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ABSTRACT 

This paper presents a successful application of simulation-
based multi-objective optimization of a complex real-world 
scheduling problem. Concepts of the implemented simula-
tion-based optimization architecture are described, as well 
as how different components of the architecture are im-
plemented. Multiple objectives are handled in the optimi-
zation process by considering the decision makers’ prefer-
ences using both prior and posterior articulations. The 
efficiency of the optimization process is enhanced by per-
forming culling of solutions before using the simulation 
model, avoiding unpromising solutions to be unnecessarily 
processed by the computationally expensive simulation.  

1 INTRODUCTION 

Posten AB is the Swedish postal services, entirely owned 
by the Swedish Government. Core business comprises dis-
tribution of messages and logistics, and Posten is one of 
the largest actors in these areas in the Nordic region. As the 
Nordic postal market is fully deregulated, mail business is 
a highly competitive market. Facing national and interna-
tional actors operating in the same business areas puts high 
demands on efficient mail operations, and additional pres-
sure arises from legal directives that Posten is obligated to 
follow, specifying that mail operations must be fast, reli-
able, and cost-efficient. 

Every day, Posten receives over 22 million pieces of 
mail and before distribution to recipients, all mail is sorted 
in delivery order. The sorting is highly automated, carried 
out using a set of machines that scan mail and determine 
destination address using sophisticated optical character 
reading. For sorting to be efficient, mail are divided into 
batches of 10,000-35,000 pieces according to destination 
region and these batches are sorted in parallel on different 
machines.  
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An operation schedule defines for each mail batch 
what machine to use for sorting and on which time to start 
the sorting. Since mail batches, as well as machines, have 
different characteristics, consequences of different sched-
ules – such as time consumption and money expenses – 
vary a great deal. In Figure 1, a simplified operation 
schedule is presented. 
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Figure 1: Simplified Mail Operation Schedule 
 
As a convenient way to observe mail sorting operations 

and consequences of different operation schedules, Posten 
has developed a discrete-event simulation model of the mail 
sorting process. Given a schedule as the input, the model can 
report its performance in less than a minute. The simulation 
model, developed using Arena simulation software 
(www.arenasimulation.com), allows testing and 
analysis of different schedules without disrupting the real 
system. The simulation model is exclusively an evaluation 
tool and supports neither generation nor optimization of 
schedules.  

The established method for creating schedules has so 
far been a manual procedure based on trial and error. As 
there is no guidance on how to change input parameters be-
tween iterations, this approach is very time-consuming and 
requires many iterations and extensive effort by an expert 
for finding a satisfactory schedule. Furthermore, it does not 
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guarantee that a valid schedule is found, but leaves the 
validation entirely in the hands of the expert, who is re-
quired to consider and carefully control all possible con-
straints. As there are multiple conflicting objectives to con-
sider when creating a schedule, manual optimization is 
practically impossible – especially since explicit heuristics 
for finding a good schedule is missing. 

This paper presents how the scheduling process and the 
resulting schedules have been improved by implementing an 
automatic simulation-based system that supports the genera-
tion of optimized operation schedules while considering 
multiple objectives simultaneously.  

The rest of the paper is organized as follows. The next 
section  presents related work in the area of simulation-based 
multi-objective optimization of operation schedules. In Sec-
tion 3 the multi-objective problem considered is described, 
followed by a description of the optimization approach used 
for solving it in Sections 4 and 5. Section 6 describes the 
simulation-based optimization system implemented and its 
components. Conclusions of the paper and a description of 
planned future work are presented in Section 7.  

2 RELATED WORK  

Multi-objective optimization is an active research area in 
the field of optimization methodologies, particularly using 
Evolutionary Algorithms (Deb 2001). Nevertheless, the lit-
erature reports relatively few attempts in the area of simu-
lation-based multi-objective optimization. Exceptions can 
be found in (Eskandari et al. 2005) and (Baesler and 
Sepúlveda 2001).  Only a small fraction of the papers in 
the literature, however, consider operation scheduling 
problems. 

Almeida et al. (2001) use a simulation-based approach 
for multi-objective optimization of operation schedules in a 
petroleum refinery. Their proposed method is based on a 
genetic algorithm combined with a multi-objective energy 
minimizing method. Using the method the authors suc-
ceeded in finding a schedule for a real-world refinery pro-
duction problem with three objectives; maximization of 
diesel production, maximization of jet fuel production, and 
minimization of costs. 

Allaoui and Artiba (2004) propose a method based on 
a combination of simulated annealing and dispatch rules 
for simulation-based multi-objective optimization of flow 
shop schedules. In this method, both stochastic and deter-
ministic unavailability of machines are considered in the 
optimization strategy. The authors applied their proposed 
method for solving a NP-hard scheduling problem with the 
aim of optimizing work in progress, job tardiness, and 
utilization of resources. 

Gupta and Sivakumar (2002) present a simulation-
based multi-objective optimization method based on com-
promise programming for operation scheduling in semi-
conductor manufacturing. The proposed method was ap-
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plied for finding a Pareto optimal solution to a NP-hard 
problem of scheduling a number of independent jobs on a 
single machine. The objectives considered in the optimiza-
tion strategy were average cycle time, average tardiness, 
and machine utilization. A number of theoretical job-shop 
experiments was successfully carried out using the pro-
posed method. 

3 PROBLEM DESCRIPTION 

This sections presents the operation scheduling problem 
considered in this paper. In general terms, the problem of 
finding an optimal mail operation schedule can be de-
scribed as follows. There are J non-identical, independent 
jobs (i.e. mail batches) to be assigned to M non-identical, 
independent parallel machines. No explicit job priorities 
exist. The machines are available at different times and 
each machine can process only one job at a time. Job pre-
emption is not allowed; once a job starts on a machine it 
must be processed to completion. A job is ready for proc-
essing at its release time and must be completed before its 
deadline. The processing time of a job depends on the ma-
chine it is assigned to and varies between different ma-
chines. Machine capacity must be respected and a job can-
not be assigned to a machine in which the capacity is 
below the processing requirements of the job. 

Jobs should be assigned to machines in a way that is 
optimal according to a balanced relationship between: 

 
• Total money expenses: machine usage is associ-

ated with money expenses for machine wear, elec-
tricity, etc. and the total expenses should be as 
small as possible. 

• Total slack time of jobs: the time between the 
completion of a job (mail batch) and its deadline 
should be as long as possible, allowing wider 
margins for the distribution of mails to recipients. 

• Load balancing of machines: jobs should be dis-
tributed to machines in a way that promotes even 
utilization.. 

 
Most scheduling problems belong to a class of prob-

lems that is called NP-complete (Azzaro-Pantel et al. 
1998), which means that the time required for computing 
an optimal solution increases exponentially with the size of 
the problem. This property also applies to the problem con-
sidered in this paper, as the simplified problem of schedul-
ing a set of J uninterruptible jobs so that the jobs are com-
pleted before their deadlines on machines that are capable 
to process only one job at a time, is NP-complete in the or-
dinary sense (Cormen et al. 2001). NP-complete problems 
are computationally expensive since guaranteeing an opti-
mal solution requires an exhaustive search in which all 
possible solutions have to be tried and evaluated. Since 
such an exhaustive search takes unreasonable computing 
8
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time for most complex scheduling problems, a common 
and acceptable practice is to sacrifice optimality for effi-
ciency by heuristically guiding the search and evaluating 
only a fraction of all configurations (Arnaout and Rabadi 
2005). 

4 MULTI-OBJECTIVE OPTIMIZATION 

In general multi-objective optimization problems, there ex-
ist no single best solution with respect to all objectives as 
improving performance on one objective deteriorate per-
formance of one or more other objectives (Srinivas and 
Deb 1995). This is also the case for the multi-objective op-
timization problem considered in this paper. 

As it is not possible to obtain solutions which maxi-
mize performance of all objectives at the same time, the 
optimal solutions to the problem are considered to be the 
Pareto optimal set. The Pareto optimal solutions are the set 
of solutions strictly superior to the other solutions consid-
ering all objectives but possibly inferior to other solutions 
considering one or a subset of the objectives (Srinivas and 
Deb 1995). Any of the Pareto optimal solutions is an ac-
ceptable solution, since none of them is absolutely superior 
to any others (Srinivas and Deb 1995).  

4.1 Two-Stage Articulation of Preferences 

Various methods for simulation-based multi-objective op-
timization can be categorized according to the timing of 
when the articulation of the required preference informa-
tion occurs relative to the optimization (Evans et al. 1991). 
This timing can be: 

 
• Before the optimization (prior articulation of pref-

erences) 
• During the optimization (progressive articulation 

of preferences) 
• After the optimization (posterior articulation of 

preferences)  
 

None of these alternative approaches is generally bet-
ter than another for solving multi-objective problems, but 
they all have various strengths and weaknesses (Evans et 
al. 1991). In this paper, we use a combination of prior and 
posterior articulation of preferences; benefiting the 
strengths of both these approaches. We do not make use of 
progressive articulation of preferences as it is considered 
too time-consuming for the decision maker to be involved 
during the entire optimization process. While many multi-
objective optimization methods are based on either prior or 
progressive articulation of preferences, only a few attempts 
have been made based on posterior articulation of prefer-
ences (Medaglia et al. 2004).  

Prior to the optimization, the decision maker is asked 
to express tradeoff preferences regarding the various objec-
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tives by assigning a weight value to each objective specify-
ing its relative importance – a higher value means that the 
objective is considered more important. From a total 
amount of 100% the decision maker allots each objective a 
percentage value and the total weighting assigned must 
sum up to 100%, as shown in the example in Table 1. This 
tradeoff information is used to determine the direction of 
the optimization strategy, making the optimization process 
more efficient.  

 
Table 1: Example of Objectives Weighting 

Objective Weight 
Minimize total money expenses 50 
Maximize slack time of jobs 30 
Maximize machine load balancing 20 

 
Posterior to the optimization, all identified Pareto op-

timal solutions are presented to the decision maker with 
information of their achievement level of the various ob-
jectives. The decision maker may then choose the most de-
sirable one from the solution set using some other higher-
level information based on his/her domain knowledge.  

4.2 Integrating Multiple Objectives 

The various objectives are weighted by the decision maker 
prior to the optimization and aggregated into a single ob-
jective through a weighted sum function (Weigert et al. 
2000): 
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 and where iu  is the subutility produced through objective 
i, iw  is the relative importance of objective i, and n is the 
number of objectives. The goal of the optimization strategy 
is to maximize v considering all problem constraints. 

4.2.1 Normalization of  Objectives  

The various objectives considered are all represented using 
different measurement units. To allow a fair comparison 
between performance of the different objectives, all objec-
tive measurements are normalized to values between 0 and 
1: 
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where iu  is the utility of objective io , out

io  is the meas-
ured output value of io , iworst  is the worst possible value 
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of  io , ibest  is the best possible value of io  and an optimal 
value of iu  is 1. 

5 OPTIMIZATION ALGORITHM 

The multi-objective optimization strategy is based on a 
Genetic Algorithm (GA). GAs are population based search 
algorithms inspired by theories from natural evolution. The 
basic idea behind these algorithms is that a population of 
individuals represents possible solutions of a given prob-
lem. Through recombination of solutions, offspring are 
created, forming a new generation of the population. Some 
of the solutions are better suited for the problem and these 
are given more opportunities to reproduce and pass their 
desirable behavior to the next generation, similar to natural 
selection. New generations of the population are evolved 
until a sufficiently good solution is found. 

GAs have been proven to be very flexible and reliable 
in searching for global solutions (Baesler and Sepulveda 
2000) and also capable of solving complex scheduling 
problems (Azzaro-Pantel et al. 1998). Their characteristics 
making them suitable for solving multi-objective simula-
tion-based problems (Eskandri et al. 2005) and they can 
easily be coupled with any discrete-event simulation mod-
els, in contrast with some other heuristic methods which 
are more suitable only to certain problems (Azzaro-Pantel 
et al. 1998).  

The rest of this section describes the GA implemented 
for solving the multi-objective optimization problem con-
sidered in this paper. The implementation was based on 
GAlib (http://lancet.mit.edu/ga/), which is a 
C++ library of GA components. 

5.1.1 Representation of Solutions 

The GA encodes possible solutions as genomes and each 
genome instance represents a single solution to the prob-
lem – in this case an operation schedule. In many applica-
tions, the efficiency of GAs is determined mainly on how 
the domain problem is encoded in the genome and the rep-
resentation has therefore been considered carefully in this 
study. For this problem, the set of jobs is considered to be  

{ }1 2, , ,= K kJ j j j  and the set of machines  { }1 2, , ,= K nM m m m . 
A genome consists of n lists of variable length,  

( ) ( )( )11,1 1,2 1, ,1 ,2 ,, , , , , , , ,K K K
ni n n n ij j j j j j , where each list repre-

sents scheduling information for a specific machine. Each 
list entry represents a job scheduled on the machine (e.g., 
jobs 

11,1 1,2 1,, , ,K ij j j  are scheduled on machine 1). The ge-
nome is a permutation of all jobs, i.e., each job is present in 
one and only one of the lists.  

When generating a schedule from a genome, each job 
list is sorted first by starting time and subsequently by 
deadline. The assumption behind this approach is that a job 
1760
with an earlier starting time has an earlier deadline and 
thus there is no reason to schedule an early job after a late 
job. When a list has been sorted, jobs are scheduled on the 
machine in the sorted order. Figure 3 shows an example of 
a simplified genome with and fourteen jobs scheduled on 
four machines.  

 
 

     
 
 
 
 
 

Figure 3: Example of Genome  
 
An advantage of this representation is that the genetic 

material used to represent a solution (i.e. an operation 
schedule) is kept small, reducing the size of the search 
space and thus improving performance of the algorithm. A 
drawback, on the other hand, is that it may represent infea-
sible solutions – however this is handled by the evaluation 
function, giving only partial credit to infeasible solutions. 

5.1.2 Genetic Operators 

A first population of 50 candidate solutions is randomly 
created. In the initialization procedure, a heuristic function 
is used to make sure that jobs are only scheduled on ma-
chines with enough capacity. During each successive gen-
eration of the GA, a proportion of the existing population 
is selected to breed a new generation. Individual solutions 
are chosen for mating through roulette wheel selection, in 
which the probability for selection is proportional to the 
fitness of the solution. Thus, solutions with higher fitness 
values are more likely to be selected, but a small number of 
solutions with less fitness values have some probability of 
being selected as well in order to keep a large diversity of 
the population.  

From the pool of selected solutions, two solutions are 
chosen as parents and through mating two new solutions 
are formed according the procedure outlined in Figure 4. 
This process, called crossover, takes place with a probabil-
ity of 0.9.  

 

WhichMachine( , )
WhichMachine( , )

0.1
Swap( , )

AddToList( [ ], )
AddToList( [ ], )

j J
machine1 parent1 j
machine2 parent2 j

machine1 machine2

child1 machine1 j
child2 machine2 j

←
←

foreach in do

with probability do

end

end

 

Figure 4: Crossover Function 

m1 j9 j1 

m2 j14 j13 j3 j5 

m3 j7 j2 j4 j12 j11 

m4 j6 j8 j10 
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To maintain the genetic diversity from one generation 
to the next, some of the offspring solutions are mutated. In 
the mutation procedure, all jobs are iterated through and a 
job is moved to a random list with a probability of 0.1. 
Similar to the initialization procedure, a heuristic is used 
when mutating solutions to make sure that jobs are only 
scheduled on machines with enough capacity. 

5.1.3 Fitness Function 

A fitness function quantifies the quality of solutions by as-
signing a fitness value to each of them corresponding to 
their performance. The fitness value assigned is based on a 
combination of two properties of a solution: 
 

• Objectives: Credit is given based on the achieve-
ment of the objectives; the higher the level of 
achievement, the higher the credits. 

• Delay: If the processing of a job is completed af-
ter its deadline a penalty is given. 

 
Based on these two properties, the formula to calculate the 
fitness of solution is: 
 
 = − df v d w   (2) 
 
where v is the result of the weighted sum function in Equa-
tion (1), d  is the number of delays, and dw  is the weight 
for property d . 

5.1.4 Evolutionary Process 

The overall GA evolution process works as describe be-
low. A flow diagram of the process is also presented in 
Figure 4: 
 

1. A first population of candidate solutions (i.e. op-
eration schedules) is created. These initial solu-
tions are randomly generated in order to enable a 
wide range of solutions. To achieve faster im-
provement of the algorithm it is also possible to 
insert user-defined solutions known to have good 
performance in the initial population. 

2. Performance of solutions are evaluated and a fit-
ness value is assigned to each of them using the 
formula described in Equation (2). 

3. The solutions with highest fitness are selected and 
by applying genetic operators, offspring are cre-
ated from these solutions, forming the new, im-
proved generation of the population.  

4. Some of the solutions in the new generation are 
arbitrary mutated to maintain the genetic diver-
sity. 
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5. If a the stopping criterion is met, the search is 
terminated and the set of Pareto optimal solutions 
are returned – otherwise the process is repeated 
from step 2. 

 

 
Figure 5: Optimization Strategy 

6 DESIGN AND IMPLEMENTATION 

This section describes the realization of a simulation-based 
system that supports the automatic generation of optimized 
operation schedules.  

6.1 Architectural Design 

The suggested solution is based on the architecture shown 
in Figure 6. The decision maker specifies optimization ob-
jective preferences and inputs these to a client application, 
which initiates the optimization process and sends the ob-
jectives to an optimization component. A candidate solu-
tion to the problem is automatically generated by the opti-
mization component and sent to the evaluation component. 
The evaluation component quantifies the performance of 
the suggested solution and notifies the optimization com-
ponent of the results. Based on this feedback, the optimiza-
tion component generates an improved solution and sends 
this new solution to the evaluation component. The gener-
ate-and-evaluate process is then repeated until the stopping 
criteria is met and when this happens the resulting set of 
Pareto optimal solutions is sent back to the client compo-
nent, where the results are presented to the decision maker. 

The architecture is based on the principle of encapsu-
lation with low couplings between components; compo-
nents only know about each others’ interfaces (i.e. input 
and output) with minimal knowledge of their internal de-
tails. 
1
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Figure 6: Architectural Design 

 
The low coupling between components allows for a 

flexible implementation where components can be changed 
without influencing each other, assuming that the interface 
is unchanged. It also fits well into a distributed and parallel 
computing platform where different components can be 
run on separate computers. 

The architecture is easy to use, as the user only inter-
acts with a simple interface and does not need to have any 
knowledge of the optimization strategy. The user is re-
placed in the problem-solving process by the optimization 
component and besides specification of optimization objec-
tive preferences, no manual effort is required.  

6.2 Implementation 

This section describes how the system presented in the 
previous section has been implemented.  

6.2.1 Client Component 

The client component was implemented using Excel and 
Visual Basic for Applications (VBA), as Excel was the al-
ready existing interface for the Arena simulation model.  
When the client is started, it prompts the user to input de-
tails about optimization objective preferences. The user 
then starts the optimization process by clicking a button.  

When the optimization process is initiated, a VBA 
script generates a text file specifying optimization objec-
tives tradeoffs, sends this file in a call to the optimization 
component, and waits for the optimization component to 
send back the set of Pareto optimal schedules. The result-
ing schedules are presented to the user in the Excel inter-
face together with summary results and statistics. 

6.2.2 Evaluation Component 

The evaluation component consists of two subcomponents; 
a Simplified Model and an Arena simulation model. The 
idea of introducing a Simplified Model, and not only using 
a simulation model as in ordinary simulation optimization 
approaches, is to reduce the overall time consumption 
needed for evaluation of solutions. The simulation model is 
the main bottleneck in the process and avoiding unneces-
sary use of it will enhance the system efficiency. The Sim-
plified Model performs a rough estimation of solutions and 
does not consider stochastic events in the system. 
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Solutions sent to the evaluation component are first 
processed by the Simplified Model, which performs culling 
of unpromising solutions and acts as filter to the simulation 
subcomponent. The Simplified Model approximates the 
time consumption of each job in a schedule and estimates 
if all deadlines are met, i.e. if a schedule is valid. If a solu-
tion is considered as invalid by the Simplified Model, it is 
not sent to the time-consuming simulation for further 
evaluation, but feedback is returned to the optimization 
component immediately. As the Simplified Model is an 
approximation of the simulation there is an inherent risk 
that solutions are misclassified. A false-positive classifica-
tion (i.e. when an invalid solution is classified as valid) 
cause no harm on the optimization results but only add 
some extra time to the process. A false-negative classifica-
tion (i.e. when a valid solution is classified as invalid), on 
the other hand, has the consequence that promising solu-
tions may not proceed in the optimization process. To re-
duce the number of false-negative classifications, the clas-
sification procedure of the Simplified Model is made 
optimistic. 

Solutions considered as valid by the Simplified Model 
are sent to the Arena simulation model for detailed evalua-
tion of processing times, money expenses, and other prop-
erties depending on complex interrelationships between 
different parts of the system, often influenced by stochastic 
events. Before the Arena simulation model was inserted in 
the system it was carefully verified and validated, since the 
correctness of the simulation model is of critical impor-
tance for the optimization results to be useful in reality. 

6.2.3 Optimization Component 

The optimization component, based on the optimization 
strategy described in Section 5, uses the evaluation com-
ponent for performance quantification of solutions. The op-
timization component is not aware of in what way solu-
tions are evaluated, but only receives performance 
quantifications. 

6.3 Results 

The implemented system was tested using real-world sce-
narios and so far the results look very promising. Evalua-
tion of results from the tests show that the system is suc-
cessful in finding good schedules according to 
optimization objectives preferences specified by the deci-
sion maker. Domain experts have compared the generated 
schedules with their own manually created schedules and 
see a great potential in the system.  

Compared to the manual approach of creating sched-
ules, the system implemented has considerable advantages. 
Since no manual control or intervention in the optimization 
process is necessary, a lot of time and effort are saved for 
the expert responsible for creating schedules. The system 
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also makes it easy to obtain schedules with certain focuses, 
such as for example low money expenses, as the decision 
makers’ preferences are considered in the optimization 
process. It is worth to notice, however, that from the results 
it is not clear how well the optimized solutions compare 
with the achievable values of the objectives, as the ideal 
values are not known. 

 By performing culling of solutions before the time- 
consuming simulation takes place, a reduced time con-
sumption for the total evaluation process can be achieved. 
As shown in the chart presented in Figure 8, the number of 
unpromising solutions tend to be large, especially in the 
beginning of the optimization process (results are an aver-
age of ten runs). An explanation of this is that the GA 
starts from a set of random solutions and performs a broad 
search over the whole search space. Note that not all indi-
viduals in the population are evaluated for each generation 
because some solutions remain unchanged from one gen-
eration the next. 
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7 CONCLUSIONS AND FUTURE WORK 

This paper presents a successful application of simulation-
based multi-objective optimization of a complex real-world 
operation scheduling problem. A two-stage articulation of 
the decision makers optimization objective preferences was 
used in the multi-objective approach. Expressing prefer-
ences prior to the optimization enables the direction of the 
optimization strategy to be influenced, making the search 
process more efficient. Presenting the complete set of the 
resulting Pareto optimal solutions posterior to the optimi-
zation enables the decision maker to choose the preferred 
one and hence results in a final solution that is desirable 
from the decision maker’s perspective. As there may be 
quite many Pareto optimal solutions, it is important to pre-
sent the set of solutions in a way that aids the decision 
maker in the task of analyzing all solutions to find the best 
1763
one. In Persson et al. (2006) we describe how this support 
can be provided and present ideas of a graphical user inter-
face for analysis of solutions. 

The overall process was made more efficient by per-
forming a rough estimation of solutions before evaluating 
them using the time-consuming simulation. Potential is 
seen in this approach of avoiding unpromising solutions to 
be unnecessarily evaluated. However, the culling of solu-
tions requires further studies, which are included in 
planned future work.  

To improve optimization results further, future work 
also includes studying how domain expert knowledge can 
be captured and incorporated in the optimization process. 
A human expert may have extensive knowledge valuable 
for the optimization, and incorporating this knowledge in 
the optimization strategy may be a way to obtain faster and 
more accurate optimization results. 
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