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ABSTRACT 

Previous work has shown that the Cornish-Fisher expan-
sion (CFE) can be used successfully in conjunction with 
discrete event simulation models of manufacturing systems 
to estimate cycle-time quantiles.  However, the accuracy of 
the approach degrades when non-FIFO dispatching rules 
are employed for at least one workstation.  This paper sug-
gests a modification to the CFE-only approach which util-
izes a  power data transformation in conjunction with the 
CFE.  An overview of the suggested approach is given, and 
results of the implemented approach are presented for a 
model of a non-volatile memory factory.  Cycle-time quan-
tiles for this system are estimated using the CFE with and 
without the data transformation, and results show a signifi-
cant accuracy improvement in cycle-time quantile estima-
tion when the transformation is used.  Additionally, the 
technique is shown to be easy to implement, to require 
very low data storage, and to allow easy estimation of the 
entire cycle-time cumulative distribution function. 

1 INTRODUCTION 

In today's business environment, with supply-chain com-
plexity increasing, the ability to generate accurate customer 
delivery dates is crucial.  Service-based  industries with in-
tricate supply-chains, such as the semiconductor manufac-
turing industry, compete not only on traditional measures 
such as cost and product quality, but also on the timely de-
livery of product to both end-product customers and inter-
mediate parties in the supply-chain.  Consequently, the 
ability to accurately and efficiently estimate customer de-
livery dates are crucial.  Estimates of mean cycle time are 
often readily available, but using them to generate esti-
mates of delivery dates ignores variability in the cycle time 
distribution and can result in reduced on-time delivery.  Es-
timates of cycle time quantiles, on the other hand, provide 
a complete picture of the cycle time distribution for a given 
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system and allow customer delivery dates to be quoted at a 
level of confidence acceptable to the decision maker.  
 Unfortunately, obtaining estimates of cycle-time quan-
tiles is substantially more difficult than obtaining estimates 
of the mean cycle-time, and currently available cycle-time 
quantile estimation techniques have several drawbacks, es-
pecially when applied to non-FIFO systems.  The most tra-
ditional method for obtaining quantile estimates is to use 
order statistics. This technique requires all observations of 
the distribution to be stored, resulting in a large data stor-
age requirement.  Several techniques have been developed 
to reduce this data storage burden by modifying the basic 
order statistics approach (Jain and Chlamtac 1985, Heidel-
berger and Lewis 1984).  However, these approaches gen-
erally have the drawbacks of becoming cumbersome to 
implement when estimates of multiple quantiles are desired 
and often requiring that the quantiles to be estimated are 
known in advance.  More recently, Chen and Kelton 
(2006) developed an approach which accommodates esti-
mation of multiple quantiles simultaneously and generates 
confidence intervals around the estimates, but their ap-
proach has the drawback, albeit reduced when compared to 
order statistics, of requiring significant data storage. 
 The approaches mentioned previously are direct, as 
they are all obtained by inverting an empirical cumulative 
distribution function (cdf).  As described, these approaches 
have significant shortcomings.  However, they also have 
the advantage of exhibiting quantile estimation accuracy 
that is independent of distributional shape.  An indirect 
quantile estimation approach, alternatively, does not build 
an empirical cdf.  Instead, it uses features of the distribu-
tion to generate quantile estimates.  Indirect techniques 
have the advantages of requiring low data storage, easily 
generating estimates of multiple quantiles, and not requir-
ing that the quantiles to be estimated are known in ad-
vance.  On the other hand, their estimation accuracy is de-
pendent on the shape of the distribution from which 
quantiles are to be estimated. 
9



Bekki, Mackulak, and Fowler 

 
 Yang et al. (2005) suggest such an indirect technique. 
Their technique uses estimates of the first three moments 
of the cycle-time distribution to fit a generalized gamma 
distribution, which is then inverted to obtain cycle-time 
quantile estimates.  An additional advantage of their tech-
nique, as opposed to other techniques currently available, 
both direct and indirect, is that it provides the capability to 
simultaneously obtain quantile estimates across a range of 
throughput values, including throughput rates at which 
simulation runs were not performed.  The technique, 
though, is difficult to implement, and results have only 
been given for FIFO systems. As non-FIFO dispatching 
policies are introduced into a system, the cycle-time distri-
bution may change dramatically, making a fit to the gener-
alized gamma distribution inappropriate.   

1.1 Quantile Estimation with the Cornish-Fisher 
Expansion 

Other previous indirect quantile estimation work (McNeill 
et al. 2003 and McNeill et al. 2005a) has shown that for 
manufacturing systems employing FIFO dispatching at all 
workstations, the Cornish Fisher Expansion (CFE) in con-
junction with discrete event simulation provides a cycle 
time quantile estimation technique which requires low data 
storage, is easy to implement, has high accuracy, and pro-
vides the ability to estimate the entire time cumulative dis-
tribution function (cdf) of the cycle-time distribution from 
a single set of simulation runs.   

The CFE (Cornish and Fisher 1937) is an infinite ex-
pansion that was developed to approximate quantiles of an 
arbitrary distribution based on the distribution’s moments. 
When sample moments are used rather than the distribu-
tion’s true moments, the CFE can be used to obtain quan-
tile estimates.  Equation (1) gives the first four terms of the 
CFE.  In this equation, zα is a quantile from the standard 
normal distribution, γ1 is the standardized central skew-
ness, γ2 is the standardized central excess kurtosis, σ is the 
standard deviation, μ is the mean, and Yα is the quantile 
estimate.  To implement the CFE with discrete event simu-
lation models for cycle-time quantile estimation, estimates 
of the first four moments of the cycle-time distribution are 
collected during the simulation run at a given throughput 
rate.  These moment estimates are then used with a zα 
value corresponding to the desired quantile estimate in 
Equation (1)..   

 
Yα=μ+σxα, where 

xα=zα+1/6(zα
2-1)γ1 +1/24(zα

3-3zα)γ2-1/36(2zα
3-5zα)γ1

2    (1) 
   
 McNeill et al., 2005a show that the CFE-based ap-
proach yields both precise and accurate estimates for a va-
riety of systems under FIFO dispatching.  However, when 
tested in manufacturing environments employing non-
FIFO dispatching policies in at least one workstation, the 
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accuracy of the technique can degrade substantially 
(McNeill et al. 2005b).  The CFE was developed to gener-
ate quantile estimates from an arbitrary distribution, but it 
works best for distributions similar to the normal distribu-
tion.  In manufacturing settings employing FIFO dispatch-
ing at all workstations, the cycle time distribution is very 
close to normal, resulting in high quantile estimation accu-
racy with the CFE alone.  However, as non-FIFO dispatch-
ing rules are introduced into the system, the cycle time dis-
tribution becomes less and less similar to the normal 
distribution, and the Cornish-Fisher expansion no longer 
produces quantile estimates of acceptable quality. 
 This paper suggests a quantile estimation technique 
specifically appropriate for the cycle time distributions 
found in manufacturing systems that employ non-FIFO 
dispatching rules in at least one workstation.  The tech-
nique combines the CFE with a power data transformation, 
maintaining the advantages of quantile estimation using the 
CFE while simultaneously addressing the accuracy issues 
resulting from non-FIFO dispatching.  The remainder of 
the paper details the approach, and an application of the 
technique is given for a non-volatile memory factory under 
basic non-FIFO dispatching policies, both due-date based 
and non-due date based.   

2 DATA TRANSFORMATIONS 

2.1 Max/Min Data Transformation 

McNeill et al. (2005b) show that a technique combining a 
data transformation with the CFE expansion holds promise 
for improving accuracy in quantile estimation from distri-
butions significantly different from normal.  They use the 
maximum/minimum transformation (Heidelberger and 
Lewis 1984) with the CFE to estimate quantiles from log-
normal distributions, which can have moments similar to 
distributions found in systems employing non-FIFO dis-
patching policies.  When the max/min transformation is 
combined with the CFE, desired quantiles are estimated 
from the transformed distribution using the CFE, after 
which they transformed back to the original distribution to 
yield the final quantile estimate.  Results showed signifi-
cant improvement in quantile estimation accuracy when 
the max/min transformation was used with the CFE, indi-
cating the likelihood that similar improvement would be 
found when estimating cycle-time quantiles from systems 
employing non-FIFO dispatching rules in at least one 
workstation.    

The maximum/minimum data transformation, how-
ever, is a grouping data transformation. It uses more than 
one data point from the original distribution to yield a sin-
gle data point in the transformed distribution.  As a result 
of this grouping, data storage requirements are increased, 
sometimes significantly.  Moreover, the size of the group is 
dependent on the desired quantile estimate; quantile esti-
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mates closer to the tails of the distribution require larger 
groups.  As a result, estimating multiple quantiles requires 
the simultaneous maintenance of multiple groups, making 
the estimation of multiple quantiles difficult.  The max/min 
data transformation, therefore, illustrates that a data trans-
formation has the potential to significantly improve the ac-
curacy of cycle-time quantile estimation with the CFE for 
extremely non-normal distributions, but it also highlights 
the need for a non-grouping transformation that can har-
ness the advantages of the CFE-only approach, including 
very-low data storage and the ability to estimate multiple 
quantiles easily. 

2.2 Power Transformations 

The power family of transformations xλ, where λ is a pa-
rameter to be determined, is a non-grouping a transforma-
tion commonly used to correct for non-normality (Mont-
gomery et al. 2001).   Since the CFE is known to estimate 
quantiles more accurately for distributions more similar to 
the normal distribution, a normalizing power transforma-
tion is a reasonable option for combining with the CFE.  
To implement a power transformation with the CFE to es-
timate cycle-time quantiles, each individual data point, x, 
is simply raised to the power λ before the moment esti-
mates are made.  The moment (and subsequent quantile) 
estimates are then made from the transformed distribution, 
and the quantile estimates are then transformed back to 
their original distribution to give the final cycle-time quan-
tile estimate. 
 To determine which transformation from the family of 
power transformations to use, a variety of  log-normal dis-
tributions were examined.  These distributions were used 
since their first four moments are similar to those seen in 
cycle-time distributions.  Table 1 shows the distributional 
parameters as well as their first four moments.  The. pa-
rameters, in order of their listing, are: location parameter, 
scale parameter, and threshold parameter. 
 

Table 1:  Lognormal Distribution Moments 
Distribution Mean Variance Skewness Kurtosis

Lognormal (1, 1.5,1) 9.400 706.620 26.690 1314.890
Lognormal(2,1,2) 14.291 271.025 6.540 102.030

Lognormal (2,.75,2) 11.661 62.393 2.660 12.500
Lognormal (3,1,1) 34.002 1915.509 6.000 71.300  

 
 For each of the lognormal distributions investigated, 
Minitab was used to generate 500,000 random data points 
and then to perform the Box-Cox transformation on the 
random data.  Table 2 shows the result of these calcula-
tions.  The  second column of Table 2 gives a 95% confi-
dence interval on the suggested λ value for the power 
transformation.  In all examined cases, a negative power 
transformation is optimal.  Also, the average value of the 
optimal lambda values across all four cases is λ=-0.25.  
1831
Moreover, although λ=-0.25 is not contained within all 
four of the confidence intervals, it was a closely competing 
value for all cases.   
 
Table 2:  Power Transformations Suggested by Box-Cox 
for Lognormal Distributions   

Distribution Optimal Lambda
Lognormal (1, 1.5,1) (-.382 - .346)

Lognormal(2,1,2) (-.316,-.273)
Lognormal (2,.75,2) (-.294, -.234)
Lognormal (3,1,1) (-.086, -.054)  

 
 Based on the results shown in Table 2, the CFE in 
conjunction with the λ=-0.25 power transformation was 
used to estimate quantiles 0.5, 0.6, 0.7,0.8, 0.9, and 0.99 
from a variety of lognormal distributions, including two of 
the distributions used to select the λ value and 2 not used 
in its selection. Table 3 shows the results of this experi-
mentation.  Theoretical quantiles for the examined distribu-
tions are known, so the results in Table 3 show the relative 
percent difference between the quantiles estimated using 
the CFE with the power (-.25) transformation and their 
theoretical counterparts.  To generate the results, Minitab 
was used to randomly generate 500,000 independent ran-
dom observations from each distribution.  Each observa-
tion was then transformed using the power (-.25) transfor-
mation, and the sample moments of the transformed 
observations were calculated.  The CFE was then used to 
estimate quantiles, and the quantile estimates were then 
transformed back to their original distribution.  
 For all the investigated distributions, estimates of 
quantiles less than or equal to 0.9 are very accurate.  The 
accuracy declines in some cases as the quantile estimated 
tends toward the extreme tail, but that is not unexpected, as 
quantiles from the tails are significantly more difficult to 
estimate.  In summary, the results given in Table 3 demon-
strates that a quantile estimation technique combining the 
power (-.25) transformation with the CFE has the potential 
to generate accurate quantile estimates from a variety of 
distributions similar to those found in models of manufac-
turing systems employing non-FIFO dispatching.   
 
Table 3:  Accuracy of Quantile Estimation for Selected 
Lognormal Distributions when the CFE is Combined with 
a Power (-.25) Transformation 

Quantile Lognormal 
(0,1,0)

Lognormal 
(1, .75, 1)

Lognormal 
(3,1,1)

Lognormal 
(1,1.5,1)

0.5 1.31% 0.18% -1.30% 2.14%
0.6 1.04% -0.07% -1.02% -0.04%
0.7 0.52% -0.33% -0.38% -2.27%
0.8 -0.35% -0.58% 0.69% -3.94%
0.9 -1.92% -0.73% 2.38% -3.38%

0.99 -5.32% -0.43% 0.42% 14.19%  
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3 CYCLE-TIME QUANTILE ESTIMATION 

PROCEDURE 

The following procedure combining the CFE with the 
power (-.25) transformation was implemented to obtain the 
experimental results given in the remainder of the paper.  
High level steps for the procedure are given below, and it 
is assumed that users of the procedure will use an appro-
priate number of replications, appropriate run-length, and 
will take steps to avoid bias in the estimates due to the 
warm-up period of each simulation run. 

 
1. For each simulation replication    

(a) Run simulation replication and transform 
each cycle-time observation, x, to be 

41t xx = .  From the distribution of xt val-
ues, calculate an estimate of the sample mean 
an estimate of the sample standard deviation, 
an estimate of the sample central, standard-
ized skewness, and  an estimate of the sample 
central, standardized, excess kurtosis.   

(b) Estimate the (1 - α) quantile of the trans-
formed distribution, where α is the desired 
quantile estimate from the original cycle-time 
distribution, using the first four terms of the 
CFE given in Equation (1). 

(c) Transform the cycle-time quantile estimate 
back to the original distribution by raising  
the estimate from the transformed distribution 
to the fourth power and taking the inverse. 

2. Calculate the mean cycle-time quantile estimate 
as the mean of all the cycle-time quantile esti-
mates obtained during all simulation runs. 

 
 Notice that because the power(-.25) transformation is 
an inverse transformation, the (1-α) quantile of the trans-
formed distribution must be estimated to obtain an estimate 
of the α quantile from the original distribution.   

4 EXPERIMENTATION AND RESULTS 

To assess the accuracy of using the power (-.25) transfor-
mation in conjunction with the CFE for estimating cycle-
time quantiles in realistically sized systems, a model of a 
non-volatile memory factory was used.  The model is a 
slight modification to Testbed Data Set #1 from the Model-
ing and Analysis of Semiconductor Manufacturing 
(MASM) lab at Arizona State University, which can be ob-
tained at <http://www.eas.asu.edu/~masmlab>.  
The model has two products, 83 tool groups, and 15 proc-
ess steps per mask layer.  It utilizes non-FIFO dispatching 
at all workstations and also accounts for operators, ma-
chine breakdown, preventive maintenance, and product 
1832
rework.  To run the model, the Factory Explorer soft-
ware(Chance 1995) was used. 
 The system was examined under the following dis-
patching rules:  last in first out (LIFO), random (RAND), 
earliest due date first (EDD), and critical ratio (CR).  The 
EDD and CR dispatching rules are both due-date based, 
while LIFO and RAND are not.  For the due-date based 
rules, due dates were assigned by giving an offset based on 
the raw processing time (RPT) of each job.  Equation (2) 
shows the specific method in which due dates for each job 
were assigned.  Also, the form of the CR rule used in this 
experimentation is given in Equation (3), where DD is the 
due date, TNOW is the current simulation time, and TRPT 
is the total remaining processing time.  A variety of forms 
of the CR dispatching rule exist; this version was chosen as 
it was found to give better performance than its alternatives 
(Rose 2002). 
 

_ _ (10* )due date creation time EXP RPT= +  (2) 
  

( ) ( )( )

1                       1
1         

1+TNOW-DD * 1

DD TNOW if DD TNOWTRPT
CR

otherwise
TRPT

+ −⎧ >+⎪= ⎨
⎪ +⎩

 (3) 

 
 Also, since theoretical quantiles are unknown for the 
system, direct estimates using order statistics were ob-
tained for the system.  To obtain direct estimates, ten repli-
cations of 30 years each were run.  For each replication, 
the 0.01, 0.1, 0.2, 0.3, …, 0.8, 0.9, 0.99 cycle-time quan-
tiles were estimated.  For each quantile, the average value 
across all ten replications was taken as the final estimate. 
These values were considered to be the “true” cycle-time 
quantiles from the system and were used for comparison 
with indirectly estimated values. 

4.1 Experimental Results 

Table 3 summarizes the results across all the explored dis-
patching policies when the system was simulated at 95% 
throughput rate.  Since the dispatching policies have 
greater and greater impact on the cycle-time distribution as 
the throughput rate gets closer and closer to 100%, the re-
sults shown in Table 1 represents a “worst-case” scenario 
in which the cycle-time distribution is extremely different 
than it would be under its FIFO counterpart.   
 In Table 3, the average deviation column represents 
the average relative percentage difference from the directly 
estimated values across all the estimated cycle-time quan-
tiles (0.01, 0.1, 0.2, 0.3, …, 0.8, 0.9, .99).  The maximum 
deviation column gives the largest deviation among all es-
timated quantiles, and the final column of the table shows 
which cycle-time quantile corresponds to the maximum 
deviation. Table 3 demonstrates that for all distributions 
examined, the combination of the power (-.25) transforma-
tion with the CFE yields cycle-time quantile estimates with 

http://www.eas.asu.edu/~masmlab
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high accuracy.  The LIFO dispatching rule generated the 
cycle-time distribution which was the most difficult from 
which to estimate quantiles.  However, even for the LIFO 
distribution, the cycle-time quantile estimates are still ex-
tremely close to the directly estimated values.  The maxi-
mum percentage deviation was only 4.08%, and the aver-
age percent deviation was less than 0.5%.    
 
Table 3:  Quantile Estimation Accuracy at 0.95 Traffic In-
tensity for Non-Volatile Memory Factory Lab 
Dispatching Policy Average Deviation Maximum Devation Quantile

RAND -0.003% -0.687% 0.01
LIFO 0.229% -4.083% 0.90
EDD -0.019% -0.658% 0.01
CR -0.045% -0.532% 0.01  

  
 Figure 1 shows the impact of the power (-.25) trans-
formation with the CFE on the accuracy of cycle-time 
quantile estimates when the system is simulated at 95% 
throughput rate.  The x-axis of Figure 1 shows the quantile 
being estimated, while the y-axis gives the relative per-
centage difference from the directly estimated values.  The 
line marked with squares shows the quantile estimates ob-
tained using the CFE without a data transformation, while 
the line marked with circles shows the percentage differ-
ence for the same quantile estimates when the power (-.25) 
data transformation is combined with the CFE.  Clearly, 
combining the CFE with the data transformation results in 
a significant improvement in accuracy for this system.  Cy-
cle-time quantile estimates obtained without the data trans-
formation are up to 50% off, while estimates obtained us-
ing the data transformation are no more than 4.1% different 
than the directly estimated values.   
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Time Quantiles Estimated Using the CFE with the Power 
(-0.25) Data Transformation and Quantiles Estimated Di-
rectly Using Order Statistics for the Non-Volatile Memory 
Factory Under LIFO Dispatching at a Throughput Rate of 
95% 
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 Figure 2 gives similar results to Figure 1, but for the 
due-date based rule, EDD.  Also, Figure 2 shows results 
for the system at 60% throughput rate.  For this system, the 
60% throughput rate is interesting because of batching.  As 
the throughput rate gets lower, jobs wait longer for batches 
to form, and the impact on the cycle time distribution be-
comes greater.  Figure 2 illustrates that the quantile esti-
mates obtained using the data transformation (the line 
marked with squares) are significantly more accurate than 
those obtained with the CFE alone.  In fact, estimates using 
the CFE alone (the line marked with circles in Figure 2) 
are up to 150% different from the directly estimated val-
ues.  
 Finally, Figure 3 gives a feel for how the throughput 
rate of the system impacts the accuracy of the cycle-time 
quantile estimates obtained with the CFE in conjunction 
with the power (-.25) data transformation.  The x-axis of 
Figure 3 shows the throughput rate, while the y-axis again 
gives the relative percent difference between directly and 
indirectly estimated cycle-time quantiles for the system 
under LIFO dispatching.  Each line in Figure 3 represents a 
different quantile; the 0.5, 0.7, 0.9, and 0.99 quantiles are 
shown.  All the cycle-time quantile estimates were ob-
tained using the CFE  in conjunction with the power (-.25) 
data transformation.  Figure 3 shows that the estimate of 
the 0.99 quantile at a 60% throughput rate is approximately 
9% different from the direct estimate.  Although this esti-
mate is less precise than the other presented results, it is 
likely explained by the fact that quantiles in the extreme 
tails, like the 0.99 quantile, are more difficult to estimate.  
Additionally, at a 60% throughput rate, batching, in addi-
tion to the dispatching policy, is influencing the cycle time 
distribution, making indirect cycle-time quantile estimation 
even more difficult.  
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Figure 2:  Relative Percent Difference Between the Cycle-
Time Quantiles Estimated Using the CFE with the Power 
(-.25) Data Transformation and Quantiles Estimated Di-
rectly Using Order Statistics for the Non-Volatile Memory 
Factory Under EDD Dispatching at a Throughput Rate of 
60% 
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 Detailed results were also collected for EDD and CR 
policies.  The outcomes were comparable to those shown 
in Figures 1 – 3 for the LIFO and EDD policies and were 
left out for the sake of brevity.   
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as a Function of the System Throughput Rate 

5 DISCUSSION AND FUTURE WORK 

The results presented in this paper illustrate that the non-
grouping power(-.25) transformation can be successfully 
used in conjunction with the CFE to estimate cycle-time 
quantiles in systems employing non-FIFO dispatching 
rules.  The technique maintains the primary benefits of the 
CFE – only approach while simultaneously addressing its 
accuracy issues.  For a variety of simple dispatching rules 
common to manufacturing systems, experimentation on a 
realistically sized model showed that the procedure pro-
duces accurate cycle-time quantile estimates across a wide 
range of quantiles. Additionally, the technique requires the 
storage of only four data points, used to calculate sample 
moment estimates, is easy to implement, and it does not 
require the quantiles for which estimates are desired to be 
known in advance.  Moreover, after the sample moments 
are known, a discrete estimate of the entire cdf of the cy-
cle-time distribution can be obtained by simply changing 
the zα value in Equation 1.   

Future work in this area will include more exhaustive 
testing of the procedure on queueing systems of different 
topographies.  Additionally, due date assignment policies 
that have tighter due dates will be examined, including 
policies that force some jobs to be late as soon as they are 
created. Experimentation in this paper is limited to a single 
system, and further testing the robustness of the technique 
on cycle-time distributions of additional shapes will add to 
its credibility.   
1834
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Lastly, attention could be given to combining the work 
of Yang et al. (2005) with the CFE-based approach dis-
cussed in this paper.  The combination of these techniques 
would yield a powerful cycle-time quantile estimation 
technique.  It would capture the significant benefit of the 
Yang et al. approach, which gives quantile estimation ca-
pability at multiple throughput rates simultaneously, while 
also harnessing the ease of implementation and robustness 
to a variety of cycle-time distributions that the CFE-based 
approach includes. 
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