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ABSTRACT

Due to the complexity of biochemical reaction networks, so-

called complexity reduction algorithms play a crucial role for

making simulations efficient and for dissecting biochemical

networks into meaningful subnetworks for analysis. Here,

different approaches are presented, which we are developing

in the context of a computational research environment

for systems biology (SYCAMORE). These approaches are

based on time-scale decomposition, sensitivity analysis, and

hybrid simulation methods.

1 INTRODUCTION

Systems biology aims at an increased understanding of

the biochemical network in the living cell. For this pur-

pose, the focus of experimental and theoretical study has to

reach beyond single isolated genes, proteins and reactions

to studying increasingly complex systems of biochemical

reactions and/or gene and protein interactions. In order to

do so, new methods need to be combined with established

methods and experimental and theoretical approaches have

to be concerted.

For this purpose, we are developing SYCAMORE, a

computational research environment for systems biology

that supports non-expert users in setting up models and

analyzing them. Thus, SYCAMORE links to the appropriate

databases and simulation tools (e.g., COPASI 2006) and

provides the user with information when to use which of

the tools/methods.

One important computational aspect in systems biol-

ogy is the fact that the increasing size and complexity of

studied biochemical systems leads not only to experimental

results which are hard to understand, but also to computa-

tional results which are not easy to comprehend. Here the

so–called complexity reduction aims for two different di-
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rections: increasing the speed of simulations and dissecting

the biochemical network into smaller subsystems that can

be studied independently. The first one is usually achieved

by reducing the number of equations mathematically. A

smaller number of equations, though, does not guarantee

the reduction of the number of biochemical species in the

system, since many different species might contribute to one

and the same transformed equation. Therefore, a likewise

or even more important aspect is to dissect biochemical sys-

tem into several modules that can be studied independently.

This is needed to understand the interplay of specific sub-

systems. Both directions of complexity reduction have as

the common goal not to loose important features. Different

approaches to tackle these challenges are developed for the

use in SYCAMORE and are described in the following.

The first approach is based on the presence of a wide

range of characteristic time-scales in biological systems

(from fraction of seconds, e.g., in signal transduction, to sev-

eral hours, e.g., in some cases of gene expression). The most

prominent examples building on the concept of time-scale

decomposition are the Computational Singular Perturbation

(CSP) method (Lam and Goussis 1994) and the so-called

Intrinsic Low-Dimensional Manifolds (ILDM) (Maas and

Pope 1992). Several variants of these two methods have

been successfully used, e.g., in atmospheric and combus-

tion chemistry modeling (see, e.g., Schmidt et al. 1998).

We describe here the adaptation of an ILDM method for

the use in the computational decomposition and analysis

of biochemical systems with respect to time-scales. In

comparison to the ILDM methods for chemical systems,

beside the reduction of mathematical equations, our method

has an additional focus on the reduction of the underlying

biochemical network in a time-dependent manner.

The second very popular approach—sensitivity

analysis—has been widely used to analyze chemical and bio-

logical systems (Turanyi 1990, Turanyi et al. 1989) primarily

to examine their behavior with respect to disturbances or to
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determine the robustness of parameter estimation. In addi-

tion, principal component analysis can be used to understand

the interaction between reactions and their grouped behavior

(Tomlin et al. 1995). For SYCAMORE, we are following

another strategy, that we believe to be quite promising for

investigating biochemical networks — an approach based

on parameter scans and second order sensitivities. Increas-

ing the order of sensitivties provides additional information

about how first order sensitivities change locally and thus, it

is to extend the domain of their local approximative features.

Moreover, it allows the consideration of combined effects

of two parameter variations. Furthermore, many biological

systems keep their properties even if subjected to relatively

large parameter fluctuations. So, the knowledge of high

order sensitivities could provide a good basis for reducing

dimensions (in parameter space) and network dissection.

Another important aspect discussed here is based on

the study of the applicability of differential equations for

describing reaction systems and the possibility to take in-

trinsic fluctuations into account using simulations based on

discrete particle numbers, e.g., employing Gillespie’s algo-

rithm (Gillespie 1976). The latter methodology being of

central importance if low number of identical molecules are

present in the system. In those cases random effects can

not be neglected and one must resort to stochastic methods.

Both simulation approaches can be combined however by a

hybrid simulation algorithm that we develop and that allows

to dissect the system dynamically into a deterministic part

and a part that is simulated stochastically. This approach has

the advantage, that the computationally demanding stochas-

tic simulation is only used on those subsystems, where it

is really needed. The huge computational complexity of

simulating the whole system stochastically can be reduced

significantly. In addition, the dynamic partitioning and the

flexibility to determine the dissection criteria allows to in-

vestigate if a certain subsystem of the biochemical network

of interest is influenced heavily by intrinsic noise or is

stable towards small fluctuations. Thus, the resulting data

also help to determine boundaries for subnetworks.

The paper is organized as follows. In Section 2 we

present our adaptation of a ILDM method for dynamically

dissecting biochemical systems. Section 3 is devoted to

our strategies using sensitivity analysis. In Section 4 we

shortly describe our hybrid simulation method and discuss

how this can aid in network dissection.

2 TIME SCALE DECOMPOSITION

In this section, we describe the adaptation of the method of

Intrinsic Low-Dimensional Manifolds (ILDM) to biochem-

ical systems (see also Zobeley et al. 2005). Originally, the

ILDM techniques were introduced by Maas and Pope (1992)

for the mathematical equations of combustion problems. In

contrast, our method has an additional focus on reducing
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the underlying biochemical network in a time–dependent

manner. It can be applied to arbitrary biochemical reac-

tion systems and works independently of assumptions about

the specific dynamic regime. Moreover, some numerical

differences are introduced as described below.

We assume here that the dynamics of the system are

determined by a set of n ODEs together with an initial state

c0:

d

dt
c(t) = f(c(t)), c(0) = c0 ∈ R

n.

Step 1. As a starting point of analysis a linearization

with respect to the state vector c0 is performed:

{

d
dt

c(t) = f(c0) + Jc0 · (c(t)− c0)

c(0) = c0 (Jc0 Jacobian of f in c0)
.

Step 2. An orthogonal similarity transformation is

applied to the Jacobian Jc0 . The resulting matrix S has

real Schur form, i.e., it is a block upper triangular matrix

(Golub and Loan 1996):

Q ·Jc0 ·Q
−1 = S =

(

Sslow Scoup

0 Sfast

)

.

In S the eigenvalues are reordered by a sequence of Givens

rotations

Re λ1 ≥ . . . ≥ Re λr � Re λr+1 ≥ . . . ≥ Re λn.

Step 3. Using the solution of Sylvester equation

Sslow Z−Z Sfast = −Scoup

we realize that the transformed Jacobian is decoupled ad-

ditionally:

T ·Jc0 ·T
−1 =

(

Sslow 0
0 Sfast

)

where

T = QT

(

Idn +

(

0 Z

0 0

))

.

Step 4. Applying T to the state c and reaction rate f

results in a decoupled representation of the system dynamics:

x =

(

xslow

xfast

)

= T · c, g =

(

gslow

gfast

)

= T · f(T−1·).

Partitioning the reaction system into slow/fast contri-

butions is related to a singular perturbation description of
4
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the ODE system

{

dxslow
dt

= gslow (xslow,xfast)

ε ·
dxfast

dt
= gfast (xslow,xfast)

.

Here, ε = τr+1 = 1

|Re λr+1|
is a singular perturbation param-

eter. The concentrations of the fast species change with

time, but these species can be described by algebraic re-

lations instead of differential equations. The quasi–steady

state assumption (QSSA), i.e., ε = 0, yields the associ-

ated differential–algebraic system (DAE) for the reduced

problem.

Step 5. The number r of “slow” modes plays a crucial

role in this approach. We adapt here the criterion suggested

by Deuflhard and Heroth (1996): For a given error tolerance

tol > 0, the number r of slow modes is chosen such that

the corresponding decomposition still satisfies

ε · |gslow (xslow,xfast)−gslow (xslow,x0,fast) | < tol

where the vector (xslow,x0,fast) denotes the consistent initial

value of DAEs and (xslow,xfast) corresponds to the state

vector c0 of ODE system.

Step 6. Another important question concerns the period

of time in which the preceding distinction between fast and

slow modes can be preserved. To the best of our knowledge,

this aspect has not been investigated sufficiently so far. The

transition from the original ODE system to the approximating

DAE system provides sufficient accuracy merely up to some

time δ . This additional time scale ought to be large in

comparison with the (shortest) characteristic time τr+1 of

the fast modes: δ � τr+1.
In order to illustrate our theoretical considerations, we

analyze here the time scale decomposition in the glycolysis

reaction system in yeast as described in Wolf and Heinrich

(2000). The model includes the main steps of anaerobic

glycolysis, the production of ethanol and glycerol, as well

as the effect of intercellular coupling (see Figure 1).

The mathematical model consists of 7 ODEs. The

reaction rates v2 . . . v7 are described by the law of mass

action whereas

v1 = k1 ·glucose ·AT P ·

(

1+

(

AT P

KAT P

)q)−1

.

We refer to Wolf and Heinrich (2000) for details of the

model.

Depending on the kinetic parameter k1, the model shows

both stationary and oscillatory behavior. We investigate here

the case corresponding to small amplitude oscillations reach-

ing the steady state (Figure 2). This specific situation offers

the excellent opportunity to observe qualitatively different

behavior in complexity reduction on a single run.
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Figure 1: Glycolysis Reaction System in Yeast

The dynamic system represented by 7 ODEs has been

analyzed with our adapted ILDM method while propagating

along the phase space trajectory obtained by integrating the

full system. After steps 1−5 of our algorithm, the original

system of dimension 7 is approximated by a transformed,

reduced system consisting of 4−5 active modes while dis-

playing large amplitude relaxation oscillations. The system

can even be represented by a lower number of slow modes

(3) while propagating in the regime of sustained regular

oscillations (starting at t ≈ 4).

We compare also the maximal period δ (in which the

Schur decomposition of the Jacobian does not change signif-

icantly) with the characteristic time scale τr+1 of the slowest

“fast” mode (step 6). During large amplitude oscillations

(until t ≈ 3), δ and τr+1 are of the same order of magni-

tude. For instance: δ/τr+1 ≈ 1.037 at point A (t = 0.5),
δ/τr+1 ≈ 5.12 at point B (t = 1). Thus, we cannot justify

QSSA for the “fast” modes here.

In contrast, δ � τr+1 for the regime of small decaying

oscillations. For example, at point C (t = 8), δ/τr+1 ≈ 152
allows us to apply this model reduction.

In order to complete our investigation, we perform

the analysis of slow modes in terms of contributions of

all species concentrations. The information is obtained by

analyzing the entries of the transformation matrix T (see

Zobeley et al. 2005). Figure 3 shows the contributions
5
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Figure 2: Simulation of the Full Glycolysis Model

of species to the slow space at point C (t = 8). Here the

contributions of only 4 species are significant. Therefore the

“real” reduction of corresponding metabolites is possible.

3 GENERALIZED SENSITIVITIES

One aspect of the complexity of models of biochemical reac-

tion networks is the often rather large number of parameters.

Each single enzyme-catalyzed reaction usually has several

parameters describing the overall reaction rate as well as

effects of saturation, inhibition, activation, etc. The value

of many of these kinetic parameters is unknown or not

known with sufficient accuracy. Therefore it is important

to have methods to study how changing the value of some

parameter affects the behavior of the model, or which range

of parameter values needs to be considered when we want

to study a specific model behavior. Unfortunately, since

the reaction networks can have very complicated structures,

and the reaction kinetics are nonlinear in most cases, the

relation between parameter values and simulation results is

not trivial.

So how can the exploration of the parameter space

help to reduce the complexity of the model? Obviously,

the knowledge about the behavior of the parameters does

not reduce the complexity of the model in all cases but

it will always reduce the complexity of the problems we

(as the modelers) are facing. Knowing, e.g., that a certain

parameter does not influence the results very much or that

some other parameter can only be in a certain range of

values if the system has to be in a steady state helps a lot

when fitting the model to experimental data. In addition,

the same information can lead to a true dissection of the

model. For example, if we find that one set of parameters

mostly affects certain model variables and another set of
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Figure 3: Analysis of the Slow Modes at Point C

parameters only affects different variables we can try to

separate the model into only weakly coupled subsystems.

Entities that describe quantitatively how much changing

a parameter value influences some property of a model are

called sensitivities. One well established formalism to deal

with sensitivities in the context of biochemical reaction

networks is Metabolic Control Analysis (MCA) (Fell 1997).

MCA defines matrices of so-called control coefficients. They

describe how a steady state of the systems changes if the

overall rate of a individual reaction is changed. Usually the

coefficients are calculated using an algorithm described by

Reder (1988).

This basic notion of sensitivities can be generalized

in several ways: First we can consider model properties

other than steady state concentration and fluxes. Basically

for every property of the model that can be calculated

numerically we can also calculate if and how much it changes

with any model parameter. As an example, it can be useful

to calculate how the frequency and amplitude of a limit

cycle oscillation depends on the parameter values. Also,

we can calculate the dependency on different parameters.

In addition to reaction rates other parameters like inhibition

constants are of interest.

Another generalization are second (or higher) order

sensitivities. Basic sensitivities as described above are first

derivatives of a model property with respect to a model

parameter value. We can also calculate second derivatives

with respect to one or two parameters. Since biochemical

models are usually nonlinear the linear dependency between

model state and parameter values that is described by first

order sensitivities only holds for a small interval around

the state for which they were calculated. Second order

sensitivities can provide hints as to how big this interval
6
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is, and they can provide a measure of how much nonlinear

effects govern the behavior of the system.

Finally also continuation can be considered as a general-

ization of sensitivity analysis. Continuation is a numerical

method that is well established in the field of nonlinear

dynamics—with software packages like AUTO (Doedel

1996)—but that has been used in systems biology only

rather recently (e.g., Chickarmane et al. 2005). Contin-

uation follows a solution of the model equations over a

whole range of parameter values and also identifies points

in parameter space where the stability of a solution changes

(bifurcation analysis).

4 HYBRID METHOD

Mathematical models for describing biological phenomena

can be divided into two broad categories: continuous or dis-

crete. Most often the continuous models are simulated using

deterministic methods (e.g., numerical integration), whereas

stochastic simulation methods are utilized for the discrete

models. However, this does not always have to be the

case. Biochemical networks (e.g., metabolic networks) are

usually described by ordinary differential equation systems

(ODEs). There exist a variety of very efficient numerical in-

tegration methods even for the very stiff ODEs, which often

arise in biochemical simulations (Petzold 1983). The actual

numbers of particles in the system do not affect the simu-

lation speed. This continuous approach, however, is based

on the notion of continuously changing variables. It breaks

down in the case of species with only very few particles

in the system (e.g., in signal transduction systems), where

the concept of concentrations does not hold any longer. In

addition internal fluctuations in terms of particle numbers

in the system are completely neglected. Those fluctuations

again occur primarily when only few molecules are present

in the system and can change the overall behavior dramat-

ically. Therefore stochastic simulation methods have been

developed (Gillespie 1976, Gibson and Bruck 2000), which

consider the discrete nature of the system and simulate it

according to individual probabilities for the different reac-

tion events. The stochastic simulation methods reproduce

those random fluctuations correctly, but can do that in an

efficient manner only for systems containing relatively few

molecules.

With the upcoming of more and more complex bio-

chemical models, which for instance combine signal trans-

duction (few particles) and metabolism (many particles)

none of the traditional simulation methods alone is appro-

priate any longer. Therefore a number of hybrid methods

(Haseltine and Rawlings 2002, Kiehl et al. 2004, Puchalka

and Kierzek 2004, Salis and Kaznessis 2005, Alfonsi et

al. 2005) have been proposed that try to combine the ad-

vantages of the complementary deterministic and stochastic

approaches. Parts of the biochemical system are simulated
1687
stochastically to capture the internal fluctuations. Other

parts of the system are simulated using deterministic meth-

ods at the same. A correct synchronisation of the two parts

is essential. The methods proposed so far are different in

the partitioning scheme they use and the approximation of

variable probabilities between two stochastic events in the

system.

The hybrid method developed in our group (COPASI

2006) combines the stochastic simulation algorithm by Gib-

son and Bruck, 2000 (Next Reaction Method) with a numer-

ical integration of ODEs (4th order Runge Kutta method).

The biochemical network is dynamically partitioned into

a deterministic and a stochastic subnet depending on the

current particle numbers in the system. The user can define

limits for when a particle number should be considered low

or high. The stochastic subnet comprises reactions involv-

ing low numbered species. All the other reactions form

the deterministic subnet. The reaction probabilities in the

stochastic subnet are approximated as constant during one

time step.

The hybrid simulation of a toy system is given in

Figure 4. The system describes a simple two-stage decay:

A → B, B →C.

Whenever the particle numbers drop below the user-defined

limits (marked time points) the corresponding reactions

are simulated stochastically and random fluctuations are

captured. Otherwise the faster numerical integration is used

for reactions with high-numbered species.
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Figure 4: Two–stage Decay

By being able to use the efficient numerical integration

for some parts of the system, computational complexity

is reduced and simulation speed gained at least for those

systems that contain large fractions that can be treated

deterministically (compared to a stochastic simulation for

the whole system which otherwise would be necessary).
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In addition, the user-defined limits for the partitioning

of the system allows to study the sensitivity/robustness of

individual subnetworks with respect to noise. By chang-

ing this limit, one can observe if the resulting trajectory

is dramatically changing, e.g., if additional subnetworks

are simulated stochastically. If this is the case, these sub-

networks exhibit a pronounced sensitivity towards intrinsic

noise. Thus, dissection of the whole system with respect to

noise-sensitive and noise-robust subnetworks is possible.

5 DISCUSSION

In this article, three approaches to complexity reduction

have been considered: time–scale decomposition (ILDM

method), sensitivity analysis, and hybrid methods. These

approaches are developed for the use in SYCAMORE (a

computational research environment for systems biology).

Our modified ILDM approach is based on the assump-

tion that the main part of dynamics, being of real interest

for the researchers, belongs to the intrinsic slow manifold.

However, we also believe that an effective complexity re-

duction method should take both fast and slow parts of a

trajectory into account adaptively. Such a combined method

will be a topic of our future work.

In the field of sensitivities we are developing the gen-

eralization of classical approaches, based on the second (or

higher) order sensitivities and continuation.

Finally, hybrid simulation methods aid to analyze the

systems sensitivity with respect to noise and thus enable

researchers to differentiate between subsystems being rather

robust (are not easily influenced by intrinsic noise) and

subsystems with pronounced sensitivities.
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