stable system, the expected number of loads delivered by a 
single vehicle to drop-off station sd

i in a cycle of length C 
must equal the number of times a single vehicle enters 
state ),,( sdi  (unloads at sd

i ) in the same period.  Let n de-
note the number of vehicles on the loop, then: 

 

 
n
C

v i
sdi

λ=),,( , Mi ∈∀  (4) 

 
During a cycle of length C, each vehicle makes 

v epi ),,(  empty trips to s p
i .  The vehicle picks up a load 

with probability qi , and moves to sd
i 1+ if it does not get 

blocked.  Therefore, during a cycle, the expected number 
of loads picked up from s p

i by each vehicle is υ ),,( epiiq .  
For a stable system, this should equal nCi /λ ; the number 
of move requests per vehicle in a time period of length C.  
Equating these terms we get the following necessary condi-
tions for AMHS stability: 

 

 
n

C
q

epi

i
i

),,(υ
λ= , Mi ∈∀  (5) 

4.5 Vehicle Blocking Probabilities 

A vehicle is blocked when it attempts to move to the 
downstream station but finds that station occupied by an-
other vehicle.  The downstream vehicle could be receiving 
service, traveling towards that station or  also being 
blocked.   

Assuming that blocking occurs when any of the other 
n-1 vehicles are occupying the downstream station and that 
the blocking probabilities increase linearly with the fleet 
size, we propose to estimate pd

i  and p p
i  from 

 

∑

++++
−=

∈Rr
r

bdiedisdikdifdid
i np

υ
υυυυυ ),,(),,(),,(),,(),,()1(  

(6a) 
  

∑

++
−=

∈Rr
r

bpikpispip
i np

υ
υυυ ),,(),,(),,()1(  (6b) 

4.6 Transition Times 

The model tracks the movement of a single vehicle and so 
it has an advantage over the earlier model developed in 
Nazzal and McGinnis (2005) from a computational per-
spective.  Here, there is no need for virtual stations in order 
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to synchronize the vehicles’ movement, when the travel 
times and loading times are not equal.  However, this im-
plies that unlike the previous model, the transition times 
between pairs of states are not equal.  We, therefore, need 
to estimate the expected state transition time E(Tr), defined 
as the expected time from the instant the vehicle enters 
state r until the instant it enters the next state. 

We do not attempt to show the detailed derivations of 
the expressions for the expected transition times.  But the 
terms E(Tr), Rr ∈∀ can be determined based on the transi-
tion probabilities.  For instance, consider state ),,( epi , 
which is an empty vehicle arriving at some pickup station 
s p

i , the time that the vehicle spends in this state depends 
on the probability of encountering a load at s p

i and on the 
probability of being blocked at s p

i  by sd
i 1+ . If the vehicle 

finds a load at s p
i with probability qi , the next state 

is ),,( spi ; the transition time in this case is the loading 
time l, we can follow the same logic to derive the expected 
transition time from state ),,( epi if the vehicle does not 
find a load or gets blocked.  Deriving the expected transi-
tion times for all the Markov chain states help in develop-
ing an expression for the cycle length C by considering the 
transition time from one state to the next. C was defined as 
the expected time between two successive visits to the ref-
erence state ),,1( ep , and can be obtained from: 

 

 ∑=
=

R

r
rrTEC

1
)( υ  (7) 

 
Combining equation sets (1) through (7), we have a 

full rank system of equations and we can find the unique 
solution to the system of equations and calculate the visit 
ratio to every state, and the blocking probabilities. 

5 NUMERICAL EXAMPLE 

To evaluate the accuracy of the analytical model, we de-
veloped two models: a simulation model that captures the 
details of an intrabay system of 14 processor tools and one 
stocker, and an approximate model based on the extended 
Markov chain model. 

The bay serves five products, each has a different 
route starting from and ending at the stocker. The total ar-
rival rate to the stocker is λ jobs per minute.   

We compare the interarrival times of empty vehicles at 
each pick-up station estimated from the analytic model and 
a simulation model, at multiple fleet sizes starting with the 
minimum fleet size that can handle the expected move re-
quests (3 vehicles) up to the maximum fleet size that does 
not cause AMHS deadlock, 15 vehicles.  We used Auto-
Mod simulation software to obtain simulated values for 
this performance measure based on 10 replications of 10 
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days each; we also made sure that the system reached 
steady state before we started collecting statistics.  In the 
simulation model, move requests arrive at the stocker ac-
cording to a Poisson process.  However, move request arri-
vals at processor stations are the result of lot arrival and 
operation times at the processor station, i.e. we did not 
force them to follow a Poisson process.   

For comparison purposes, we measure the average in-
terarrival time of empty vehicles at all the pick-up stations. 
This metric is related to the throughput capacity of the 
AMHS; as the time between two consecutive empty vehi-
cle arrivals to each pick-up station decreases, the AMHS 
can handle more move requests.  The analytical and simu-
lated expected interarrival time of empty vehicles are 
shown in Table 1.  The relative error represents the differ-
ence between the analytical and the average obtained from 
the simulation. 

 
Table 1:  Analytical and Simulated Average Expected 
Time Between Empty Vehicle Interarrival Times (min.) 

Fleet size Tanalytic Tsimulation Rel. error 
3 6.57 7.01 -0.06 
4 5.15 5.74 -0.10 
5 4.63 5.24 -0.12 
6 4.40 4.86 -0.10 
7 4.29 4.59 -0.06 
8 4.25 4.45 -0.05 
9 4.25 4.35 -0.02 

10 4.27 4.33 -0.01 
11 4.32 4.40 -0.02 
12 4.38 4.55 -0.04 
13 4.45 4.83 -0.08 
14 4.52 5.19 -0.13 
15 4.61 5.70 -0.19 

 
The analytical model performs reasonably well with 

acceptable error percentages.  The accuracy of the model 
deteriorates at low and high fleet sizes.  This is due to the 
inability of the model to handle the complexity of estimat-
ing vehicle-blocking caused by chain-blocking (many ve-
hicles blocking each other).  It is expected that chain-
blocking occurs when the number of vehicles is large since 
even when a single vehicle stops to perform service, many 
vehicles behind it will be blocked.  When the number of 
vehicles is small, chain-blocking is likely to occur because 
the amount of loading and unloading per vehicle is high 
and vehicles make frequent stops.   

6 CONCLUSIONS AND FUTURE WORK 

We presented a reduced-state Discrete Time Markov Chain 
model that can be used in assessing closed-loop AMHS 
performance.  The model deals with the computational 
challenges that were observed in the more detailed model 
1878
discussed in an earlier publication, Nazzal and McGinnis 
(2005).  The growth of the state space dimensionality is 
polynomial as opposed to the exponential growth of the 
previous model.   

Experimental comparisons of the model generated re-
sults with detailed simulation for small and medium exam-
ple problems produced acceptable error margins and the 
results are obtained very quickly.  In fact, in simulation 
modeling, the execution time increases exponentially with 
the number of vehicles because of the drastic increase in 
the number of events that the model has to track.  The ana-
lytical model execution time is a function of the number of 
stations only. 

We are currently working on further validation of the 
model for more realistic systems, in order to investigate the 
value of the model in practice to AMHS designers and ana-
lysts.  There are a number of issues to be explored in fur-
ther research.  First, we will develop expressions for the 
expected waiting time of loads for a vehicle.  

Another issue is the extension of the model to cover 
more general network configurations.  The simple loop 
structure of the presented model is an issue as recent en-
hancements to AMHS systems in practice violate this as-
sumption.  The extension will require the empty vehicles to 
be routed probabilistically.   

Dispatching policies other than the FEFS policy as-
sumed in this research may be explored. While FEFS is 
quite simple, it might not be as efficient as other rules that 
give priority to older or more urgent loads.   

We will also explore the possibility of using the 
AMHS analytic model as a tool used in conjunction with 
simulation to provide quick performance evaluation of 
large-scale simulation models such as those used to simu-
late 300mm wafer fabrication facilities.   
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