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ABSTRACT 

A common problem in production environments is the 
need to estimate the remaining time in system for work-in-
progress jobs.  Simulation can be used to obtain the esti-
mates.  However, when the future path of a job is uncertain 
(due to stochastic events such as rework), using simulation 
to estimate the remaining cycle time of a job at step k can 
be imprecise; traditional confidence intervals on the esti-
mated remaining cycle times may be too large to be of 
practical significance. We propose a response surface 
methodology-based approach to estimating conditional 
confidence intervals on the remaining cycle times as jobs 
progress through the system and more information is ob-
tained on them.  This method will provide more useful and 
accurate estimates of remaining cycle times at various 
stages of the process flow.  Further, we outline two differ-
ent simulation approaches for estimating the response sur-
faces used to generate the confidence intervals. 

1 INTRODUCTION 

In production environments, it is often important to predict 
when a particular job will complete processing while the 
job is in the system.  The prediction process becomes diffi-
cult if there are one or more seminal steps that lead to sig-
nificant changes in the subsequent route of the job; this 
leads to large variability in the expected completion times.  
In Figure 1 below, for example, jobs that complete step k 
move to step (k+1) with probability p (which depends on 
the outcome of step k, Ok), and to step (k+1)’ with prob-
ability 1-p.  Jobs going to step (k+1) have a total of m  
more processing steps after step k, whereas jobs going to 
(k+1)' have m' more steps after step k.  It is possible (and 
likely) that 'm m≠ .  Moreover, the expected processing 
times at steps on these two paths can be significantly dif-
ferent.  Having a single confidence interval at step i, i<k, 
on the expected time to completion is not very useful from 
a practical standpoint since it will either: 

 

 

18041-4244-0501-7/06/$20.00 ©2006 IEEE
1. be too large to be of value (as it contains two or 
more subpopulations); or 

2. will not be a true (1-α) confidence interval. That 
is, for lower and upper bounds l and u and ex-
pected remaining cycle time after step i Ti, 

[ ]{ } 1iP l E T u α≤ ≤ ≠ − . 

 

Figure 1: Process Flow Schematic 
 
In this paper, we address two issues.  The first is the 

need for more precise bounds on estimates of the remain-
ing cycle time at each step as jobs progress through the 
system. That is, rather than returning a single confidence 
interval on Ti, we propose returning a set of conditional 
confidence intervals (CCIs): confidence intervals that de-
pend on the outcome of step i.  The second problem we 
address is the computational one of obtaining these confi-
dence intervals.  It can become resource-intensive to track 
all the information required to generate the conditional 
confidence intervals for all stages of interest. We propose 
using a response surface methodology (RSM)-based ap-
proach to find the conditional confidence intervals 

The paper is organized as follows.  Section 2 contains 
a brief literature survey.  In Section 3, we introduce the 
new methodology, which is illustrated in an example in 
Section 4.  Section 5 summarizes our conclusions and di-
rections for future research. 

2 BACKGROUND 

The literature survey in this section is divided roughly by 
the main topics relevant to this paper. 
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2.1 Response Surface Methodology 

RSM is a set of statistical and mathematical techniques 
first introduced by (Box and Wilson 1951) for characteriz-
ing the relationship between a response Y and a set of in-
dependent variables or factors x .  RSM is used exten-
sively in industry to improve or optimize a process or 
product by determining values of factors that result in de-
sirable response values.  Using sequential experimentation, 
RSM builds empirical models of the response in terms of 
the factors.  The assumption here is that the response can 
usually be expressed as a polynomial of some degree in the 
x's (a truncated Taylor series expansion).  Let 0β  be the 
intercept, β  be a vector of coefficients for linear effects in 
the factors x , B  be a matrix that contains the quadratic 
effects in the factors, and ε  be the experimental error term 
that accounts for the inability of the model to explain the 
real physical phenomenon.  Then the polynomial is given 
by the general formula 

 
 ( ) 0y β ε′ ′= + + +x x β x Bx , (1) 

 
The degree of the polynomial depends on the desired accu-
racy of the model.  For example, if the starting point of the 
investigation is far away from the optimum, a model in-
volving first-order terms in the factors may approximate 
the response well.  If a first-order model does not approxi-
mate the response well, a higher-order polynomial, in par-
ticular a second-order polynomial, may be required. 

Hung et al. (2003) propose an RSM approach for es-
timating performance measures of queueing systems.  They 
seek to reduce computational costs by partitioning the 
sample space into homogenous regions and creating a “lo-
cal” model for each region.  This is an interesting approach 
to make the experiment less costly.  We propose address-
ing the expense by changing the type of simulation model.  
The RSM-based approach to estimation of remaining cycle 
times is outlined in Section 3.3. 

2.2 Expected Sojourn Times in Generic Job Shops 

There is a vast literature dealing with determining the ex-
pected sojourn time for job shops (or, similarly, scheduling 
job due dates).  The approaches taken can be broadly clas-
sified as analytical or experimental.  While analytic results, 
if available, have the advantage of being exact, they are of-
ten difficult to obtain.  Buzacott and Shanthikumar (1993) 
give a detailed overview of different analytic approaches 
for estimating expected flow times in generic job shops. 

The two main analytic techniques used are aggregation 
(where multiple job types are aggregated to a single one) 
and analysis using Jackson networks.  Aggregation is also 
used in the well-known Queueing Network Analyzer by 
Whitt (1983).  The disadvantage of aggregation in the con-
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text of this paper is that we would explicitly combine the 
different populations of jobs together, and would obtain 
only one estimate for Ti.  Aggregation and reporting back 
single-valued estimates for the mean time in the system are 
useful when comparing different system configurations.  In 
the context of this paper, however, we are interested in the 
expected time in the system for individual jobs, not for 
“the average” job (which may not even exist).  This point 
is also implicitly made in Backus et al. (2006), where the 
tree regression shows clearly the different “populations” of 
jobs.  By partitioning jobs based on certain predictors (for 
example, the type of job), they can find relatively accurate 
cycle time predictions using similar recent jobs. 

Shanthikumar and Sumita (1998) provide an Exponen-
tial approximation for the time a job spends in a dynamic 
job shop.  The biggest disadvantage of their model is that 
they assume that there is only one machine at each station 
in the system.  A queueing network approach to a multi-
product, multi-machine job shop is developed in (Vandaele 
et al. 2002); its chief disadvantage for the purposes of our 
research is that it assumes deterministic job routings. 

Sabuncuoglu and Comlekci (2002) provide a nice re-
view of the literature on flow-time estimation.  Their pro-
posed method works well in predicting the time-in-system.  
In contrast to our problem, however, they assume that a 
job’s routing is known at the outset; this additional infor-
mation makes a crucial difference in being able to provide 
accurate predictions.  (A job’s population is known at the 
beginning of its sojourn in the facility, rather than deter-
mined over the course of its progression through the fac-
tory.)  We will assume for the rest of the paper that the 
job’s routing is not known at the outset. 

Hasan and Spearman (1995) derive a computational 
method for finding the completion time distribution of 
jobs.  Unfortunately, the assumptions are very limiting (for 
example, single-server stations with no reentrant flow). 

Typical predictors for a job’s cycle time include the 
job type (where applicable) along with its theoretical proc-
essing time, the system load/congestion, and the loading of 
the stations on the job’s route.  Recently, there has been 
work done using data mining or neural network approaches 
to estimate job completion times (Liao and Wang 2004; 
Sha and Liu 2005; Backus et al. 2006). 

The main difference between our work and the exist-
ing literature is that we are trying to predict the expected 
remaining time for individual jobs whose routing is not 
fully known until they have completed their processing in 
the system.  Existing approaches either assume the routing 
is known (though it may differ from job to job), or that a 
single estimate (confidence interval) for all jobs will suf-
fice.  The closest work we found to ours are the data min-
ing approaches.  Our goal here is to be less tied to large 
amounts of historical data, but to be able to provide the 
user with a compact representation for predictions based on 
current data.  Moreover, for a new system configuration, 
5
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our simulation approach provides a means to generate pre-
dictions when historical data are not available. 

2.3 Confidence Intervals 

Most work we found on confidence intervals look at con-
structing traditional confidence intervals, possibly in 
highly-variable environments, for example (Cheng and 
Kleijnen 1999).  However, the variability is different from 
the type of variability that concerns us in this paper.  In this 
paper, the variability is not necessarily due to congestion or 
variabilities in processing times.  Rather, it is because jobs 
are effectively from different populations, depending on 
the outcomes of the processing steps. 

Cheng (2005) provides a nice overview on (comput-
ing) confidence intervals.  Other methods have been pro-
posed to address some of the difficulties associated with 
obtaining valid confidence intervals from simulation out-
put.  Strelen (2004) introduces a method for finding me-
dian confidence intervals.  Its advantage is that it does not 
require the variance of the estimator (which can be very 
difficult to find).  Johnson et al. (2004) propose a method 
for obtaining consistently-sized confidence intervals for 
cycle time-throughput curves.  This is done by focusing the 
computational effort on more variable areas of the experi-
mental region.  Fleming and Simon (1991) derive a method 
for finding confidence intervals based on light- and heavy-
traffic limits.  This method can be applied in all cases 
where these limits exist, and is therefore quite general. 

2.4 Simulation Approaches 

We outline the methodology for using different types of 
simulation models for developing the RSM-based models.  
(The implementation of these approaches is beyond the 
scope of this paper.)  To reduce the amount of computation 
required, a less detailed simulation known as a resource-
driven model can be used.  In the cases where more detail 
is needed, a job-driven simulation is used. 

Broadly, job-driven simulations can be thought of as 
simulations where detailed information on each job in the 
system is maintained during the simulation; this job infor-
mation is the information that drives the model.  In con-
trast, resource-driven simulations look at the system from 
the perspective of resources, and very little information is 
stored for individual jobs.  Rather, resource-driven simula-
tions use general information like the number of jobs in 
queue.  Job-driven simulations focus on the differences be-
tween jobs (and resources), resource-driven simulations 
focus on the similarities.  For a more detailed discussion of 
the two approaches, see (Roeder 2004).  For applications 
of this methodology, see (Roeder et al. 2004; Govind and 
Fronckowiak 2003). 

In (Roeder et al. 2004), the authors illustrate the im-
portance of types of information to simulation models.  In-
1806
formation is classified as global or local based on whether 
it is relevant to the system as a whole, or only to certain 
parts.  In Section 2.2, we discussed the important differ-
ence between knowing a job’s probabilistic routing before 
the job begins service in a facility versus the routing being 
determined as the job progresses.  This is a difference be-
tween local and global information. 

3 METHODOLOGY 

Traditionally, users of simulation models are either given 
single cycle time estimates for a system (regardless of the 
number of job types or the system characteristics); or are 
given individual cycle time estimates for each job type.  
The latter assumes that a job’s type is known at the outset.  
In the former scenario, the resulting estimate may be of lit-
tle value.  For example, if a job’s cycle time is either ex-
actly 10 time units or exactly 20 time units, the prediction 
of 15 time units is infeasible.  Our solution to this problem 
is outlined in Section 3.2. 

3.1 Notation and Assumptions 

In this section, we define the notation for the remainder of 
the paper.  We also state our assumptions. 
 
 n number of jobs 
 j job index, j = 1,…,n 
 Kj number of steps for job j 
 K* total number of steps possible in system 
 [ ]

j
li  lth step for job j, l = 1,…,Kj  

 i, k step indices, i, k = 1,…,K* 

 r route, r = 1,…,R 
 Ok random variable for outcome at step k;  

realizations ok, ok
’ ε Ok. 

 j
kO  outcome for job j at step k 

 pok probability of outcome ok, 1
k

k

o
o

p =∑  

 j
iT  remaining processing time for job j after step i 

 0
jT  expected cycle time for job j when it enters the 

system 

1

K

k
k

R
=

= ∏O   number of possible job routes, assuming 

all steps are independent 
 I(E) indicator variable; I(E) = 1 if event E occurs, 0 

otherwise 
 0 0,γ δ  intercept terms for RSM models 
 ,γ δ  vectors of linear coefficients for RSM models 
 Γ,Δ  matrices of quadratic coefficients for RSM mod-

els 
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Assumptions: 
 
• Kj, the number of possible steps in a job’s route, is 

finite. 
• Each step has a unique number.  That is, if a job 

must repeat step 3, the repeat would have a differ-
ent number, say, 4.  (A job’s routing will never 
contain the same step number more than once, 
even if the same step is repeated from an opera-
tional perspective.)  The total number of possible 
“unique” steps is K*.  This assumption is for ease 
of computation and analysis. 

3.2 Conditional Confidence Intervals 

As a job enters the system, it is unknown what path it will 
follow.  For example, it may require rework after step i, 
which will lead to a different routing than if it did not re-
quire rework.  Assume we have obtained cycle times for n 
jobs (through either observation or simulation).  Rather 
than predicting an expected remaining cycle time (and as-
sociated confidence interval) of  
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0

n j
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we provide the user with a set of confidence intervals 
around the expected remaining time given possible out-
comes at steps k, k > i, centered around 
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After the job has begun processing, traditional estimates 
are centered around 
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Our estimates are centered on 
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  (5) 
 
Rather than a single confidence interval, the user re-

ceives multiple confidence intervals at each step.  Each 
confidence interval has an associated probability: the prob-
ability of the route associated with it.  As the job pro-
1807
gresses through the system, there are fewer confidence in-
tervals as there are fewer candidate routes. 

To find the expected values, we create a linear model 
for Ti, where the predictor variables are the outcomes Ok. 
This approach is outlined below. 

3.3 RSM-based Estimation 

The model in (1) can be used to derive response surfaces 
for the mean and variance of the response.  However, we 
opt to use ideas from Myers and Carter (1973) who pro-
pose a dual response surface approach where a primary and 
a secondary response of interest are modeled using RSM.  
Using data from a designed experiment, we propose using 
the dual response surface approach to obtain fitted re-
sponse surface models for mean and variance of the re-
maining cycle times at a given step: 
 

 ( ) 0[ ]E y γ ′ ′= + +x x γ x Γx , and  (6) 

 ( ) 0Var[ ]y δ ′ ′= + +x x δ x Δx .  (7) 
 
The data used to fit the two models is obtained from 

simulation replications.  The factors x  represent the out-
comes at each of the steps where there is more than one fu-
ture path for a job. Based on the response surface models 
for mean and variance, we can estimate the CCIs for the 
remaining cycle times after a step (for each subpopulation) 
by generating estimates of the mean and variance from 
these models after the known components of x  are substi-
tuted with the values of the outcomes. 

3.4 Simulation Models 

It is well-known that the time and processor resources re-
quired for simulations in the semiconductor industry can be 
exorbitant, see (Roeder 2004) for references.  A typical 
simulation requires detailed information on each job in the 
system to be stored in the simulation.  This, in part, creates 
the computational burden associated with most simulation 
studies. 

We outline two different resource-driven simulations.  
The first is similar in spirit to the approach taken in 
(Backus et al. 2006), in that we use current queue counts to 
estimate job waiting times at different resources.  The sec-
ond uses the additional “free” information gained from 
event time stamps. 

3.4.1 Resource-Driven Model 1: Sums of Averages 

In this model, rather than estimating expected remaining 
cycle times based on actual job cycle times, we estimate 
them based on expected processing times at future steps, 
plus expected waiting times estimated from Little’s Law 
(Little 1961).  The expected processing times are known, 
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having been used as inputs to the simulation model.  The 
expected waiting times can be derived based on the num-
ber of jobs in queue at a specific resource.  The arrival rate 
can be estimated as the merging of the arrivals from all 
predecessor steps. 

The variances of the estimates are slightly more com-
plex to calculate, as the variance of the waiting times must 
be estimated in addition to the covariances between all the 
steps, as they cannot be assumed to be independent. 

3.4.2 Resource-Driven Model 2: Time Stamps 

The second resource-driven model requires less computa-
tional effort during the simulation run.  We maintain 
counters of the number of jobs that have gone down each 
route, as well as the number that have completed each 
route or route segment.  In addition, we output the associ-
ated event time stamps.  From these, we can get rough es-
timates of the time it took jobs to go down unique paths 
(i.e., paths where all pok = 1).  The estimated remaining 
processing times are the sums of the relevant path seg-
ments. 

This method is similar to one introduced in (Roeder 
2004).  There, it was shown that the quality of the ap-
proximation can depend greatly on system parameters.  
Specifically, when job overtaking is possible and there is 
much variability present, the approximation can be rather 
poor. 

4 EXAMPLE 

We illustrate our methodology using a simple system 
where K* = 11.  The system is illustrated in Figure 2, where 
the probabilities of going along different routes are given 
(italics) along with the mean processing times.  There are 
two steps at which routes diverge, steps 2 and 6. 

For ease of experimentation, we assume Poisson arri-
vals (with a rate of 1/250) and Exponential service times.  
The expected theoretical processing times and the route 
probabilities for the four possible routes are given in Table 
1.  (Note that the weighted average processing time when a 
job enters the system is 469, which corresponds to none of 
the route times.)  The routes are  

 
• R1: 1-2-3-5-6-7-9-10-11 
• R2: 1-2-3-5-6-8-11 
• R3: 1-2-4-6-7-9-10-11 
• R4: 1-2-4-6-8-11. 
 
There are a total of 10 confidence intervals of interest: 

4 when a job enters the system; 2 each if the job goes to 
step 3 or step 4 after completing step 2; and 1 each once it 
is determined whether a job will go to step 7 or 8 after 
completing step 6.  In contrast, traditional models would 
report exactly one confidence interval at each stage. 
180
Table 1: Route Processing Times and Probabilities After 
Outcomes of Steps 2 and 6 Are Known 
Route Time Initial 

Prob. 
Prob. past 
Step 3 (4) 

Prob. past 
Step 7 (8) 

1 535 0.48 0.6 (0) 1 (0) 
2 420 0.32 0.4 (0) 0 (1) 
3 435 0.12 0 (0.6) 1 (0) 
4 320 0.08 0 (0.4) 0 (1) 
 

Figure 2: Example System 
 
The system was simulated (using a job-driven ap-

proach) for 150,000 job completions using SIGMA, an 
event scheduling-based simulation package (Schruben and 
Schruben 2001).  The first 5000 jobs were removed to ac-
count for initialization bias.  For independence, every 10th 
job was sampled, for a total of n = 14,500.  The confidence 
intervals obtained through our method as well as the con-
ventional confidence intervals are shown in Figures 3-5.  
They illustrate how misleading conventional intervals are.  
The conventional confidence interval does not overlap with 
the other intervals in any of the three figures.  In our ex-
ample, they become increasingly inaccurate after each 
“branching” step has occurred when compared to the actual 
route confidence intervals.   
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Figure 3: Confidence Intervals for Expected Cycle Times 
When a Job Enters the System 
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Figure 4: Confidence Intervals for Remaining Cycle Times 
After the Outcome of Step 2 Is Known 
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Figure 5: Confidence Intervals for Remaining Cycle Times 
After the Outcome of Step 6 is Known 

 
We now illustrate the RSM-based estimation approach 

for this example.  We fit linear models for the mean and 
variance of 0Y , the remaining cycle time when a job enters 
the system, and 2Y , the remaining cycle time after step 2.  
The predictors or factors used to fit the responses are the 
outcome of the probabilistic split at step 2 ( 2 {3,4}X ∈ ) 
and the outcome of the probabilistic split at step 6 
( 6 {7,8}X ∈ ).  The models for the mean are given below.  
Both have adjusted R2 values of 0.99. 

 
 0 1 2E( ) 2307.9 132.1 145.4Y X X= − −  (8) 

 2 1 2E( ) 2121.9 132.4 145.6Y X X= − −  (9) 
 
The models for the variance are given below.  Both have 
adjusted R2 values of 0.57. 

 
 0 1 2Var( ) 341190 13010 14677Y X X= − −  (10) 

 2 1 2Var( ) 306131 11661 14489Y X X= − −  (11) 
 

1809
The models for the mean fit well whereas the models 
for the variance do not fit as well.  This is to be expected 
given the variability in the system.  However, the linear 
model estimation for the variance models can be improved 
by increasing the number of jobs used for estimation.  The 
models above can be used to generate estimates for the 
confidence intervals for the remaining cycle times for a job 
entering the system as well as for a job after it completes 
step 2.  Similar models can be estimated for the mean and 
variance of remaining cycle times after any step in the sys-
tem, and the corresponding confidence intervals computed. 

5 CONCLUSIONS AND FUTURE RESEARCH 

We have proposed an RSM-based estimation approach for 
obtaining more accurate predictions of remaining job cycle 
times in systems where the path of a job is determined as 
the job progresses through the system.  Rather than report-
ing a single confidence interval, we provide the user with a 
set of intervals (along with their associated probabilities) 
based on the potential paths the job can take.  With the 
help of an example, we have illustrated both the problem 
with traditional confidence interval estimates for the re-
maining cycle times in such a system, and the RSM-based 
approach for estimating models for mean and variance of 
the remaining cycle times.  In addition to the job-driven 
simulation approach, we have outlined two methods for 
less detailed simulation modeling to estimate the parame-
ters for the linear model.  A future publication will address 
the RSM-based estimation and the resource-driven ap-
proaches to estimating the parameters of the RSM models 
in detail. 

Various extensions to the work proposed in this paper 
are possible: 

 
• Use of non-Exponential service times 
• Larger model with more steps and more branching 
• Dependent routing probabilities 
• Include other factors in the model, e.g., system 

loading. 
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