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ABSTRACT 

Several types of production systems have been studied 
and researched in the past using either simulation and\or 
optimization methods. In this paper we describe the design 
and development of a simulation assisted predictive-
reactive system for scheduling and rescheduling a typical 
flexible production system configuration. Aspects like the 
combined use of simulation and optimization to solve 
complex scheduling and rescheduling tasks are described 
in view of system stability and some of the broader produc-
tion system elements like buffer sizing and material han-
dling equipment. Results show that combining simulation 
and optimization for predictive scheduling resulted in bet-
ter and valid performance measures for a typical example. 
Results also show that some newly addressed aspects of 
stability and real-time control can be handled efficiently 
using a combination of simulation and optimization. Our 
discussions only bolster the claim that simulation is an in-
dispensable tool in managing complex production systems. 

1 INTRODUCTION 

Production systems are getting more and more complex 
these days. The complexity is due to several factors like 
complex production systems, product variety and uncertain 
business processes. Efficient techniques for planning and re-
planning the entire supply chain to cope with the complexity 
and business dynamics are more and more apparent. Within 
the manufacturing and distribution supply chain, production 
scheduling and re-scheduling is one area, which will be vital 
to the success of the manufacturing organization. Especially, 
day to day operations and the disturbances arising out of un-
certain characteristics of the system have to be handled effi-
ciently.  
1781-4244-0501-7/06/$20.00 ©2006 IEEE
As one could imagine there are several configurations 
of flexible production systems, each with its own character-
istics. In this report, we seek to address scheduling and con-
trol of one such flexible production system configuration – 
the flexible flow shop or more specifically the flow shop 
with parallel machines (FSPM) at one or more stages. 
Mathematically, this problem is a combination of the classi-
cal flow shop scheduling problem and the flow shop with 
multiple processors at some stages. The application of this 
type of problem occurs more often than one would imagine. 
Many high volume production facilities have several sepa-
rate flow shops. The process in such facilities is such that 
machines are flexible or interchangeable at each stage and 
therefore practically similar. Some production facilities also 
have special expertise in machining a family of parts, where 
each part follows the same sequence, but each machine is 
flexible to accommodate the slight variety in parts. Assem-
bly lines, in which more than one type of product may be 
manufactured and each work station has multiple machines, 
is also an obvious application of this problem. Similarly, the 
situation where a parallel machine is added to relax strain on 
a bottleneck facility, and\or to increase production capacities 
can be viewed as an application of the suggested problem.  

For such kind of system configuration, several research-
ers have developed heuristic methods. However, these 
methods do not consider the broader production system ele-
ments and there do not yet exist re-scheduling methods for 
real-time control. Besides this, the ability to schedule such 
systems considering flexible and fixed part flows (mixed 
flows) is not available yet. 

Comparatively inadequate amount of work has been 
published in the area of the parallel machine flow-shop 
scheduling problem. Brah and Hunsucker (1991) have de-
veloped a branch and bound algorithm for the FSPM prob-
lem. This algorithm was noted to have worked consistently 
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with a fair amount of computational speed for medium sized 
problems. For large sized problems, further improvements 
were suggested. More recently, Cheng et al. (2001) devel-
oped a heuristic using a combination of the property of re-
versibility of the FSPM problem and the shifting bottleneck 
procedure. Phadnis and Irani (2003) developed such an algo-
rithm for the FSPM problem using the shifting bottleneck 
procedure, and have compared their results with other algo-
rithms, namely that of Cheng et al. and others. Improve-
ments were shown again for improving optimality. As dis-
cussed earlier, the algorithms are exact in the sense that they 
use only information on machines, jobs and processing times 
to compute schedules. They do not encompass the other 
elements of a production system, like buffer sizing, transpor-
tation systems and the like. In our opinion, the result of these 
algorithms could be considered theoretical at best because of 
the fact that we do not know if they can be executed exactly 
as computed in the real world. Besides this, the problem of 
how to schedule and re-schedule in the presence of determi-
nistic and random disturbances and jobs with flexible or 
fixed routes is still not answered by all the previous research. 

Over the last decades, a significant volume of research 
on the issues of scheduling with executional uncertainties 
has begun to emerge for several system configurations. 
Haldun et al. (2005) present an excellent overview of this 
research, some of which combined with our opinion are dis-
cussed next. They mention approaches like completely reac-
tive approaches, robust scheduling approaches and predic-
tive-reactive scheduling. The latter is by far the most 
studied, and we therefore examine a number of specific is-
sues related to this approach in more detail, some of which 
are addressed in this paper. Completely reactive approaches 
are characterized by least commitment strategies such as 
real-time dispatching that create partial schedules based on 
local information. This approach has many practical advan-
tages. Its computational burden is in general extremely low, 
and rules are usually intuitive and easy to explain to users.  

A natural extension of the dispatching approach is to 
allow the system to select dispatching rules dynamically as 
the state of the shop changes. Early work in this area is that 
of Wu and Wysk (1989), who examine the problem of dis-
patching rule selection in the flexible production system 
environment. They divide the time horizon into shorter in-
tervals. At the beginning of each interval a variety of dis-
patching rules are simulated, and the rule that yields the 
best performance is selected and implemented for the next 
time period. However, for complex systems with relatively 
low uncertainty, global scheduling instead could have the 
potential to significantly improve system performance 
compared to localized or myopic dispatching. Secondly, 
we believe that when the frequency of disturbances is high, 
then management efforts could be better spent on reducing 
those uncertainties, than developing complicated schedul-
ing logic. 
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A number of Authors have extended this approach in 
various ways. Harmonosky et al. (1997) present their work 
in the areas of real-time selective re-routing and scheduling 
algorithms based on simulation. They iteratively use simu-
lation as a tool to find out the best policy from a set of al-
ternative policies in real-time. Using simulation as a tool 
for real-time scheduling presents several benefits and 
drawbacks. The most important benefit is that simulation 
can provide accurate information about a certain policy. 
Secondly, simulation proves to be effective when the sys-
tem behavior is probabilistic, and cannot be easily captured 
by analytic methods. The ability to provide accurate infor-
mation about a certain policy becomes a drawback when it 
comes to modeling a complex production system. As the 
underlying production system gets bigger encompassing 
other elements, and as the number of “decision points” (lo-
cation where a decision to handle a part has to be taken) 
increase with each point providing several alternatives (due 
also to part variety), the more difficult it is to employ simu-
lation, especially in real-time to obtain information about 
the best alternative policy. Other aspects that cannot be 
considered by using a purely simulation based approach 
are discussed in the third last paragraph of this section. 

In the areas of robust scheduling approaches, probable 
disturbances are considered into the planning phase, so that 
the effect of executional uncertainties are reduced. One way 
in which this is done is to minimize the expected degrada-
tion in performance measure (Leon et al. 1993; Wu et al. 
1999), where the degradation is measured as the difference 
in objective function value between the predictive and real-
ized schedule. Leon et al. (1993) also include a number of 
re-configuration related costs, such as cost of changes in the 
start times and the cost of sequence changes. These ap-
proaches do not explicitly consider execution issues, since 
the formulation accounts for the fact that there will be dis-
ruptions prior to the execution of the schedule. The issue of 
predictability and graceful transition from a current system 
state is thus not considered.  

Predictive-reactive scheduling is presented as a two-
step process. First, a predictive schedule representing the 
desired behavior of the shop floor over the time horizon 
considered is generated. This schedule is then modified 
during the execution in response to unexpected disruptions. 
The schedule that is actually executed on the shop floor af-
ter these modifications is called realized schedule. The two 
main questions are when to initiate a rescheduling action 
and what the rescheduling action should be.  

Church and Uzsoy (1992) provide a rough taxonomy 
of existing approaches of when to reschedule, beginning 
with two extremes. Continuous rescheduling approaches 
take rescheduling action each time an event that is recog-
nized by the system, such as the arrival of a new job, oc-
curs. Periodic rescheduling, on the other hand, defines a 
basic interval T between rescheduling actions during which 
rescheduling actions are not permitted. Finally, they define 
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event-driven rescheduling, in which a rescheduling action 
can be initiated upon the recognition of an event with po-
tential to cause significant disruption to the system. Both 
continuous and periodic rescheduling can be viewed as 
special cases of event-driven rescheduling.  

Clearly, continuous rescheduling runs the risk of initi-
ating rescheduling activity in the face of events that do not 
cause significant disruption, expending computational re-
sources and potentially causing unnecessary changes in the 
schedule with associated poor effects on the shop floor. 
The obvious drawback of periodic rescheduling is that it 
ignores events occurring between rescheduling points, 
which in an extreme case may render the current schedule 
impossible to execute, and in less serious situations runs 
the risk of yielding poor schedules. Hence, a combination 
of the periodic and event driven approaches appears attrac-
tive, in which a periodic rescheduling approach is imple-
mented, but rescheduling activity can be invoked between 
rescheduling points if a disruption that is deemed suffi-
ciently serious is observed. This latter approach is more 
commonly observed where schedules are often developed 
for some base horizon, such as a day or a shift, but are 
modified as needed during that period.  

In our opinion, there is something more to the aspect 
of when to re-schedule. The problem is which point in time 
to re-schedule\start making changes after the occurrence of 
a disturbance event or a deviation? Another problem is 
how much to re-schedule? Further questions are, how can 
we deviate from a predictive plan as less as possible? In 
case of deviations from a predictive plan, how can we 
bring back the system to its original\planned trajectory? 
How can we reschedule as less as possible, to result in sys-
tem stability? We define system stability in terms of job 
starting time deviations and job sequence deviations. Sys-
tem stability is important because changing from a predic-
tive plan asks for energy and resources from the manage-
ment, especially in systems where materials and supplies 
are made available Just-In-Time. But most importantly, we 
also want to ask, is rescheduling really required? If yes, 
how can we make sure that future execution is not affected 
as a result of this rescheduling action? 

In this paper, we describe a simulation assisted predic-
tive-reactive system for scheduling and rescheduling of a 
typical complex environment to answer the above ques-
tions. In both phases of the system, simulation is combined 
with optimization. We think, it is best to employ a combina-
tion of simulation and optimization algorithms (for schedul-
ing and re-scheduling) as this will reduce the computational 
burden on simulation, consider the effects of the broader 
system elements, besides using simulation to provide a prob-
lem free execution of the predictive plans. Optimization can 
reduce drastically the options to simulate, while simulation 
can be used to check the validity of the schedule, and most 
importantly, to improve or fine tune the schedule.  
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We show here how simulation is an vital tool in the 
planning phase as well as the rescheduling phase. We also 
show that simulation provides answers to some difficult 
problems, said to be at least NP-hard by others (Phadnis, 
Irani (2003)). We mainly describe our concepts, some pro-
totype software and experimental results on simulation as-
sisted predictive scheduling and rescheduling to address 
the problems we discussed earlier. Our results are promis-
ing. In the next section, we describe the overall framework 
of our system. In Section 3 we describe the implementation 
and results. Our conclusions are presented in Section 4. 

2 THE OVERALL FRAMEWORK 

Based on the problem descriptions of previous section, we 
now describe our concepts in details. Figure 1 shows the 
overall concept of our simulation assisted predictive-
reactive approach for production scheduling and re-
scheduling. The predictive system develops a sched-
ule\plan to implement in the next planning horizon or shift. 
As the execution of the plan proceeds in the next shift, the 
reactive system is used. 

2.1 The predictive system 

To begin with, the user first models the production system 
with all the deterministic parameters using standard and 
custom built object libraries. Here, we let the user define 
the alternative control policies at so called “decision 
points” in the simulation model, along with modeling other 
elements. The user also models several executional condi-
tions at each decision point that could be expected to occur 
when implemented in the real world. The user models 
these conditions based on his expert knowledge of the sys-
tem. For each decision point a rule generator is imple-
mented for handling various conditions arising at the deci-
sion point during simulation run-time. All this information 
is modeled during simulation modeling using customized 
object libraries and standard simulation functions, both of 
which are implemented and used for optimization.  

The predictive system works in two steps. In the first 
step, data required for optimization (processing times, jobs, 
machines, stages) is passed on to the optimization algo-
rithm object, which acts like a black box. The optimization 
algorithm may compute a semi-feasible plan (one which 
cannot be completely executed as generated without prob-
lems) or a predictive schedule to be used in the system 
with sub optimal makespan Key Performance Indicator 
(KPI), which includes part routing\sequencing decisions. 
Current system status is considered in terms of earliest 
available machine times. During the optimization process, 
known events like machine maintenance schedules, mate-
rial unavailability, fixed job routings in the system and 
other problems are considered (see Figure1) that are per-
ceived to occur in the next period (for which the schedule 
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is being developed). The optimization algorithm works by 
determining bottleneck stages, and sequencing each job 
with longest tails at the earliest available machines on the 
bottleneck stage through all the stages. The system also has 
a section to accommodate due date conformance for jobs 
with fixed routings using iterative simulation in addition to 
makespan KPI. The reason for using simulation to assist in 
due date conformance is the fact that the problem in hand 
is atleast N-P hard to be solved by an algorithm optimally. 
Note that this semi-feasible plan may result in a perform-
ance measure value (makespan) which could be lower than 
the one obtained in the real world. This is because the op-
timization algorithm does not consider other elements like 
buffer sizes, other material flow objects, etc in its computa-
tions. This degree of increase in value of the performance 
measure in the real-world will depend on the travelling 
times, waiting times for other material flow objects, and 
the number of resources available to serve the machining 
stations. This sub optimal schedule is given back to the 
simulation function (see Figure 2) to complete the second 
step of the predictive phase. 

In the second step, the partial schedule obtained from 
the optimization algorithm, is simulated and further ana-
lyzed for feasibility and optimality using a Flow Analyzer 
Module (FAM), shown in Figure 2. Analysing feasibility 
will cover problems that may occur during the real execu-
tion of the schedule obtained from the optimization algo-
rithm, specifically problems like bottlenecks, and the effect 
of including buffer sizing and other elements of the pro-
duction system. Analysing optimality will cover assessing 
the result of the optimization algorithm. This is done as 
follows. The plan is simulated once completely to the end, 
and the results are stored in a database. This will result in 
KPI values including the effect of problems, buffer sizing, 
 

1788
etc that might occur during the simulation run. Then the 
simulation is run for a second time with the Flow Analyzer 
Module activated. This analyzer will generate its own rules 
(with the same objectives as that of the optimization algo-
rithm) for routing jobs based on conditions that occur dur-
ing the simulation run. As explained earlier, these condi-
tions are modeled by the user during the initial modeling 
process. As an example, if step 1 of the predictive system 
computed that job 1 on decision point 3 has to take deci-
sion (route) 4, then the FA component will analyze the 
situation at the moment (for feasibility or optimality) and if 
required over-ride the decision of the optimization algo-
rithm, to result in say decision (route) 5.  

Each job at each decision point will be analyzed for 
the current situation and condition, and where required the 
results of the optimization algorithm over-ridden. The rules 
within the FAM component are largely based on waiting 
times for jobs within the system. When the entire plan is 
analyzed and simulated in such a way, the second simula-
tion run stops and the user is presented with the results of 
both simulation runs. The first simulation will show the re-
sult of the optimization algorithm and the second simula-
tion will show the result of the combination of the optimi-
zation algorithm and the FAM.  

The optimization algorithm primarily seeks to reduce 
complexity due to the alternative policies by using im-
provement procedures in the first step, whilst the simula-
tion function and the FAM component (in the second step) 
serves to improve the feasibility and optimality of the 
schedule and to obtain better and actual performance 
measures. The simulation function also serves the purpose 
of real-time (re)scheduling (explained later). Of course, the 
end result of combining optimization and simulation would 
also depend on how effective the optimization algorithm is. 
 
Figure 1: Overview of the Simulation Assisted Production Scheduling and Rescheduling System 
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Figure 2: Combining Simulation and Optimization to Achieve Validity and Optimality of the Predictive Schedule 
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In any case, if the optimization algorithm provides a good 
solution, the combination with simulation will improve the 
solution further. This method of combining simulation and 
optimization for predictive scheduling makes sense be-
cause it solves a problem before they occur in the real 
world, whilst also improving the schedule and providing 
actual system performance measures. This has been quanti-
fied later in Section 3 of the paper. 
 
2.2 The reactive system 

The plan obtained in the predictive phase is executed in the 
shift under consideration. During execution, as soon as 
there is a disturbance, the rescheduling mechanism is acti-
vated. The criteria for activating the reactive system are set 
during the predictive planning phase itself. The distur-
bances we consider so far are process disturbances. Any-
thing to do with new order arrival would be dealt with by 
the predictive system. Here too, a combination of simula-
tion and optimization is suggested for the same reasons 
mentioned in the previous section. Figure 3 shows the 
1789
method. The method is somewhat similar to the one pro-
posed by Chong et. al (2003), but differs significantly in 
operating principles.  

In this system, the real-time monitoring and control 
module receives events from the real production system. 
Upon occurrence of a disturbance, the simulation evalua-
tion function is activated which simulates the result of the 
disturbance to compute the effect of the disturbance. This 
will be the upper bound of the system. The control is then 
passed on to the rescheduling optimization algorithm. The 
rescheduling optimization algorithm is divided in two sub 
algorithms both achieving some or all aspects of stability 
with different aims. These algorithms are the selective re-
scheduling algorithm (which is described in more details in 
this paper) and the match-up rescheduling algorithm. The 
selective rescheduling algorithm provides real-time control 
by selectively rescheduling the fewest jobs possible, while 
the match-up rescheduling algorithm tries to match-up the 
entire schedule to the original planned trajectory. Note that 
these optimization algorithms are different to that used in 
the predictive part.  
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Figure 3: Combination of Simulation and Optimization for Rescheduling and Real-time Control 
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The optimization algorithm(s) then passes on the result to 
the simulation function, which simulates this result, but 
this time, it also activates the same Flow Analyzer (FA) 
component which was used in the predictive part. Note that 
this time, the FA component will stick to the predictive 
plan as much as possible, and only over-ride the predictive 
plan where problems such as bottleneck and related prob-
lems happen. It will not check each job, at each decision 
point for further overriding as was done in the predictive 
part. This second simulation assisted FAM will not only 
simulate the result to check optimality considering the 
broader system elements but will also check validity by 
solving problems which might occur due to this reschedul-
ing solution. At the end of the second simulation run, the 
user can compare the result of the simulated upper bound 
and the rescheduling solution. He could decide which solu-
tion he wishes to implement in the scheduling controller 
and pass on the result to the real-time control module. In 
the next section the selective rescheduling optimization al-
gorithm is described. 

2.2.1 Selective rescheduling stability algorithm  

Figure 4 shows the system stability algorithm which is part 
of the simulation assisted rescheduling mechanism. The 
algorithm takes as an input the upper bound computed by 
the simulation as shown in Figure 3. Then the 
stage\machine finishing last is analyzed for additional ca-
pacity. If there exists capacity, the user is prompted for sel- 
1790
 
ecting all machines where some capacity exists. If capacity 
exists, this means theoretically, system stability and re-
scheduling could take place. On the other hand, when ca-
pacity does not exist, the system informs the user that the 
rescheduling does not help the situation for the current dis-
turbance. The user selects the other machines on the stage 
that the system asked him to. The system then asks the user 
to enter a probable number of jobs that he thinks could be a 
good candidate for a rescheduling try. Note that the system 
selects jobs for rescheduling based on criteria such as jobs 
finishing last on the stages under consideration. The heu-
ristic then runs and computes a rescheduling solution for 
each job cumulatively. In other words, if the user selects 
three jobs, the system first tries to reschedule only one job, 
followed by rescheduling the first and the second job, fol-
lowed by rescheduling the first, second and the third job 
and computing the job completion times. Upon completion 
of this procedure, the user has the results on rescheduling 
for all the three cases. The system will automatically select 
the solution which provides system stability, for further 
evaluation with the simulation based Flow Analyzer Mod-
ule (FAM). The results are given in next section. 

3 IMPLEMENTATION 

At the time of writing of this paper, the predictive-
reactive scheduling system was partly implemented in the 
simulation software Technomatix eM-Plant. The entire sys-
tem is implemented as a custom object library in eM-Plant. 
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This means that the user can build his own simulation 
model using standard simulation objects, and place the ob-
jects for his tasks like scheduling and or\re-scheduling 
within the model frame, and start the analysis. For the 
moment, we use the simulation system itself (not a real 
production system) for rescheduling, as a means to test our 
approaches. Figure 5 shows the user interface developed 
for the predictive system. It shows facilities such as editing 
predictive information on the right hand side including set-
ting for activating and using the simulation based FAM 
(Figure 6 and 7), and setting for activating the reactive sys-
tem based on user defined criteria. Figure 6 shows the re-
scheduling dialog which is activated as soon as a distur-
bance occurs. It shows information such as the time, 
1791
location and the nature of the disturbance, and method of 
rescheduling selection. As described earlier, the system in-
forms the user if rescheduling is possible at all. This is 
shown by Figure 9. Figure 10 shows the options the user 
has to select alternative machines for rescheduling. Figure 
11 shows the number of jobs the user can try for reschedul-
ing. Examples were taken to demonstrate the system func-
tionality and results for both the predictive and reactive 
part. Table 1 shows the data used for testing the predictive 
scheduling system. We have tested the predictive system 
with 1000 jobs and 30 machines with improvements in job 
ending times and makespan KPI. 
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on disturbance stage

Get set of jobs {i´´} 
after disturbance 

Re-schedule job i on 
alternative machine 

Update job 
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Figure 4: Selective Rescheduling Stability Algorithm 
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Figure 5: Predictive Scheduling Dialog 

 

 
Figure 6: Setting Table Conditions for the FAM 

 

 
Figure 7: Setting Table Actions for the FAM 

 
Figure 8: Rescheduling Dialog 

 

 
Figure 9: Guidance Where Rescheduling Could Take Place 
 

 
Figure 10: User Alternative Resource Selection 
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Figure 11: System Prompt for Input on Number of Jobs 
 

Table 1 : Production System Size for Predictive Test Case 
Number of stages 

Nr. of  
machines 
Stage 1 

Nr. of  
machines 
Stage 2 

Nr. of 
machines 
Stage 3 

Nr. of 
jobs 

Proc. time 
range  

(minutes)

5 5 3 50 (5-100) 
 

Figure 12 shows the comparison of the combination of 
simulation and optimization with pure optimization and 
random scheduling methods for a smaller problem size. 
Table 2 shows the percentage reduction in job finishing 
times (JFT). Note that the percentage reduction for the op-
timization plus simulation is with respect to the optimiza-
tion method. Results show that 41 jobs showed reduction 
in JFT out of 50 jobs, with minimum improvement of 0.9 
percent and maximum improvement of 9.9 percent. It was 
observed that for different problem sizes, the simulation 
plus optimization method of scheduling was rarely worser 
than pure optimization, and always resulted in some solu-
tion improvements.  
 

 
Figure 12: Assessing the Opt. + Sim. Based FAM Results 

 
Table 3 and 4 shows the data used for testing the re-

scheduling solution using the selective rescheduling 
method. At the time of writing of this paper the match up 
rescheduling system was under initial stages of implemen-
tation (we have the algorithm). Figure 13 shows the re-
scheduling solution obtained for the first case.  
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Table 2: Sample Predictive Test Results 
Job Methods of scheduling 

Random Optimization Opt. + Simula-
tion based FAM 

 

JFT*  
(minutes) 

JFT 
(minutes) 

%  
Reduction 
in JFT 

JFT 
(minutes)

%  
Reduction 
in JFT 

1 70 70 0.0 % 70 0.0 % 
2 160 120 25.0 % 120 0.0 % 
3 260 170 34.6 % 170 0.0 % 
4 260 220 15.3 % 220 0.0 % 
5 350 270 22.8 % 265 1.85 % 
6 360 315 12.5 % 320 -1.6 % 
7 445 365 17.9 % 360 1.3 % 
8 455 405 10.9 % 410 -1.2 % 
9 525 455 13.3 % 450 1.1 % 
10 550 495 10.0 % 500 -1.0 % 
11 640 545 14.8 % 540 0.9 % 
12 640 580 9.3 % 585 -0.8 % 
13 725 660 8.9 % 625 5.3 % 
14 730 665 6.8 % 665 0.0 % 
15 800 745 15.8 % 710 4.70 % 
16 885 745 14.4 % 745 0.0 % 
17 970 830 12.9 % 785 5.4 % 
18 1040 905 17.6 % 815 9.9 % 
19 1105 910 12.1 % 855 6.0 % 
20 1110 975 15.5 % 895 8.2 % 
21 1160 980 12.2 % 920 6.1 % 
22 1185 1040 15.3 % 960 7.6 % 
23 1240 1050 14.6 % 980 6.6 % 
24 1295 1105 18.3 % 1045 5.4 % 
25 1360 1110 19.0 % 1050 5.4 % 
26 1420 1150 20.0 % 1100 4.3 % 
27 1470 1175 17.6 % 1105 5.6 % 
28 1470 1210 19.0 % 1150 4.9 % 
29 1520 1230 18.1 % 1205 2.0 % 
30 1540 1260 16.6 % 1180 6.3 % 
31 1565 1305 17.8 % 1220 6.5 % 
32 1595 1310 15.8 % 1230 6.1 % 
33 1605 1350 18.3 % 1265 6.3 % 
34 1660 1355 16.8 % 1280 5.5 % 
35 1665 1385 17.1 % 1300 6.1 % 
36 1695 1405 16.0 % 1315 6.4 % 
37 1710 1435 16.7 % 1350 5.9 % 
38 1730 1440 15.7 % 1355 5.9 % 
39 1745 1470 16.9 % 1380 6.1 % 
40 1770 1470 16.7 % 1385 5.7 % 
41 1790 1490 16.7 % 1405 5.7 % 
42 1795 1495 17.3 % 1410 5.7 % 
43 1820 1505 17.0 % 1425 5.3 % 
44 1820 1510 16.9 % 1435 4.9 % 
45 1830 1520 16.9 % 1445 4.9 % 
46 1855 1530 17.5 % 1445 5.5 % 
47 1890 1545 18.2 % 1460 5.5 % 
48 1915 1570 18.0 % 1460 7.0 % 
49 1990 1595 19.8 % 1465 8.1 % 
50 2010 1600 20.4 % 1490 6.8 % 

* JFT = Job Finishing Times 
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Table 3 : Production System Size for Reactive Test Case 
Number of stages 

Nr. of  
machines 
Stage 1 

Nr. of  
machines 
Stage 2 

Nr. of 
machines 
Stage 3 

Nr. of 
jobs 

Proc. time 
range  

(minutes)

3 3 2 20 (5-60) 
 

Table 4: Data Used for Reactive Test Cases 
Case Disturbance 

duration 
Shift 

length 
Number 
of jobs 

Nr. of  
machines 

1 15 minutes 4 hours 20 7 
2 45 minutes 2 hours 10 7 

 

 
 

Figure 13: Rescheduling Solution Case 1 
 

 
 

Figure 14: Rescheduling Solution Case 2 
 
The solution was computed in about 10 seconds, which in-
cluded time for the interactive data exchange with the re-
scheduling system using the developed user interface. Our 
discussion on real-time control should not be considered in 
a rigid sense, as we consider a semi-automated system, 
where a few minutes or seconds of decision making time, 
would not have a negative impact on the performance of 
the entire system. As seen in Figure 13, we see that the so-

 Job 1 Job 1, 2 Job 1, 2, 3 

 Job 1 Job1, 2 
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lution is worse when compared to the makespan and the 
upper bounds for all iterations. The Y axis in Figure 13 and 
14 shows the time in seconds (in eM-Plant the simulation 
starts from the current time, not from zero, but the compu-
tation times shown start from zero with respect to the cur-
rent time. It may appear that a large amount of time has 
passed giving the impression that the results are irrelevant– 
that is not the case!). This means, that in this case, re-
scheduling is not at all recommended – it will not improve 
the situation. Note that though the system has an earlier 
check system (by prompting the user) to filter out unneces-
sary computations when rescheduling cannot be done, it 
does still consider theoretical possibilities of rescheduling, 
when capacity exists. In this case, capacity did exist, so the 
algorithm went ahead with rescheduling, but found out that 
rescheduling is not feasible because the solution was 
worse. For the second test case, Figure 14 shows that the 
first iteration clearly helps the situation by resulting in 
makespan lower than the upper bounds. This figure also 
shows that only one job is sufficient to be rescheduled, and 
not 2 or more jobs. The computation times for the second 
test case were about the same as for the first case. The re-
sults so far have answered the question how much to re-
schedule, and if we should reschedule at all. The question 
when to reschedule will also be answered by the system as 
it computes the time when the job or jobs should be re-
scheduled depending on the precedence constraints. 
 
4 CONCLUSIONS 

 In this paper, we have presented issues that exist when 
scheduling and rescheduling a special configuration of a 
flexible production system. We addressed how simulation 
can be used effectively for scheduling and rescheduling a 
complex system. The combination of the simulation based 
FAM and optimization for predictive scheduling can result 
in quantitative gains in performance measures considering 
some global elements of the system as seen from the re-
sults. We consider this combination of simulation and op-
timization as a small practical step in the state of the art 
simulation and optimization technologies. We also showed 
how simulation can be combined with optimization for re-
scheduling, for achieving newer performance indicators 
such as system stability. 
 The elements of stability like how much to reschedule, 
which point in time to reschedule, and if we should re-
schedule at all have been answered with certainty. From 
the results we can conclude that the rescheduling algo-
rithms can start their computations as soon as the distur-
bance occurs, but do not essentially have to reschedule 
immediately upon occurrence of a disturbance. Our results 
show that the methods are promising at the outset, though 
the system needs to be completely developed, and tested 
thoroughly for it to be acclaimed as useful.  
4
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