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ABSTRACT

This paper discusses two broad approaches for reducing

the complexity of large cellular network models. The first

approach involves exploiting conservation and time-scale

separation and allows the dimension of the model to be

significantly reduced. The second approach involves iden-

tifying subnetworks that carry out well defined functions

and replacing these with simpler representations. Exam-

ples include identification of functional subnetworks such

as oscillators or bistable switches and replacing these with

a simplified mathematical construct. This enables complex

networks to be rationalized as a series of hierarchical mod-

ules and greatly simplifies our ability to understand the

dynamics of complex networks.

1 INTRODUCTION

Biological networks, even at the sub-cellular level, can

involve interactions between hundreds or thousands of dif-

ferent molecules. Such systems are complex, both in orga-

nization as well as functional properties of their subsystems.

The level of organization in such systems can span spa-

tial scales, and their dynamics invariably involves multiple

time-scales. This can lead to models that are often difficult

to simulate because this introduces stiffness into the model,

requiring sophisticated algorithms to maintain numerical

stability.

The issue of time-scale hierarchy in biological systems

has been a subject of interest for a number of years, see

Heinrich et al. (1977) for a review. David Park (1974)

was probably one of the first to give a systematic analysis

on model reduction in biological networks. He showed

how species in the model could be aggregated into pools

comprising of fast and slow components, thereby yielding

a reduced order network which is easier to simulate. It

has been argued that such a time-scale hierarchy bestows

robustness to biological systems with respect to microscopic

parameters, see Rojdestvenski et al. (1999). This argument
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was indeed shown to have some validity in the case of

the carbohydrate uptake and metabolism of Escherichia

coli by Kremling et al. (2004) who found that the slow

subsystem of the model describing the metabolic pathway

was robust to some parameter changes. This issue has been

addressed previously by Gardner and Ashby (1970) where

it has been shown using computer studies that a system

with more variables is more likely to be unstable. It is

therefore inferred that time hierarchies help in stabilizing

such systems by reducing it to include only those variables

that are essential to the dynamics. It is of interest to note

that such phenomena involving multiple time-scales are also

encountered in engineering, physics, economics and many

other areas.

The problem of model reduction has been a topic of

interest to a number of other fields, for example chemical

kinetics and combustion modeling. The results reported by

investigators in these fields also apply to dynamical systems

of interest to the biological community. One such review

of interest is that by Okino and Mavrovouniotis (1998),

who discuss various complexity reduction methods such as

Lumping, which was adopted as early as 1953, Sensitivity

Analysis based model reduction, both in chemical models

by Rabitz et al. (1983) and Turányi (1990) and in biological

models by Liao et al. (1988, 1993). In this approach the

list of species is replaced by a reduced system containing

only the important species. Species that have significant

effect on the important species are termed necessary species

while species and parameters that have only a weak influence

eliminated, leading to a reduced system. However the major

drawback of this method lies in the fact that, in order to obtain

the sensitivity coefficients, it is necessary to evaluate the

original system with the full species, reaction and parameter

lists. Further, there can be numerous parameters even in a

small model, and it is often a difficult task to extend this

to larger models where the number of parameters can be

much higher. An alternative approach to model reduction

that has been used in combustion modeling makes use

of an optimization method to eliminate some reactions as
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described by Bhattacharjee et al. (2003). A recent study by

Maurya et al. (2005) on the generation of a Reduced Order

Model (ROM) for a biochemical network involved the use

of a Multidimensional Sensitivity Analysis to eliminate 31

out of 48 reactions. Another reported optimization method

involves the use of genetic algorithms for model reduction

(Edwards et al. 1998).

2 COMPUTATIONAL COMPLEXITY

Complexity in biochemical systems is the result of a number

of factors including multiple time scales, nonlinearities and

often elaborate connectivity. Complexity can therefore arise

even in small network models of only a few variables.

Reduction of computational complexity in such models

involves the application of conservation analysis along with

an appropriate time scale separation method, in order to

obtain a reduced model of smaller dimension.

Conservation analysis of biochemical systems involves

analyzing the stoichiometry matrix for presence of dependen-

cies. These dependencies arise due to the rank-deficiency

of the stoichiometry matrix. Well known methods that

have been used for this step include Gaussian Elimination,

computing the null space of the stoichiometry matrix, re-

duction to Row Echelon form as well as the Singular Value

Decomposition. A detailed review of these methods for

conservation analysis has been presented by Sauro and In-

galls (2004). However, the main limitation of these methods

is their lack of stability when dealing with large systems

where the stoichiometry matrix is of a very high dimension.

The numerical procedures implemented by these methods

result in errors, leading to incorrect computation of the

number of conservation relations. This adversely affects

the partitioning of the original list of species into indepen-

dent and dependent parts. A new method to overcome this

problem was recently proposed by Vallabhajoysula et al.

(2006) where a Householder-QR based algorithm making

use of similarity transformations maintains high numerical

accuracy for computation of the correct number of conser-

vation laws. Validation tests on the computed conservation

laws subject them to further checks, ensuring the accuracy

and reliability of the final results.

It has been shown that a reduction of around 10% to

15% of the number of differential equations can be expected

in the case of very large networks where there are around

one thousand species and reactions. This is a significant

reduction of the model size, and should be incorporated as

the first step before applying other reduction methods which

will be discussed later in the paper. Further, the application

of conservation analysis is also essential to compute the

reduced Jacobian, which must be of full rank and may be

required by other analysis tools. Accurate computation of

the conservation matrices is therefore important to maintain

the full rank of the Jacobian.
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After conservation analysis has been applied to the

model, the system can be adequately described using only

the independent species. However, the presence of widely

separated time scales in the system brings to fore the issue

of stiffness while attempting its simulation and is one of the

major impediments to simulating large models. A number of

methods are known that assist in the reduction of complexity

in such models using time scale and other approaches. One

possible approach involves the replacement of the entire

model with a reduced model by eliminating some species

or reactions or parameters. However, this is guided by

experience, and often based on knowledge of the system

being studied, and does not lend itself to automation.

Often, the presence of sufficiently varied time scales

in the system results in the dynamics of the model to have

contributions from two subsystems. These are the fast and

slow subsystems, each of which involves reactions with fast

rates and those with slow rates, along with the associated

species involved in those reactions. Various methods have

been developed to handle such systems by averaging the

fast subsystem and obtaining algebraic relations between

the slow and fast species. These methods are discussed in

detail in Section 2.2.

2.1 Model Reduction by Conservation Analysis

Biochemical systems often involve conserved moieties

which result from dependencies in the stoichiometry matrix.

Using these conserved moieties to eliminate the dependent

species can be thought of as a first order reduction and is

essential for the computation of a non-singular Jacobian.

In the following, we adopt the nomenclature established by

Reder (1988). A biochemical network can be described by

dS(t)

dt
= Nv(t) = f(S(t),p) (1)

where S(t) = [S1(t)S2(t) . . . Sm(t)]T is a vector of time-

dependent species concentrations, N is the stoichiometry

matrix and v(t) = [v1(t)v2(t) . . . vn(t)]T is a vector of rates

of reactions. Consequently N is a matrix with m rows and

n columns. The right hand side in Equation (1) can be

written as a function f of the species vector S and a vector

of system parameters p.

The stoichiometry matrix of the biochemical network

described by Equation (1) can often be less than full rank.

This is due to linear dependencies among the rows of the

stoichiometry matrix, which can be interpreted as conser-

vation relations involving the species in the network. The

goal of any algorithm that computes these conservation re-

lations should be to identify and separate m0 independent

and m − m0 dependent species, where m0 is the rank of

the stoichiometry matrix. Let these be denoted as Si(t) and

Sd(t) respectively. The time evolution of the biochemical
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network described in Equation (1) can then be expressed

in terms of independent and dependent species as

dS(t)

dt
=

[

dSi(t)/dt
dSd(t)/dt

]

=

[

NR

N0

]

v(t). (2)

The rows of matrix N have been rearranged in Equation (2)

such that the independent rows form a m0 × n matrix NR

that is of full rank, and a (m − m0) × n matrix N0 that

comprises the dependent rows of the matrix. The dependent

rows can be constructed as a linear combination of the

independent rows, and this can be expressed by the relation

N0 = L0NR, where L0 is a (m−m0)×m0 matrix. The

system described by Equation (2) can then be rewritten as

dS(t)

dt
=

[

NR

N0

]

v(t) = L NR v(t) (3)

where the m × m0 matrix L in Equation (3) is called the

Link matrix. The dynamics of the full system described by

Equation (1) can therefore be partitioned into independent

and dependent parts, with the latter deriving its dynamics

from the prior. These can be written as

dSi(t)
dt

= NRv(t) and
dSd(t)

dt
= L0NR v(t). (4)

Simplification of Equation (4) yields the relation be-

tween the dependent and independent species as

dSd(t)

dt
− L0

dSi(t)

dt
= 0. (5)

It can be seen by integrating Equation (5) that Sd is

related to Si by a constant vector T = [T1T2 . . . Tm−m0
]T

such that

Sd(t) − L0Si(t) = [−L0 I ]

[

Si(t)
Sd(t)

]

= T. (6)

Introducing a matrix Γ in place of [−L0 I] in Equa-

tion (6), we can deduce that ΓS = T. The (m − m0) × n
matrix Γ is called the conservation matrix, as it relates the

species vector S to T, the vector of the conserved moieties.

Each row of the conservation matrix Γ represents a distinct

conserved cycle of the network. The values of the vector T

can in practice be obtained by substituting the initial condi-

tions of the species into the relation T = Sd(0)−L0Si(0).
The key to accurate computation of the conservation matrix

Γ is thus a problem of computing the matrix L0. Sauro

and Ingalls (2004) review a number of methods that are

known to carry out this process. However, these methods

all face the problem of numerical instability for very large

networks. An alternative method was proposed recently

by Vallabhajosyula et al. (2006) to overcome this problem.

This method involves the use of Householder QR algorithm
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for robust computation of the L0 matrix, which ensures that

the correct number of dependencies in the network are iden-

tified. The reduced system, which involves the dependent

species, can then be used for further analysis.

Another aspect of interest in the study of biochemical

networks, especially from the point of view of complexity

reduction, relates to the evaluation of the Jacobian matrix.

The dynamics of the network described by Equation (1)

are often nonlinear, and hence a linearized system can be

obtained by perturbing the system. Ignoring second order

terms, a linear equivalent of Equation (1) is given by

d(δS)/dt = JFδS (7)

where JF is the Jacobian matrix for the full system and δS
represents infinitesimal changes in S. The dependencies in

the network between species are reflected in the Jacobian

matrix JF being singular. The full Jacobian matrix can be

built using the relationship between dependent and inde-

pendent species, given by L and NR matrices. This can

be shown after modifying an expression given by Heinrich

and Schuster (1996) as

JF = N ε = L NR ε (8)

where ε is the Elasticity coefficient matrix, with εij =
∂vi/∂Sj . A non-singular reduced Jacobian matrix JR, can

be constructed using conservation analysis. Indeed, it can

be shown, using Equation (2) and Equation (7), that JR is

given by the relation JR = NR ε L.

2.2 Model Reduction by Time-scale Separation

A number of methods have been proposed to reduce the

complexity of biological systems which involve processes

spread over widely different time scales. A simulator at-

tempting to simulate such a system will have to take very

small time-steps in order to account for the fastest reactions,

while the slowest reactions barely change during this time-

period. Hence it becomes necessary, from the point of view

of simulation, to develop algorithms that take this disparity

in scale into account. An early attempt at describing reduced

models was by Briggs and Haldane (1925), who showed

how the Michaelis-Menten ratelaw assumption is justified

in enzyme kinetics. More recently, Schauer and Heinrich

(1983) proposed the Quasi Steady State Assumption (QSSA)

method, whose validity can be shown by carrying out a sin-

gular perturbation on the kinetics of the system, as described

by Segel and Slemrod (1989). This approximation method

is also known by the name of Bodenstein-Semonov kinetics

or also by the name of Pseudo-Steady-State assumption

(Rao and Arkin 2003). The idea behind QSSA is that the

intermediate species can be removed from the system by

assuming that the rate of change of these species is very
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small compared to the overall dynamics. Consequently, the

differential equations determining the rates of change for

these species are eliminated from the dynamics. However,

the choice of the species to which QSSA should be applied

is ambiguous, and hence the error in the solution can vary

based on which species are chosen, as has been described

by Turányi (1993) in the context of computational combus-

tion modeling. A related method is the Partial-Equilibrium

Approximation (PEA) where the fast reactions are assumed

to equilibrate in a short period of time relative to the system

time scale. Other methods that have also been proposed for

reducing the dimensionality of the system include minimal

entropy production trajectories (MEPT) by Lebiedz (2004)

and methods based on the thermodynamics projection op-

erator by Gorban et al. (2000).

An important and well known method used in time-scale

decomposition of dynamical systems is the Computational

Singular Perturbation Method (CSP)—see Lam and Goussis

(1988, 1994), Zagaris et al. (2004a, 2004b). It has been

used widely in combustion modeling, see Valorani et al.

(2003). This method employs an iterative algorithm to

approximate the slow manifold, which is the subsystem

comprising of the slow variables in the system. The true

slow manifold is a geometric abstraction, and is described by

Fenichel’s geometric singular perturbation theory (Fenichel

1979). The asymptotic accuracy of the approximation of

the CSP manifold improves with each iteration by one order

of ε, a small parameter, which is representative of the ratio

between the slow and fast time-scales.

More recently, dynamics of systems with fast and slow

time-scales have been studied from a geometrical perspective

(Nguyen and Fraser 1989). The fast evolving reactions

drive the dynamics onto a subsystem comprising of the

slow reactions, which define what is known as the Inertial

Manifold. Once the system reaches this abstract structure in

the phase space of the reactions, the fast reactions will stay

on this inertial manifold, while the evolution of the slow

reactions themselves will be determined by the trajectory

set by the initial conditions. The inertial manifold itself

can be computed by using an iterative approach where the

algebraic expressions for the fast reactions are solved for

the slow variables. This is equivalent to the intersection of

the nullclines, especially for higher order systems.

This leads to a more localized approach of Mass and

Pope (1992), where the Jacobian of the system, which de-

fines the tangential space of the dynamics, is analyzed for

vanishing eigenvectors corresponding to the fast time-scales.

This was further refined by Mass (1998) who proposed a

more efficient algorithm for the computation of the low-

dimensional manifolds. This is known as the Intrinsic

Low-Dimensional Manifold (ILDM) method, and has been

widely used to solve stiff problems in the study of com-

bustion and reactive chemical processes. In comparison

with the previously listed methods such as Quasi Steady
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State Assumption (QSSA) the Partial Equilibrium Approx-

imation (PEA) based methods, the ILDM method has the

advantage that it can automatically partition the higher order

initial system into slow and fast subsystems based on the

eigenvector space of the Jacobian near the operating point.

This partitioning is determined by an Eigen analysis of the

linearized version of the system in Equation (1) in a small

neighborhood around the operating point S∗. The resulting

system, ignoring higher order terms, can be written as

dS(t)

dt
= f(S∗,p) + JF(S(t) − S∗) (9)

where the Jacobian JF is evaluated at the operating point.

This linearized system is representative of the qualitative

dynamics of the actual system, and provides a reasonably

accurate picture of the system behavior close to the operating

point. In particular, the direction in which the system will

move depends on the eigenvalues of the Jacobian. If it can

be assumed that the eigenvalues of the Jacobian are given

by λi, i = 1, . . . ,m, it can be inferred following a change

of basis using the eigenvectors, that τi = 1/|Real(λi)|
represents the time taken for the system to evolve along

the eigenvector for the ith mode. This indicates that the

real parts of the eigenvalues can be used to distinguish

between slow and fast modes. However this approach has

its limitations when some eigenvalues are grouped closely

or are degenerate, leading to an ill-conditioned system that

presents numerical accuracy and stability issues for the

solver.

The ILDM method of Mass and Pope (1992) overcomes

this limitation by applying similarity transformations to the

Jacobian matrix, which yielding a real Schur form. The

advantage of using the Schur decomposition lies in the

fact that the resulting matrix has a quasi upper triangular

structure, with diagonal blocks representing the eigenvalues.

In other words, they may be 1×1 blocks for real eigenvalues

and 2 × 2 blocks for complex-conjugate eigenvalues. This

can be written as

QT JQ =

[

Sslow Scoup

0 Sfast

]

. (10)

It should be noted that in the above relation, Q is the

orthogonal basis of Schur vectors and the submatrices Sslow,

Sfast and Scoup are quasi-upper triangular matrices, where

the eigenvalues are reordered by Givens rotations (Golub

and van Loan 1996). The key component of the ILDM

lies in eliminating the coupling matrix Scoup, by seeking a

solution Zr of the Sylvester equation, which is given by

SslowZr − ZrSfast + Scoup = 0. (11)

A change of basis can be effected once Zr is obtained

by constructing the similarity transformation matrices Yr
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which are given by

Yr = Q

[

I Zr

0 I

]

. (12)

These similarity transformation matrices can then be

used to yield the decoupled system comprising the fast and

slow matrices. It can be verified that a decoupled system

can indeed be obtained by substituting Equation (12) into

Y−1
r JYr and using Equation (10) to yield

Y−1
r JYr =

[

Sslow 0
0 Sfast

]

. (13)

A change of basis can carried out by applying Yr to

the original species vector, thereby transforming S to a

new vector x such that xT = [xT
slow xT

fast]. It should be

noted that the dimension of xslow is r, which represents

the size of the slow manifold, while the remaining m − r
dimensions represent the fast system. This transformation

is also applied to the function f in Equation (1) to yield a

new vector g such that gT = [gT
slow gT

fast]. The vectors

x and g can therefore be written as

x = Y−1
r S, g = Y−1

r f . (14)

It can be seen that this similarity transformation com-

pletely decouples the fast and slow subsystems, allowing

them to be solved separately. The final form of the trans-

formed system is given by

dxslow

dt
= gslow(x) (15)

and ε
dxfast

dt
= gfast(x) (16)

where ε is given by ε = τr+1, and is the singular perturbation

parameter. An improvement on this approach involves the

use of an error criterion (Deuflhard and Heroth 1996, Zobeley

et al. 2005). Using an error criterion allows for adjustment of

the size of the low-dimensional system based on its closeness

to the equilibrium point for numerical accuracy. Shaik et al.

(2005) proposed such an error-control based computational

scheme for chemical kinetics, while Handrock-Meyer et al.

(2001) discuss the use of a splitting parameter to obtain the

minimum dimension of the slow system and illustrate their

approach by means of an example.

The existence of conserved moieties in a system, while

reducing the dimension of the system, can involve some

moieties that include species from both the fast and slow

subsystems. The analysis of such systems should exploit

both the conservation matrix information as well as the

partitioning into fast and slow subsystems. However, it does

not appear that this topic has been studied in detail, apart from
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the discussion presented by Heinrich and Schuster (1996) in

their chapter on time hierarchy in metabolism, as it applies

to the case of the Rapid Equilibrium Approximation. We

therefore think that it would be worth investigating how the

other approaches can be improved by incorporating results

of conservation analysis into the time-scale separation. In

this regard, one can ask if the slow and fast subsystems can

be built by restricting the analysis to only the independent

species obtained by conservation analysis.

It can be noted that while the conservation analysis

identifies the dependent and independent species, along

with the conservation laws that relate them, this analysis

holds true for the total system that comprises both the fast

and the slow systems. When complexity reduction methods

such as ILDM are used to partition the original system into

fast and slow components, they are followed by application

of an approximation technique such as QSSA to average the

fast system and construct an algebraic relation between the

fast and slow systems. Such an approximation changes the

system, where the original conservation laws no longer hold.

In other words, the conserved moieties will no longer be

constants, but will themselves form a part of the system, with

a time-varying component. In this situation, the equations

that contribute to each of the conserved moieties will have

to be replaced with the averaged counterpart to yield a set of

additional equations that can be appended to the averaged

network. We observe at this point that only those conserved

moieties that involve a species that is part of the averaged fast

system will have to be included. This may result in a small

increase in the number of additional equations to be solved,

but would result in the proper treatment of conservation

analysis in a time-scale reduction problem.

3 FUNCTIONAL COMPLEXITY

Biological systems often possess hierarchically distributed

subsystems which have one or more functions such as

oscillators or switches (see Tyson et al. 2003, Wolf et al.

2003 for details). It can therefore be argued that components

with an identifiable function can be replaced by simpler

mathematical constructs, thereby reducing the complexity.

This methodology is useful in understanding the complexity

of biological systems by using a modular approach, as

described by Hartwell et al. (1999). Such a modular approach

can indeed be shown to be feasible if it is known clearly

what the inputs and outputs to each subsystem are, and

care is taken to minimize external interactions with species

inside the module.

In the following, we show how a network that contains a

number of components can be simplified by replacing them

with modules whose function is equivalent. The network

shown in Figure 1 has an output response that is maximal at

two frequencies and is shown in Figure 2. This network was

constructed to study interactions between a set of genes and
4
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Input

b0

S0x0

b1

S1x1

b2

S2x2

b3

S3x3

N

Output

Figure 1: A Network with Maximal Response at Two

Frequencies, in which Dotted Lines Indicate Regulation

with Bars for Inhibition and Circles for Activation, Grey

Boxes are Representative of Genes, and b0,b1,b2, b3 are

Transcription Factors that Regulate the Genes.

Figure 2: Frequency Response (in dB) of the Network at

the Output for the Network in Figure 1.

their expressed proteins using simple relations. The low gain

of this network at other frequencies far from the maximal

frequencies indicates that input fluctuations at frequencies

far from the maximal frequencies are not detected at the

output.

The objective in this example is to simplify this net-

work by replacing components by simpler modules. The

frequency response implies that the network involves two

band-pass filters, one of which operates at the lower fre-

quency and the other operates at the higher frequency. Hence

a set of band-pass filters could replace the network in Fig-

ure 1. The network then takes a conceptually simpler form

shown in Figure 3.

The band-pass filters themselves could be constructed by

connecting two low-pass filters, as shown in Figure 4. It can

be noted that a low-pass filter is representative of the process

of transcription of a gene. This process involves an effector

protein whose strength has an effect on the production of

expressed protein, which is the output. If the fluctuation in

the strength of the effector protein is slow, the rate of protein

production is high. On the other hand, if the fluctuation of

the input is rapid, the transcription mechanism cannot keep

up with the fluctuations, and hence the output, namely the

expression of the protein, is diminished. This process is

therefore representative of a low pass filter. Construction
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of the band-pass filter involves the use of the feed forward

loop (FFL) architecture, based on the work by Mangan

and Alon (2003). This involves two low-pass filters, with

the second low-pass filter being activated by the input and

simultaneously, being repressed by the output of the first

low pass stage. The combined effect of the activation and

repression is to generate a band-pass filter behavior between

the input and output.

This is a small example that illustrates how we can

conceptualize the representation of a network in a form where

components have been replaced by functional equivalents.

This can also be achieved using a few basic modules.

These basic modules as well as the principles behind the

construction of more complex networks will be detailed

shortly in a forthcoming paper, currently in preparation.

BPF 1a

(low frequency)

Input Output
LPF

BPF 1b

(high frequency)

BPF 2a

(low frequency)

BPF 2b

(high frequency)

Figure 3: A Block Representation of the Network Shown

in Figure 1 Using Band-Pass Filters (BPF).

Low Pass Filter

First Stage

Input Output

Inhibition

Activation

Low Pass Filter

Second Stage

Figure 4: A Band-Pass Filter Constructed by Staging Two

Low-Pass Filters.

4 SUMMARY

This paper presents a brief overview of the problem of

complexity reduction of biological networks, and reviews

various methods known in the literature. This is an impor-

tant problem, especially from the viewpoint of modeling

and simulation. Systems with a wide range of time scales

tend to involve reactions with varied velocities, which in

turn result in fast and slow processes. This results in a stiff

system, which requires very small steps or sophisticated

time stepping algorithms for the simulator to maintain nu-

merical stability. We discuss two ways of speeding up such

simulations, with the first step involving conservation anal-

ysis to extract the independent species, and a second step

involving application of an appropriate time-scale reduction

method to reduce the dimensionality of the model. Partic-

ular attention is paid to the times-scale reduction method
5
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based on the Intrinsic Low Dimensional Manifold (ILDM)

method. The development of a method that incorporates

the salient features of both these approaches into one single

method is still however an open problem.

The second issue that is addressed in this paper pertains

to the representation of complex networks in a form where

components with a specified function can be replaced with

simpler modules with a known mathematical description.

We have shown this with an example of a network with

two peaks in the frequency domain, by replacing its compo-

nents with band-pass filters. This is useful in simplifying a

given network into components that are functionally simple,

thereby reducing the complexity of the overall network.
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