
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A REINFORCEMENT LEARNING ALGORITHM TO MINIMIZE THE MEAN
TARDINESS OF A SINGLE MACHINE WITH CONTROLLED CAPACITY

 Hadeel D. Idrees
Mahdy O. Sinnokrot
Sameh Al-Shihabi

Industrial Engineering Department

University of Jordan
Amman 11942, JORDAN

ABSTRACT

In this work, we consider the problem of scheduling arriv-
ing jobs to a single machine where the objective is to
minimize the mean tardiness. The scheduler has the option
of reducing the processing time by half through the em-
ployment of an extra worker for an extra cost per job
(setup cost). The scheduler can also choose from a number
of dispatching rules. To find a good policy to be followed
by the scheduler, we implemented a λ-SMART algorithm
to do an on-line optimization for the studied system. The
found policy is only optimal with respect to the state repre-
sentation and set of actions available, however, we believe
that the developed policies are easy to implement and
would result in considerable savings as shown by the nu-
merical experiments conducted.

1 INTRODUCTION

Reinforcement learning RL encompasses a variety of tech-
niques that autonomous agents, which interact with their en-
vironment, use to select the action that achieves their goal of
maximizing a certain reward. In a typical reinforcement-
learning model, as shown in Figure 1, the agent senses the
state of the environment s, performs an action a and receives
a reward r due to the change in environment state or due to a
direct reward such as minimizing tardiness in the model pre-
sented (Sutton and Barto 1998).

Reinforcement learning is found to be a better alterna-
tive to optimize Markov Decision Processes (MDP) and
Semi-Markov Decision Processes (SMDP) than the classi-
cal Dynamic Programming (DP) approach (Sutton and
Barto 1998). Online optimization, avoiding the curse of
dimensionality and avoiding the curse of modeling are
some of the reasons for choosing RL for optimizing sto-
chastic systems (Gosavi 2004). A good survey paper about
RL, its implementation and application is that of
(Kaelbling, Littman and Moore 1996).

17651-4244-0501-7/06/$20.00 ©2006 IEEE
Different RL algorithms are suggested in the literature
where the reader is referred to (Sutton and Barto 1998) for
an excellent discussion about these algorithms. As the
model implemented in this work deals with minimizing the
average tardiness on the long run, a λ-SMART algorithm
which emphasizes on the time taken for the state change is
adopted in this work (Gosavi 2004). A good reference
about RL techniques to minimize the average reward is
found in (Mahadevan 1996).

Figure 1: Agent-Environment Interaction in Reinforcement
Learning System

The λ-SMART algorithm finds the optimal policy by

finding the appropriate Q(s,a) values iteratively. The
Q(s,a) values take into account the relation between the
state s and action a. The Q(s,a) values are updated at each
step that a reward is received for an action taken. The
original Q-learning algorithm was first proposed by (Wat-
kins 1989). The updating scheme of the Q-values is given
by the following equation:

'

(,) (,)
((, ,) max (,) (,)),

a

Q s a Q s a
r s a s Q s a Q s aα γ

= +
+ −′ ′ ′ (1)

Idrees, Sinnokrot, and Al-Shihabi

where Q(s,a) is the state-action pair value, s is the current
state, a is the current action, s’ is the next state, a’ is the
next action,),(asr is the reward,)1,0[∈γ is the discount
factor of getting to a new state and α is the learning rate.
The λ-SMART algorithm modifies Equation 1 by taking
into account the average reward per time ρ for taking an
action at a given state as explained in the algorithm presen-
tation in Section 3.

The Q(s,a) values represent the knowledge base of the
agent which enables the agent to select the optimum action
at each state and it solves the Bellman equations asynchro-
nously. The λ-SMART algorithm allows the exploration of
different actions at the different states.

2 MODEL

The system studied in this work consists of a single entity
that might be considered as a single machine or a complete
factory having a number of processes. Jobs of different
processing requirements arrive to this machine and each
has a due-date to satisfy where set-up times between jobs
are neglected. The machine can only process one job at a
time. We assume in this work that the processing time of
any job can be reduced by half through the employment of
a second worker or subcontracting part of the arriving job
to an out of house manufacturer. The cost of hiring a new
worker is denoted by K and its measuring unit is $/job. The
penalty of a tardy job is denoted by P and its measuring
unit is $/time.

The decision maker or the agent employed can choose
whether to hire a new worker or not and which dispatching
rule to implement. The available dispatching rules for the
agent(s) are: SPT (Shortest Processing Time), EDD (Earli-
est Due Date), and FIFO (First In First Out). The agent can
choose from a set of six actions which are the possible
combinations of the dispatching rules and number of work-
ers. In the following presentation, the number that follows
the dispatching rule would indicated the number of work-
ers employed such that; FIFO2 represents a FIFO dispatch-
ing rule where two workers are employed.

As stated earlier, the model developed by (Wang
2003) is partially adopted in this work which is explained
in the experiment section. In his work, (Wang 2003) tried
to find such appropriate dispatching rules without having
the option of minimizing the processing time by employing
an extra worker.

Based on the model described above, two objectives
are considered in this work, namely; minimizing the tardi-
ness of the finished jobs and minimizing the cost of hiring
an extra worker. The model described is represented by
Figure 2. The problem studied is not classical and to the
authors’ knowledge, no previous work is done with respect
to the same cost function and decision variables.

1766

Figure 2: Model of the System

3 ALGORITHM

An appropriate representation of the system state would
entail information about the number of jobs available at the
time of taking an action, the processing time of each job
and the due date of each job in the queue. As the number of
possible combinations is tremendous, (Wang 2003) did re-
place this representation by measuring the lateness of the
jobs in the system and then making this state space dis-
crete. This representation was tried at the beginning of this
work but did not result in a convergent policy with low op-
erating cost.

The number of jobs in the queue is the state presenta-
tion employed in this work. We do believe that this state
representation would not result in an optimal solution but
did perform well when compared to the employment of a
single dispatching rule. Another problem faced in this
work was in evaluating the reward that the employed agent
would get for the selected action at the selected state. The
implemented rewarding scheme penalizes the use of the
extra capacity in addition to the cost of the job being tardy
as defined in the objective; so no positive reward is granted
to the agent.

 As actions taken might have future effects such as
more jobs accumulating if a single worker is employed
versus employing two workers, traces were added to the
algorithm were an action might be penalized at later ac-
tion- selection steps. These traces add the λ symbol to the
λ-SMART algorithm (Gosavi, Bandla, and Das 2002). Fi-
nally, to guarantee convergence, a variable step size of

0.1/0.1 += Nnα where N is the number of the leaving
job is used as a learning rate for this algorithm. The algo-
rithm can be presented through the following steps:

1. For as,∀ , initialize 0),(=asQ , 0=T , 0=R ,

and 0=N .
2. For an idle machine with a queue of jobs avail-

able, choose an action (a) such that it has the
maximum),(asQ with probability 0.99, else ran-
domly select another action.

Idrees, Sinnokrot, and Al-Shihabi

3. Realize the new state (s ′), the time needed to get
to this state))()((stst −′ and the reward achieved

),,(astr
4. If the action taken corresponds to the best Q

value, then update

),(asrRR +← (2)

)()(ststTT −′+← (3)

 and calculate

T
R=ρ (4)

5. Calculate the temporal difference value TDV ac-

cording to

),(),(max
))()((),(

asQasQ
ststasrTDV

a
−′+

−′+= ρ
 (5)

6. For the selected action and the selected state, the

trace value is incremented by 1, however; if the
current state is the same as the future state then
the value of the trace is made equal to 1 (Sutton
and Barto 1998).

7. For as,∀ , update the),(asQ according to

),(),(astraceTDVasQ n ∗∗= α (6)

 9.0),(),(∗← astraceastrace (7)

8. increment N

 1+← NN (8)

9. Repeat steps 2-8 until the departure of the

500,000th job.

The simulation model along with the optimization al-

gorithm is coded using Java programming language, where
a discrete event dynamic system DEDS model is imple-
mented. The different jobs are represented by objects in
the simulation model where each job has its own due date
and processing time as described later. The jobs attributes
are randomly and dynamically generated upon their arri-
vals. Only a single run is conducted to find the optimal pol-
icy then, another simulation run based on the best policy
found is run to report the results presented in the next sec-
tion.
1767
4 NUMERICAL EXPERIMENT

The numerical example described is adopted from (Wang
2003); we briefly discuss it and explain our extension
where a crushing cost per job is included. Jobs arriving to
the single machine studied have an inter-arrival time of λ
which is exponentially distributed and a mean processing
time that is normally distributed where the mean is drawn
from a uniform distribution having minimum and maxi-
mum values of a and b respectively and the standard devia-
tion is 1/10 of the mean. A due date is assigned to each ar-
riving job by multiplying an allowance factor by the
processing time and adding it to the arrival time. The al-
lowance factor has uniform distribution which is also uni-
form with parameters 1.2 and 1.8.

As explained earlier, we assume that there is a fixed
cost paid per job to minimize its processing time by half.
This strategy is always valid regardless of the dispatching
rule employed which leaves the agent to choose one of six
available actions at each state other than state 1. The other
cost component that the agent tries to minimize is the tar-
diness cost where a penalty of timeP /1$= is paid. The
summation of both of these costs represents the total cost
which is averaged over time during the learning process
however; it is averaged over jobs when running the simula-
tion based on the best policy found. Using an indicator
function .{}1 to represent the selection of two workers
when action ia is taken, the cost equation is:

)}]2,2,2(.{1

)([
000,500
0.1 000,500

1

FIFOEDDSPTaK

dCPCost

i

i
ii

∈+

 −=
= (9)

The first columns of Table 1 show a comparison be-

tween the employment of four fixed policies in all states
with respect to the policy that chooses the actions having
the maximum Q(s,a) values at each state s. The Q(s,a) val-
ues are found by running the algorithm of the previous sec-
tion while the results reported are again the average taken
of a single simulation run where no warm-up period is con-
sidered and the simulation run ended with the departure of
the 500,000th job.

The parameters employed in the first table for λ , a, b
are 8, 6 and 8 respectively while different values of K are
considered as shown in the table. The numbers within pa-
renthesis show the corresponding cost of employing any of
the policies. Any 1 symbol indicates using any dispatching
rule employing 1 worker at state 1. It is seen that the worst
cost is obtained by using SPT1 always and by paying a
crushing cost of 5 $/job, a significant decrease is obtained
in the average cost paid. More savings are obtained by
running the policy found by the λ-SMART algorithm.

Idrees, Sinnokrot, and Al-Shihabi

The last column of Table 1 shows the results of em-
ploying the policies found by the λ-SMART algorithm (for
K=30). It is worth noting that for K=30 $/job, employing 2
workers is delayed till 3 jobs accumulate in the system's
queue.

Table 1: Comparison between Different Cost Scenarios
Using Various Dispatching Rules

s K=5
(-15.6)

K=5
(-13.8)

K=5
(-5.08)

K=5
(-5.07)

K=5
(-2.89)

K=30
(-9.37)

1 SPT1 EDD1 SPT2 EDD2 Any1 Any1
2 SPT1 EDD1 SPT2 EDD2 EDD2 SPT1
3 SPT1 EDD1 SPT2 EDD2 EDD2 EDD2
4 SPT1 EDD1 SPT2 EDD2 EDD2 SPT2
5 SPT1 EDD1 SPT2 EDD2 FIFO2 SPT2
6 SPT1 EDD1 SPT2 EDD2 FIFO2 SPT2

Table 1 show that a state dependent policy performs

better than using the same dispatching rule and number of
workers always. EDD2 is the best policy to employ for low
subcontracting cost where more than 1 job is present in the
queue.

In the second experiment, the sensitivity of the policy
and cost with respect to the problem parameters is studied
for the case where K=10 $/job. The three numbers preced-
ing the costs are: λ , a, b respectively. As shown in Table 2,
the best rule to implement once jobs start queuing is
EDD2, this rule remained the same for the different cases
presented in Table 2. The costs found reflect the conges-
tion faced by the system.

Table 2: Effect of Changing Inter-Arrival Time and Proc-
essing Time on the Policy Selected

s 8,(6,8)
(-4.54)

8,(8,10)
(-7.05)

10,(6,8)
(-3.15)

10,(8,10)
(-5.13)

1 Any1 Any1 Any1 Any1
2 EDD2 EDD2 EDD2 EDD2
3 EDD2 EDD2 EDD2 EDD2
4 SPT2 EDD2 EDD2 EDD2
5 SPT2 EDD2 SPT2 EDD2
6 SPT2 EDD2 SPT2 SPT2

5 CONCLUSION AND FUTURE WORK

Despite the misrepresentation of the system state, the re-
sults obtained showed a significant savings in the overall
systems cost as the first three columns in Table 1 show. It
is found that employing 2 workers is an efficient choice for
states having more than 1 job in the system, however, if the
cost of hiring a new worker gets high, the system would
delay the hiring of a second worker until more than 2 jobs
are present in the system as shown in the case where
K=$30/job in Table 1. Using EDD2 rule seems to be a
good policy to employ if the jobs congest in the system and
176
the job controller has the choice to employ a new worker to
reduce the processing time.

Currently, our group is trying to use a different repre-
sentation of the system state. Some of the options consid-
ered for this representation are; congestion measures such
as those suggested by (Lee, Bhaskaran and Pinedo 1997) or
defining the system state based on the average tardiness
found by a dispatching rule. One modification to the sys-
tem might be the use of a different cost function to reduce
the processing time as done usually in real life situations
(Pinedo 2001). Using other dispatching rules might also be
a different modification to the model studied.

Extending the system architecture to a flow shop or
job shop where more than one worker are employed would
make the system more complex and challenging to opti-
mize. Issues such as work force flexibility might be con-
sidered in such systems.

REFERENCES

Gosavi, A. 2004. Reinforcement learning for long-run av-
erage cost, European Journal of Operational Research,
vol. 155: 654-674.

Gosavi, A., N. Bandla, and T. Das. 2002. A reinforcement
learning approach to airline seat allocation for multiple
fare classes with overbooking, IIE transactions, 34 (9),
729-742.

Kaelbling, L., M. Littman, and A. Moore. 1996. Rein-
forcement Learning, a survey, Journal of Artificial In-
telligence Research vol. 4, pp 237-285.

Lee, Y. H., K. Bhaskaran, and M. Pinedo. 1997. A heuris-
tic to minimize the total weighted tardiness with se-
quence-dependent setups, IIE transactions, 29:45-52.

Mahadevan, S. 1996. Average reward reinforcement learn-
ing: foundations, algorithms, and empirical results,
Machine Learning 22(1): 159-195.

Pinedo, M. 2001. Scheduling: Theory, Algorithms and
Systems, Prentice Hall, 2nd edition.

Sutton, R., and A. G. Barto. 1998. Reinforcement Learn-
ing, The MIT press, Cambridge, Massachusetts.

Wang, Yi-Chi. 2003. Application of reinforcement learn-
ing to multi-agent production system, Ph.D. disserta-
tion, Department of Industrial Engineering, Missis-
sippi State University.

Watkins, C. J. 1989. Learning from delayed rewards, Ph.D.
thesis, Kings College, Cambridge, England.

AUTHOR BIOGRAPHIES

HADEEL D. IDREES is a student pursuing her bachelor
degree in Industrial Engineering at the University of Jor-
dan. Her e-mail address is <hadeel.idrees@gmail.
com>.
8

mailto:hadeel.idrees@gmail.com
mailto:hadeel.idrees@gmail.com

Idrees, Sinnokrot, and Al-Shihabi

MAHDY O. SINNOKROT is a student pursuing his
bachelor degree in Industrial Engineering at the University
of Jordan.. His e-mail address is <msinnokrot@gmail
.com>.

SAMEH AL-SHIHABI is Assistant Professor in the De-
partment of Industrial Engineering at the University of Jor-
dan. His research interests include simulation optimization
and combinatorial optimization. His e-mail address is
<s.shihabi@ju.edu.jo>.
1769

mailto:msinnokrot@gmail.com
mailto:msinnokrot@gmail.com
mailto:s.shihabi@ju.edu.jo

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

