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ABSTRACT

Simulation and modeling is becoming one of the standard

approaches to understand complex biochemical processes.

Therefore, there is a big need for software tools that allow

access to diverse simulation and modeling methods as well

as support for the use of these methods. Here, we present

a new software tool that is platform independent, user

friendly and offers several unique features. In addition,

we discuss numerical considerations and support for the

switching between simulation methods.

1 INTRODUCTION

Simulation and modeling is becoming one of the standard

approaches to understand complex biochemical processes.

Therefore, there is a growing need for software tools that

allow access to diverse simulation and modeling methods as

well as support for the use of these methods. These software

tools should be compatible, e.g., via file standards, platform

independent and user friendly to avoid time-consuming con-

versions and learning procedures. In addition, they should

be maintained by groups which reliably guarantee this for

at least a number of years.

In order to meet this need for software in the field, several

tools have been developed and released recently (see a list of

SBML compatible tools at <http://www.sbml.org/

index.psp/>). Most tools offer specific functionalities,

e.g., stochastic simulations of reaction networks (see, for

example, StochSim: Le Novère and Shimizu 2001) or flux

analysis (FluxAnalyzer: Klamt et al. 2003). However, some

tools contain whole suites of functionalities, e.g., simulation,

flux and control analysis (ECell, SWB, Meng 2004).
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Standard methods for simulations in this field comprise,

e.g., the integration of ODEs and the stochastic simulation of

trajectories on discrete particles basis (e.g., using Gillespie’s

algorithm (Gillespie 1976)).

In the following we would like to present simulation

methods and topics related to this as implemented in a

new tool - COPASI (COmplex PAthway SImulator) which

combines different methods for the simulation, as well as

for the analysis of biochemical reaction networks and is

available for all major platforms (Linux, Mac OS, Windows,

Solaris). As described below, COPASI supports non-expert

users by, e.g., automatically converting reaction equations

into the corresponding mathematical formalism, i.e., ODEs.

Deterministic as well as stochastic simulations can be run on

the same model by just selecting the respective method. In

addition, in order to support the decision for the appropriate

simulation method (Wolf et al. 1985), Lyapunov exponents

can be computed for the model system.

2 GENERAL FEATURES

After the installation the user has the choice between two

versions of COPASI: a full version with a graphical user

interface (CopasiUI) and a smaller command line version

(CopasiSE) that only contains the calculation engine. Co-

pasiSE is useful in a number of situations. CopasiUI is the

complete version of the program and is the one that we

expect users to run most often as it provides a full graphical

interface. In terms of execution of numerical procedures

the two versions are almost equal, with CopasiUI being

slightly slower if graphical output is requested; in practice

the two share the same source code and are expected to

produce exactly the same results.
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COPASI’s graphical interface is similar in operation to

Windows Explorer, where there is a vertical window on the

left with a set of functions organized in a hierarchical way;

on the right there is a larger window that contains all of the

controls to operate the function selected on the left. The

major group of functions in the program are:

• Model, where the model can be edited and viewed

according to a biochemical or mathematical per-

spective.

• Tasks, consisting of the major numerical operations

on the model: steady state, time course, stoichiom-

etry, and metabolic control analysis. Below each

task an entry with results will appear after the task

has been run.

• Multiple Tasks, which are operations repeating el-

ementary tasks: parameter scanning, optimization,

and parameter estimation.

• Output is where plots and reports are defined and

listed.

• Functions containing the mathematical functions

available such as the rate laws.

Model editing is done through tables (see Figure 4) and

specialized widgets and the program provides various ways

of editing the model items.

There are two major views of the model: a set of widgets

provides a view from the biochemical perspective, where the

model is composed of reactions, compartments, metabolites,

etc.; while another provides a mathematical view, where the

model is composed of variables and differential equations.

The objective with this is that we expect different users

to have different backgrounds and be more comfortable

with one view or the other. This also provides a common

software tool that may act as a translator of concepts for

collaborators from different backgrounds.

COPASI’s native file format is based on XML and

documentation of its schema is available so that other tools

can write (or read) it. COPASI can also read Gepasi files,

providing backwards compatibility with its predecessor. Fi-

nally COPASI is able to import SBML either level 1 or level

2, and thus it can obtain models from many sources, such

as other simulators, model databases, pathway databases,

and so on (for a list of SBML compatible software see

<http://www.sbml.org/>).

In terms of model output, COPASI is obviously capable

of saving its own file format, which contains the model as

well as all defined tasks (active or inactive). Models can

be exported in SBML and the program can also write the

ordinary differential equations in plain C files (ready to be in-

cluded in other C/C++ programs) and in Berkeley Madonna’s

format (<http://www.berkeleymadonna.com/>),

which is a popular program for nonlinear dynamics that

does not import SBML.
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COPASI can also output results of its various functions

in two ways: report files and plots. Report files are defined by

the user and can take arbitrary form. Plotting support is built-

in and plots, like reports, can be defined in very flexible ways.

COPASI supports x-y line plots and distribution histograms

(a feature we do not find in other simulators), scales can

be linear or log-transformed, and it allows zooming and

panning. There could be an unlimited number of plots

defined for a single work session and their definitions are

saved with the rest of the tasks.

COPASI is able to calculate simple time courses either

using a deterministic or a stochastic framework or using

a hybrid method that we developed. For deterministic

solutions, the LSODA integrator (Petzold 1983) is used,

while for stochastic it is the Gibson-Bruck version (Gibson

and Bruck 2000) of the Gillespie method (Gillespie 1976)

(see Figure 1). The user can easily switch between one

method and the other by a simple choice from a menu.

Note that COPASI automatically converts chemical kinetic

rate laws into their appropriate discrete stochastic equivalent

versions (this is an optional feature that can be disabled).

Another basic simulation function is the calculation of steady

states, which is carried out by a combination of the damped

Newton method and forward or backward integration (using

LSODA). The steady state can also be characterized with

linear stability analysis and metabolic control analysis (Fell

1997).

COPASI determines structural (stoichiometric) proper-

ties of the biochemical network. Mass conservation is cal-

culated using the algorithm described by Vallabhajosyula,

Chickarmane, and Sauro (2006) that uses Householder re-

flections (the cited paper actually states that COPASI uses

Gauss elimination, but since its publication we have switched

to this more efficient algorithm). Elementary flux modes,

a unique set of the smallest possible sub-networks that

still allow a steady state (Heinrich and Schuster 1996), are

calculated using our implementation of the METATOOL

algorithm (Pfeiffer et al. 1999).

Finally, COPASI is equipped with a number of opti-

mization algorithms of various types, which can be used

to minimize or maximize any variable (or function of vari-

ables) in the model. The optimization algorithms are also

used for estimating parameter values that best fit a set of

data provided by the user. To this end, COPASI allows

the experimental data to be a mixture of time courses and

steady states.

COPASI is available from its dedicated web site at

<http://www.copasi.org/>. The program can be

downloaded in executable format for four different archi-

tectures: MS Windows, OS X, Linux (Intel), and Solaris

(SPARC). Since the first stable release the source code

is also available on the web site and so the program can

be compiled for several other architectures. COPASI is a

stand-alone program and runs on computers without need



Hoops, Sahle, Gauges, Lee, Pahle, Simus, Singhal, Xu, Mendes, and Kummer
Figure 1: COPASI Trajectory Task Widget
for network connections once it has been installed (i.e., it

is not a server nor requires connection to servers).

In the following we will discuss several issues concern-

ing the simulation of biochemical networks, especially with

the unique ability of Copasi to switch between different

formalisms. We will exemplify these using a simple and

abstract model for a biochemical reaction.

3 HYBRID SIMULATION ALGORITHM

A number of hybrid methods have been proposed that com-

bine the accuracy of the stochastic simulations for parts of

the system where needed and the speed of the determin-

istic simulation for the rest (see Haseltine and Rawlings

2002; Puchalka and Kierzek 2004; Kiehl, Mattheyses, and

Simmons 2004; Salis and Kaznessis 2005; Alfonsi et al.

2005). They partition the reaction network into subnetworks

and use appropriate stochastic or deterministic simulation

methods on each of those subnets.

Our hybrid method combines the stochastic simula-

tion algorithm by Gibson and Bruck (2000) (Next Reaction

Method) with a numerical integration of ODEs (4th order

Runge-Kutta, LSODA — see Petzold 1983). The biochem-

ical network is dynamically partitioned into a deterministic

and a stochastic subnet depending on the current particle

numbers in the system. The stochastic subnet contains the

reactions, where at least one low numbered species is in-

volved. The remaining reactions, i.e., all those that only

affect high numbered species, form the deterministic subnet.

The user can define the limits for which particle numbers

should be considered low or high. The two subnets are then

simulated in parallel using the stochastic and deterministic

solver respectively.
170
We settled on the simple partitioning criterion using

particle numbers for three reasons. First, the amplitude of

relative fluctuations of particle numbers are high in low-

numbered species. Single reaction events can have a signif-

icant impact here. Reactions involving those species should

therefore be handled stochastically. Second, most of the

computational effort of stochastic simulation algorithms is

spent on fast reactions. In order to speed up the simulation,

fast reactions should be taken out of the stochastic subsystem

and simulated deterministically. The higher the substrates’

particle numbers the faster the reaction in mass action re-

actions and for some parts of the phase space for enzyme

kinetics. Third, if only reactions involving high numbered

species are simulated deterministically, the relative changes

in particle numbers are minimal. For this reason, the change

in reaction propensities in the stochastic subnet caused by

the fast subnet during one stochastic step can be neglected.

Our algorithm therefore approximates the influence of the

deterministic subnet on the stochastic subnet during one

step as constant, that means that the reaction propensities in

the stochastic subnet are constant during this time interval.

Our hybrid algorithm is able to simulate models faster

than pure stochastic methods, while taking random effects

in the stochastic subnet into account. The dynamical parti-

tioning is vital, e.g., for oscillating systems. However, the

speed-up is very model-dependent. Therefore, we want to

emphasize, that our algorithm should be considered exper-

imental. Because of the computational overhead for parti-

tioning the system the hybrid method can take even longer

than pure stochastic methods in some cases. In addition,

low-numbered species, which take part in fast reactions,

slow the simulation down by forcing the fast reactions to be

simulated stochastically. By using two distinct user-defined
0
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limits for the particle numbers and a hysteresis-like updating

scheme for the partitioning we avoid unnecessary and time

consuming swaps, if particle numbers are fluctuating in a

medium range.

ODEs describing biochemical networks are often stiff.

In one variant of our hybrid method we therefore use the

LSODA method (Petzold 1983), which is adequate for stiff

systems, for the numerical integration of the deterministic

subnetwork. We also implemented a hybrid solver, which

uses a simple 4th order Runge Kutta method. Since the

hybrid calculation requires many separate integrations of

small time intervals, using a simple one-step solver, which

is lacking the computational overhead of more sophisticated

stiff-solvers, can be advantageous.

As an example, we investigate a simple open bio-

chemical system where A reacts to B catalyzed by E. The

corresponding reaction system is the following:

→ A

A+E 
 AE

AE → B+E

B → (1)

This corresponds to the following systems of equations:

A′ = k1− k2 ·A ·E + k3 ·AE

E ′ = −k2 ·A ·E + k3 ·AE + k4 ·AE

AE ′ = k2 ·A ·E − k3 ·AE − k4 ·AE

B′ = k4 ·AE − k5 ·B (2)

In Figure 2 we simulated this system using our hybrid al-

gorithm and low particle numbers. The individual reactions

are simulated stochastically or deterministically according

to the actual particle numbers and the user defined limits.

4 HANDLING MICHAELIS-MENTEN TERMS IN

STOCHASTIC SIMULATIONS

When stochastically simulating a reaction network which

has been described by a set of ODEs all reaction rates have to

be transferred to a corresponding reaction probability. This

is rather simple and straightforward if mass action kinetics

is assumed (Gillespie 1976). However, if kinetic terms like

Michaelis-Menten kinetics are involved which in principal

represent a lumping of terms each of which corresponds to

an elementary reaction, the big question is if it is justifiable

to use such a rate expression with stochastic simulations.

There has been quite some discussions about this topic

recently. However, several authors showed (Cao, Gillespie,

and Petzold 2005; Rao and Arkin 2003) that as long as

the initial assumptions for the assumed kinetics hold (e.g.,

excess substrate, fast reversible enzyme-substrate-complex
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formation), it is indeed justified to assume the enzymatic

reaction to constitute one single step with the respective

rate law.

Basically, the rate law which consists of a mass action

part and a kinetic part, the latter of which also depends on

reactant amounts and other factors, is assumed to freeze and

to be constant for the single reaction event that is computed

in each step of the stochastic computation. This rate then

has to be computed anew for the next round of stochastic

simulation.

Taking our example from above, the same system could

also be described using the Michaelis-Menten form as long

as the formation of AE is fast and reversible compared to

product release and as long as there is a substantial surplus

of substrate compared to enzyme. In this case the equations

lump to the following ones:

A′ = k1−Vmax ·
A

Km +A

B′ = −k5 ·B+Vmax ·
A

Km +A
(3)

In Figure 3 we compare time series of the stochastically

simulated elaborate system with the lumped system. We

made sure that the assumptions for lumping the system hold.

As can be easily seen, both trajectories correspond to each

other.

5 REVERSIBLE REACTIONS IN STOCHASTIC

SIMULATIONS

Generally stochastic simulation requires that reversible re-

actions are considered as separate forward and backward

reactions, each irrevesible. In the deterministic modeling

framework forward and backward flows can cancel each

other out so that the reversible reaction rate can be given

as a single mathematical expression (usually containing a

difference between a forward and a backward term). In the

stochastic modeling framework however each single forward

or backward reaction event needs to be considered so that

a reversible reaction has to be treated as two irreversible

reactions. COPASI provides a tool that helps the user to do

the necessary adjustments to the model. If this tool is used

every reversible reaction is replaced by two corresponding

irreversible reactions. If the reaction had a kinetic law of

mass action type also the kinetic laws and the parameters

of the newly created reactions are automatically adjusted.

For other kinds of reactions the user will have to adjust the

kinetics afterwards.

In Figure 4 we show the conversion of the reversible

mass-action kinetics assumed for the formation of AE in

the above example to the individual forward and backward

reaction for use in the stochastic simulation.
1
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Figure 2: Result of the Hybrid Simulation of the System (2) in a Time Interval 103 s, for a Volume 5 · 10−19 ml, Initial

Concentrations A(t0) = 10 mMol/ml, E(t0) = 0.1 mMol/ml, AE(t0) = 0 mMol/ml, B(t0) = 0 mMol/ml and Parameters k1 = 0.01
mMol/(ml · s), k2 = 20 ml/(mMol · s), k3 = 10 1/s, k4 = 1 1/s, k5 = 0.01 1/s (Lower and Upper Limits for the Particle

Numbers are 500 and 700, Correspondingly).
Figure 3: Results of Stochastic Simulations of the Detailed Equations (2)) and the lumped Equations (3)) System in the Time

Interval 103 s, for the Volume 5 ·10−19 ml, Initial Concentrations A(t0) = 10 mMol/ml, E(t0) = 0.1 mMol/ml, AE(t0) = 0
mMol/ml, B(t0) = 0 mMol/ml and Parameters k1 = 0.01 mMol/(ml · s), k2 = 20 ml/(mMol · s), k3 = 10 1/s, k4 = 1 1/s,

k5 = 0.01 1/s, Vmax = 0.1 mMol/(ml · s) , Km = 0.1 mMol/ml.
6 PARAMETER SCANS IN SIMULATIONS

Finally, we want to present the scanning feature of COPASI.

A graphical interface is provided that allows easy access

to the following features: parameter scans (a simulation is

run several times, a parameter is changed for each run),

repeated simulations (a simulation is repeated without any

parameter changed, useful for stochastic simulations), or

random parameter sampling (a parameter is set to a random
1702
value from a specified distribution, this allows Monte Carlo

parameter scans).

Also these features can be nested arbitrarily. As an

example it is possible to define a calculation where for each

of 10 values of a kinetic parameter the stochastic simulation

is repeated 100 times.

Figure 5 shows an example of COPASI scan task widget

for the parameter k4 of the model system (2). In Figure 6

we show multiple runs of the time course simulation of our
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Figure 4: Application of the COPASI Menu Tool “Convert to Irreversible” to Our Model System (2).
simple example system which were performed due to one

preset parameter scan.

7 CONCLUSIONS

We have presented COPASI, a new software tool for simu-

lating and analyzing biochemical networks. We specifically

discussed the simulation abilities of COPASI. COPASI en-

ables the user to simply switch between different simulation

methods, the numerical integration of ODEs, the stochastic

simulation on discrete particle basis and the hybrid algo-

rithm.

This ability is facilitated by several developments which

were discussed in this article. The hybrid algorithm is a

new development. Conversion of deterministic to stochastic

models is supported by investigating the role of Michaelis-

Menten terms and a tool that automatically converts re-

versible to irreversible reactions. Additionally, parameter

scans enable the user to perform multiple runs without

changing parameters manually.
170
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at the University of Tübingen. After post-doctoral time in
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