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ABSTRACT 

In this work, we consider the problem of scheduling arriv-
ing jobs to a single machine where the objective is to 
minimize the mean tardiness. The scheduler has the option 
of reducing the processing time by half through the em-
ployment of an extra worker for an extra cost per job 
(setup cost). The scheduler can also choose from a number 
of dispatching rules. To find a good policy to be followed 
by the scheduler, we implemented a λ-SMART algorithm 
to do an on-line optimization for the studied system. The 
found policy is only optimal with respect to the state repre-
sentation and set of actions available, however, we believe 
that the developed policies are easy to implement and 
would result in considerable savings as shown by the nu-
merical experiments conducted. 

1 INTRODUCTION 

Reinforcement learning RL encompasses a variety of tech-
niques that autonomous agents, which interact with their en-
vironment, use to select the action that achieves their goal of 
maximizing a certain reward. In a typical reinforcement-
learning model, as shown in Figure 1, the agent senses the 
state of the environment s, performs an action a and receives 
a reward r due to the change in environment state or due to a 
direct reward such as minimizing tardiness in the model pre-
sented (Sutton and Barto 1998).  

Reinforcement learning is found to be a better alterna-
tive to optimize Markov Decision Processes (MDP) and 
Semi-Markov Decision Processes (SMDP) than the classi-
cal Dynamic Programming (DP) approach (Sutton and 
Barto 1998). Online optimization, avoiding the curse of 
dimensionality and avoiding the curse of modeling are 
some of the reasons for choosing RL for optimizing sto-
chastic systems (Gosavi 2004). A good survey paper about 
RL, its implementation and application is that of 
(Kaelbling, Littman and Moore 1996).   

 

17651-4244-0501-7/06/$20.00 ©2006 IEEE
Different RL algorithms are suggested in the literature 
where the reader is referred to (Sutton and Barto 1998) for 
an excellent discussion about these algorithms. As the 
model implemented in this work deals with minimizing the 
average tardiness on the long run, a λ-SMART algorithm 
which emphasizes on the time taken for the state change is 
adopted in this work (Gosavi 2004). A good reference 
about RL techniques to minimize the average reward is 
found in (Mahadevan 1996). 

  

 
 

Figure 1: Agent-Environment Interaction in Reinforcement 
Learning System 

 
The λ-SMART algorithm finds the optimal policy by 

finding the appropriate Q(s,a) values iteratively. The 
Q(s,a) values take into account the relation between the 
state s and action a. The Q(s,a) values are updated at each 
step that a reward is received for an action taken. The 
original Q-learning algorithm was first proposed by (Wat-
kins 1989). The updating scheme of the Q-values is given 
by the following equation: 
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where Q(s,a) is the state-action pair value, s is the current 
state, a is the current action, s’ is the next state, a’ is the 
next action, ),( asr  is the reward, )1,0[∈γ is the discount 
factor of getting to a new state and α  is the learning rate. 
The λ-SMART algorithm modifies Equation 1 by taking 
into account the average reward per time ρ  for taking an 
action at a given state as explained in the algorithm presen-
tation in Section 3.  

The Q(s,a) values represent the knowledge base of the 
agent which enables the agent to select the optimum action 
at each state and it solves the Bellman equations asynchro-
nously. The λ-SMART algorithm allows the exploration of 
different actions at the different states.  

2 MODEL 

The system studied in this work consists of a single entity 
that might be considered as a single machine or a complete 
factory having a number of processes. Jobs of different 
processing requirements arrive to this machine and each 
has a due-date to satisfy where set-up times between jobs 
are neglected. The machine can only process one job at a 
time. We assume in this work that the processing time of 
any job can be reduced by half through the employment of 
a second worker or subcontracting part of the arriving job 
to an out of house manufacturer. The cost of hiring a new 
worker is denoted by K and its measuring unit is $/job. The 
penalty of a tardy job is denoted by P and its measuring 
unit is $/time. 

The decision maker or the agent employed can choose 
whether to hire a new worker or not and which dispatching 
rule to implement. The available dispatching rules for the 
agent(s) are: SPT (Shortest Processing Time), EDD (Earli-
est Due Date), and FIFO (First In First Out). The agent can 
choose from a set of six actions which are the possible 
combinations of the dispatching rules and number of work-
ers. In the following presentation, the number that follows 
the dispatching rule would indicated the number of work-
ers employed such that; FIFO2 represents a FIFO dispatch-
ing rule where two workers are employed.  

As stated earlier, the model developed by (Wang 
2003) is partially adopted in this work which is explained 
in the experiment section. In his work, (Wang 2003) tried 
to find such appropriate dispatching rules without having 
the option of minimizing the processing time by employing 
an extra worker. 

Based on the model described above, two objectives 
are considered in this work, namely; minimizing the tardi-
ness of the finished jobs and minimizing the cost of hiring 
an extra worker. The model described is represented by 
Figure 2.  The problem studied is not classical and to the 
authors’ knowledge, no previous work is done with respect 
to the same cost function and decision variables.  
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Figure 2: Model of the System 

3 ALGORITHM 

An appropriate representation of the system state would 
entail information about the number of jobs available at the 
time of taking an action, the processing time of each job 
and the due date of each job in the queue. As the number of 
possible combinations is tremendous, (Wang 2003) did re-
place this representation by measuring the lateness of the 
jobs in the system and then making this state space dis-
crete.  This representation was tried at the beginning of this 
work but did not result in a convergent policy with low op-
erating cost. 

The number of jobs in the queue is the state presenta-
tion employed in this work. We do believe that this state 
representation would not result in an optimal solution but 
did perform well when compared to the employment of a 
single dispatching rule. Another problem faced in this 
work was in evaluating the reward that the employed agent 
would get for the selected action at the selected state. The 
implemented rewarding scheme penalizes the use of the 
extra capacity in addition to the cost of the job being tardy 
as defined in the objective; so no positive reward is granted 
to the agent. 

 As actions taken might have future effects such as 
more jobs accumulating if a single worker is employed 
versus employing two workers, traces were added to the 
algorithm were an action might be penalized at later ac-
tion- selection steps. These traces add the λ symbol to the 
λ-SMART algorithm (Gosavi, Bandla, and Das 2002). Fi-
nally, to guarantee convergence, a variable step size of 

0.1/0.1 += Nnα  where N is the number of the leaving 
job is used as a learning rate for this algorithm.  The algo-
rithm can be presented through the following steps:  

 
1. For as,∀ , initialize 0),( =asQ , 0=T , 0=R , 

and 0=N .  
2. For an idle machine with a queue of jobs avail-

able, choose an action (a) such that it has the 
maximum ),( asQ  with probability 0.99, else ran-
domly select another action. 
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3. Realize the new state ( s ′ ), the time needed to get 
to this state ))()(( stst −′ and the reward achieved 

),,( astr  
4. If the action taken corresponds to the best Q 

value, then update 
 

 ),( asrRR +←  (2) 
 
 )()( ststTT −′+←  (3) 

 
 and calculate 
 

 
T
R=ρ  (4) 

 
5. Calculate the temporal difference value TDV ac-

cording to 
 

  ),(),(max
))()((),(

asQasQ
ststasrTDV

a
−′+

−′+= ρ
 (5) 

 
6. For the selected action and the selected state, the 

trace value is incremented by 1, however; if the 
current state is the same as the future state then 
the value of the trace is made equal to 1 (Sutton  
and Barto 1998).  

7. For as,∀ , update the ),( asQ according to 
 

 ),(),( astraceTDVasQ n ∗∗= α  (6) 
 
 9.0),(),( ∗← astraceastrace  (7) 

 
8. increment N 
 

 1+← NN  (8) 
 
9. Repeat steps 2-8 until the departure of the 

500,000th job. 
 
The simulation model along with the optimization al-

gorithm is coded using Java programming language, where 
a discrete event dynamic system DEDS model is imple-
mented.  The different jobs are represented by objects in 
the simulation model where each job has its own due date 
and processing time as described later. The jobs attributes 
are randomly and dynamically generated upon their arri-
vals. Only a single run is conducted to find the optimal pol-
icy then, another simulation run based on the best policy 
found is run to report the results presented in the next sec-
tion.  
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4 NUMERICAL EXPERIMENT 

The numerical example described is adopted from (Wang 
2003); we briefly discuss it and explain our extension 
where a crushing cost per job is included. Jobs arriving to 
the single machine studied have an inter-arrival time of λ  
which is exponentially distributed and a mean processing 
time that is normally distributed where the mean is drawn 
from a uniform distribution having minimum and maxi-
mum values of a and b respectively and the standard devia-
tion is 1/10 of the mean. A due date is assigned to each ar-
riving job by multiplying an allowance factor by the 
processing time and adding it to the arrival time. The al-
lowance factor has uniform distribution which is also uni-
form with parameters 1.2 and 1.8. 

As explained earlier, we assume that there is a fixed 
cost paid per job to minimize its processing time by half. 
This strategy is always valid regardless of the dispatching 
rule employed which leaves the agent to choose one of six 
available actions at each state other than state 1. The other 
cost component that the agent tries to minimize is the tar-
diness cost where a penalty of timeP /1$=  is paid. The 
summation of both of these costs represents the total cost 
which is averaged over time during the learning process 
however; it is averaged over jobs when running the simula-
tion based on the best policy found. Using an indicator 
function .{}1 to represent the selection of two workers 
when action ia  is taken, the cost equation is: 
 

 
)}]2,2,2(.{1

)([
000,500
0.1 000,500

1

FIFOEDDSPTaK

dCPCost

i

i
ii

∈+

 −=
=  (9) 

  
The first columns of Table 1 show a comparison be-

tween the employment of four fixed policies in all states 
with respect to the policy that chooses the actions having 
the maximum Q(s,a) values at each state s. The Q(s,a) val-
ues are found by running the algorithm of the previous sec-
tion while the results reported are again the average taken 
of a single simulation run where no warm-up period is con-
sidered and the simulation run ended with the departure of 
the 500,000th job. 

The parameters employed in the first table for λ , a, b 
are 8, 6 and 8 respectively while different values of K are 
considered as shown in the table. The numbers within pa-
renthesis show the corresponding cost of employing any of 
the policies. Any 1 symbol indicates using any dispatching 
rule employing 1 worker at state 1. It is seen that the worst 
cost is obtained by using SPT1 always and by paying a 
crushing cost of 5 $/job, a significant decrease is obtained 
in the average cost paid. More savings are obtained by 
running the policy found by the λ-SMART algorithm. 
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The last column of Table 1 shows the results of em-
ploying the policies found by the λ-SMART algorithm (for 
K=30). It is worth noting that for K=30 $/job, employing 2 
workers is delayed till 3 jobs accumulate in the system's 
queue. 

 
Table 1: Comparison between Different Cost Scenarios 
Using Various Dispatching Rules 

s K=5 
(-15.6) 

K=5 
(-13.8) 

K=5 
(-5.08) 

K=5 
(-5.07) 

K=5 
(-2.89) 

K=30 
(-9.37) 

1     SPT1 EDD1 SPT2 EDD2 Any1 Any1 
2     SPT1 EDD1 SPT2 EDD2 EDD2 SPT1 
3     SPT1 EDD1 SPT2 EDD2 EDD2 EDD2 
4     SPT1 EDD1 SPT2 EDD2 EDD2 SPT2 
5     SPT1 EDD1 SPT2 EDD2 FIFO2 SPT2 
6     SPT1 EDD1 SPT2 EDD2 FIFO2 SPT2 

 
Table 1 show that a state dependent policy performs 

better than using the same dispatching rule and number of 
workers always. EDD2 is the best policy to employ for low 
subcontracting cost where more than 1 job is present in the 
queue. 

In the second experiment, the sensitivity of the policy 
and cost with respect to the problem parameters is studied 
for the case where K=10 $/job.  The three numbers preced-
ing the costs are: λ , a, b respectively. As shown in Table 2, 
the best rule to implement once jobs start queuing is 
EDD2, this rule remained the same for the different cases 
presented in Table 2. The costs found reflect the conges-
tion faced by the system.   

 
Table 2: Effect of Changing Inter-Arrival Time and Proc-
essing Time on the Policy Selected  

s 8,(6,8) 
(-4.54) 

8,(8,10) 
(-7.05) 

10,(6,8) 
(-3.15) 

10,(8,10) 
(-5.13) 

1 Any1 Any1 Any1 Any1 
2 EDD2 EDD2 EDD2 EDD2 
3 EDD2 EDD2 EDD2 EDD2 
4 SPT2 EDD2 EDD2 EDD2 
5 SPT2 EDD2 SPT2 EDD2 
6 SPT2 EDD2 SPT2 SPT2 

 

5 CONCLUSION AND FUTURE WORK 

Despite the misrepresentation of the system state, the re-
sults obtained showed a significant savings in the overall 
systems cost as the first three columns in Table 1 show. It 
is found that employing 2 workers is an efficient choice for 
states having more than 1 job in the system, however, if the 
cost of hiring a new worker gets high, the system would 
delay the hiring of a second worker until more than 2 jobs 
are present in the system as shown in the case where 
K=$30/job in Table 1. Using EDD2 rule seems to be a 
good policy to employ if the jobs congest in the system and 
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the job controller has the choice to employ a new worker to 
reduce the processing time.  

Currently, our group is trying to use a different repre-
sentation of the system state. Some of the options consid-
ered for this representation are; congestion measures such 
as those suggested by (Lee, Bhaskaran and Pinedo 1997) or 
defining the system state based on the average tardiness 
found by a dispatching rule. One modification to the sys-
tem might be the use of a different cost function to reduce 
the processing time as done usually in real life situations 
(Pinedo 2001). Using other dispatching rules might also be 
a different modification to the model studied. 

Extending the system architecture to a flow shop or 
job shop where more than one worker are employed would 
make the system more complex and challenging to opti-
mize. Issues such as work force flexibility might be con-
sidered in such systems.  
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