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ABSTRACT

Modelling of the dynamics of biochemical reaction networks

typically proceeds by solving ordinary differential equations

or stochastic simulation via the Gillespie algorithm. More

recently, computational methods such as process algebra

techniques have been successfully applied to the analysis

of signalling pathways. One advantage of these is that

they enable automatic verification of the models, via model

checking, against qualitative and quantitative temporal logic

specifications, for example, “what is the probability that the

protein eventually degrades?”. Such verification is exhaus-

tive, that is, the analysis is carried out over all paths,

producing exact quantitative measures. In this paper, we

give an overview of the simulation, verification and differen-

tial equation approaches to modelling biochemical reaction

networks. We discuss the advantages and disadvantages of

the respective methods, using as an illustration a fragment

of the FGF signalling pathway.

1 INTRODUCTION

Biological signalling processes control key responses in

multicellular organisms such as cell multiplication, differ-

entiation and movement. Many modelling frameworks have

been put forth to advance the scientific understanding of

these complex processes. Traditionally, one assumes that the

time evolution of the number (or concentration) of molecules

is continuous, leading to a set of coupled ordinary differ-

ential equations (usually non-linear) called reaction rate

equations. An alternative, stochastic, approach views the

system as a continuous time Markov process, and admits an

efficient solution via stochastic simulation (Gillespie 1977).

More recently, the observation that concurrency is present

in these processes has led to the adoption of process algebra

approaches developed for description and analysis of com-
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plex software systems in computer science. In particular, in

(Regev and Shapiro 2002, Priami et al. 2001) the stochastic

π-calculus has been proposed as particularly appropriate to

model the dynamics of molecular processes.

Process-algebraic approaches view systems as networks

composed of concurrent, interacting molecules or molecular

ensembles, and can be applied at all levels of abstraction,

molecular, cellular and tissue (Regev and Shapiro 2002). The

“molecule-as-computation” paradigm embodied in process

calculi is very attractive, since it offers a compact notation

with a minimal repertoire of computational abstractions of

molecular interactions that are supported by a formal reason-

ing framework. Thus, one can formulate a hypothesis about

a specific signalling mechanism in terms of a π-calculus

process, and benefit from computer assisted reasoning via

in silico genetics, i.e., a series of experiments on the models

performed by manipulating process descriptions, for exam-

ple, the removal of a protein, each of which can be validated

against experimental data and prioritised according to the

potential of the discovery being predicted.

The stochastic π-calculus modelling framework sup-

ports not only Monte Carlo simulation to obtain time-

evolution of molecular concentrations using tools such as

BioSPI (Regev and Shapiro 2004) and SPiM (Cardelli and

Phillips 2004), but also formal reasoning, for example, au-

tomatic verification via model checking. With the help of

techniques such as probabilistic model checking (Rutten

et al. 2004), one can obtain qualitative and quantitative

answers to queries such as “does this reaction always lead

to degradation?”, “what is the probability that the protein

eventually degrades?” and “what is the expected number

of complexation reactions before relocation occurs?”.

Naturally, each of the modelling frameworks and anal-

ysis techniques mentioned above has advantages and disad-

vantages, and it is important to understand these in order to

decide on their applicability for a particular modelling or ex-
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perimental context. In this paper, we give an overview of the

main modelling and analysis approaches for signalling path-

ways, and discuss their respective strengths and weaknesses

using as an illustration a fragment of a complex signalling

pathway, the FGF (Fibroblast Growth Factor) pathway. FGF

are a family of proteins which play an important role in cell

signalling, e.g., wound healing. The dynamics of the FGF

pathway are complex and not yet fully understood. Aspects

of the full pathway were studied elsewhere using ODEs,

e.g., (Yamada et al. 2004), and process calculi (Heath et al.

2006). Other simpler pathways have also been studied using

process calculi approaches, e.g., ERK (Calder et al. 2006a)

and MAPK (Phillips and Cardelli 2005).

2 MODELLING FRAMEWORKS

We consider the problem of modelling a mixture of molecules

from N different molecular species, which can interact

through a number of reactions. We assume a spatially

uniform mixture in a fixed volume V at constant pressure

and temperature. In this section, we distinguish between two

distinct modelling approaches, based on either a continuous

or a discrete time evolution of the molecules; see, e.g.,

(Wolkenhauer et al. 2004, Gillespie 1977).

2.1 The Continuous Deterministic Approach

One approach is to approximate the number of molecules

of each species in V at time t by a continuous function,

which is justifiable for large numbers of molecules. More

precisely, this measures the concentration of each species

in molar units (M) which corresponds to the number of

molecules per unit volume (litre) divided by Avogadro’s

number (NA = 6.022e+23).

Consider for example a reversible reaction between

species A and B that can become bound (AB):

A+B
k1
−→
←−

k2

AB

where k1 (M−1s−1) describes the velocity of the compound

formation and k2 (s−1) is the velocity of the breakdown of

the complex. The values are called kinetic rates and are

derived from experimental data. Using the principle of mass

action, the change in concentration is proportional to the

kinetic rate and the amount of reactant species, and therefore

we can represent the time evolution of the concentration

[AB] of the complex AB by the reaction rate equation:

d[AB](t)

dt
= k1·[A](t)·[B](t)− k2·[AB](t).

The solution of the derived set of ordinary differential

equation in N-dimensional space gives the required time
1667
evolution of the concentrations. There are different types

of biochemical reactions, which vary in the number of

reactants, the type of reaction (reversible or irreversible) and

the type of reactant (e.g., enzyme/substrate). The analysis

of the enzyme-catalysed reaction can be simplified by the

Michaelis-Menten kinetics.

Note that, although the underlying physical interpre-

tation involves random collisions of molecules, the ODEs

predict average population levels. Therefore, the model

is deterministic, but only with respect to a perceived av-

erage of a process that is subject to random fluctuations.

In the derivation of the differential equation, we assume a

large number of molecules so that a process with discrete

changes can be approximated by a continuous model. Math-

ematically, this corresponds to approximating a difference

equation with a differential equation.

2.2 The Discrete Stochastic Approach

An alternative is to take a discrete view of the evolution

of the system, where the occurrence of a reaction between

molecules corresponds to a discrete event. It is argued

that this is a more accurate representation of the physical

system being modelled, particularly when dealing with small

numbers of molecules. The evolution of such a model is

inherently stochastic, representing the probability that there

are n molecules of the ith species at time t, for each i. This

is a discrete-state time homogeneous Markov process whose

states are vectors of molecule counts and state changes are

dependent on stochastic constants (determined from the rate

constants) and the numbers of molecules of each species.

This approach is based on the grand probability function

P(x, t) – the probability that, at time t, there will be xS

of species S, where x is a vector of molecular species

populations and the solution can be formulated as a set

of partial differential equations, known as the chemical

master equation (Gillespie 1977). Returning to the simple

reactions above, x is of the form (xA,xB,xAB) (the quantities

of A, B and AB), and so denoting the complexation and

decomplexations reactions by 1 and 2 respectively, we have:

∂P(x, t)

∂ t
=

2
∑

i=1

(

ai(x−v)P(x−v, t)−ai(x)P(x, t)
)

where ai(x)·∂ t is the probability of, in state x, reaction i

occurring in the interval (t+∂ t) (and can be derived from

ki and x), and vi is the stoichiometric vector defining the

result of reaction i, i.e., v1=(−1,−1,1) and v2=(1,1,−1).
Under the assumption of constant state-dependent rates,

the underlying Markov process is a continuous-time Markov

chain, which assumes exponentially distributed reaction

rates; this is justified since, if collision times are small

compared to the times between collisions, molecules are
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moving chaotically, and a constant ratio of overall collisions

lead to reactions (Wolkenhauer et al. 2004). The states of

the resulting Markov chain are vectors representing interact-

ing molecules, and transitions are determined by the rates

combined with concentrations and are selected according

to the usual race condition.

The approach described above can be classified as

population-based since the model represents the number

of each molecular species present, and does not consider

interactions between individual molecules. However, we

can extend the discrete stochastic approach to an individual-

based model, where the state and behaviour of each molecule

is represented separately. This approach is desirable if, for

example, the assumptions of perfect diffusion and well

stirred substance are dropped, or if we are interested in the

behaviour of individual components. Clearly, though, this

comes with the cost of increased complexity.

3 MODELLING FORMALISMS AND LANGUAGES

We now summarise a selection of different formalisms

which have been proposed for the modelling of biochemical

reactions. To do so, we introduce a running example: a

fragment of the earlier studied (Heath et al. 2006) Fibroblast

Growth Factor (FGF) pathway.

Figure 1 shows a graphical representation of the ele-

ments of the system that we consider. Figure 2 presents the

set of reactions between the elements, which can be sum-

marised as follows. An FGF protein (molecule) can bind to

an FGF receptor (FGFR). When FGF and FGFR are bound,

two different residues on FGFR can become phosphorylated

which, subsequently, allow the signal transducing proteins

Src and Grb2 to bind to FGFR. Each of these reactions

is also reversible. Finally, when Src is bound, FGFR can

be relocated, along with any components bound to it. The

reaction rates given in Figure 2 are based on experimental

observations from the literature.

3.1 SBML

SBML (2006) is a computer-readable language based on

XML for representing models of biochemical reaction net-

works. SBML is intended as a standardised representation of

models that can be shared, manipulated and analysed using

tools available in the systems biology community. Models

are composed from components, which permit definition of

reactant species, product species, descriptions of reaction

equations using MathML expressions, and the specification

of kinetic laws and parameters. Compartments are allowed,

but not considered here. Figure 3 shows a fragment of

the SBML description for the reactions in Figure 1, more

specifically, for the first line of reaction 4.

SBML is widely supported and facilitates interchange

between different tools, e.g., it is supported by ODE tools
1668
FGF

Grb2

FGFR

Src
− phosphorylation

Figure 1: Graphical Representation of FGF and FGFR

Interaction and Their Effect on Src and Grb2.

1: FGF binds/releases FGFR

FGF + FGFR → FGFR:FGF k1=5e+8 M−1s−1

FGF + FGFR ← FGFR:FGF k2=0.002 s−1

2: Phosphorylation of FGFR (whilst FGFR:FGF)

FGFR:FGF + FGFR1 → FGFR:FGF + FGFR1Pk3=0.1 s−1

FGFR:FGF + FGFR2 → FGFR:FGF + FGFR2Pk4=0.1 s−1

3: Dephosphorylation of FGFR

FGFR1P → FGFR1 k5=0.1 s−1

FGFR2P → FGFR2 k6=0.1 s−1

4: Effectors bind phosphorylated FGFR

SRC + FGFR1P → SRC:FGFR k7=1e+6 M−1s−1

SRC + FGFR1P ← SRC:FGFR k8=0.02 s−1

GRB2 + FGFR2P → GRB2:FGFR k9=1e+6 M−1s−1

GRB2 + FGFR2P ← GRB2:FGFR k10=0.02 s−1

5: Relocation of FGFR (whilst SRC:FGFR)

SRC:FGFR → relocFGFR k11=1.1e-3 s−1

Figure 2: Summary of the Reactions

such as SIGMOID and Cellerator (Shapiro et al. 2003),

and stochastic simulation (e.g., Dizzy). Recently, automatic

generation of a large fragment of the stochastic π-calculus

from SBML has been implemented (Eccher 2006).

3.2 The Stochastic π-Calculus

Process calculi are formal languages for representing sys-

tems as networks of concurrent interacting processes, each

operating according to explicitly given rules and combined

in parallel. Such compositional descriptions of networks

are compact and easy to manipulate. In order to model bio-

chemical reactions, which occur at specified reaction rates,

stochastic extensions of process calculi have been formu-

lated. There are different dialects of calculi that differ in the

synchronisation method used (e.g., channel or action-based,

binary/multi-way) and types of operators.

The stochastic π-calculus was proposed in (Regev and

Shapiro 2004) as a framework for modelling of biological

processes, and a translation scheme was given for represent-

ing biochemical reactions in this formalism. The models

of reaction networks induced from stochastic π-calculus

process are continuous time Markov chains, and therefore

the stochastic π-calculus should be viewed as a conve-

nient, compositional language for describing discrete-state

stochastic models of Section 2.2. Two simulation systems

that accept π-calculus process syntax are available, BioSPI

based on (Regev and Shapiro 2004) and SPiM (Cardelli

and Phillips 2004). Other stochastic process calculi include

PEPA (Hillston 1996), which has been successfully applied

to the modelling of small examples such as the Ras/Raf/ERK

signalling pathway (Calder et al. 2006a).
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<listOfSpecies>

· · ·
<species id="FGFR Ph1" initialConcentration="0". . ./>

<species id="SRC" initialConcentration="N". . ./>

· · ·
</listOfSpecies>

<reaction id="Reaction1" reversible="false">

<listOfReactants>

<speciesReference species="FGFR Ph1" />

<speciesReference species="SRC" />

</listOfReactants>

<listOfProducts>

<speciesReference species="FGFR SRC" />

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply> <times/>

<ci>k7</ci> <ci>FGFR Ph1</ci> <ci>SRC</ci>

</apply>

</math>

</kineticLaw>

</reaction>

Figure 3: SBML Code Fragment

A fragment of the π-calculus code (in the textual format

of BioSPI) relating to FGFR and its interactions with FGF

and Src is shown in Figure 4. We encode an FGFR protein

as the parallel composition of interacting subcomponents,

each of which models a characteristic of the protein, for

example the connection to an FGF protein (bound/unbound)

or the state of a residue (phosphorylated/unphosphorylated).

Subcomponents serve as both protein internal states and its

interfaces through which the interactions with other proteins

occur. FGF, Src and Grb2 are modelled as separate processes

(omitted from Figure 4). Input, output, action prefix and

choice are denoted by “?”, “!”, “,” and “;” respectively. For

further details, see, e.g., (Regev and Shapiro 2004).

The stochastic π-calculus can be used for both

population- and individual-based models, and can be auto-

matically generated from SBML descriptions of biochemical

networks, see (Eccher 2006) for a recent proposal. One dis-

advantage of the π-calculus is the restriction to (asymmetric)

binary input/output communication, rather than multi-way

interactions between processes (see for example the sequence

of actions (reloc, reloc1, . . . ) in FGFR SRC in Figure 4 to

model FGFR relocation).

FGFR ::= FGFR FGF0 | FGFR Ph10 | . . . .

FGFR FGF0::= bind fgf!{rel fgf, reloc4}, FGFR FGF1; % binding FGF

reloc1?[] , true . % relocation

FGFR FGF1::= rel fgf?[] , FGFR FGF0; % releasing FGF

ph1?[] , FGFR FGF1; % phosphorylation

reloc1?[] , reloc4![] , true; % relocation

. . . .

FGFR Ph10 ::= ph1![] , FGFR Ph11 . % phosphorylation

FGFR Ph11 ::= bind src!{rel src1, rel src2} , FGFR SRC; % binding Src

dph1![] , FGFR Ph11 . % dephosphorylation

FGFR SRC ::= rel src1?[] , FGFR Ph11; % releasing Src

dph1![] , rel src2! [], FGFR Ph10;

% dephosphorylation (and releasing Src)

reloc![] , reloc1![] , reloc2![] , true . % relocation

Figure 4: Stochastic π-calculus Code Fragment
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3.3 PRISM

PRISM (Hinton et al. 2006, PRISM 2006) is a probabilistic

model checker: a tool for the formal verification of quantita-

tive properties of stochastic systems. It supports construction

and analysis of three types of models: continuous-time and

discrete-time Markov chains and Markov decision processes.

Quantitative properties such as “what is the probability that

protein A relocates within 2 hours?” or “what is the expected

number of complexations that occur before degradation?”

can be expressed using temporal logics (in this case, CSL

and its extensions). Values for properties are then com-

puted automatically by the tool. PRISM also supports the

stochastic process algebra PEPA (Hillston 1996).

Models to be analysed in PRISM are specified in a

simple, state-based description language. The PRISM mod-

elling language variant that corresponds to PEPA has expres-

sive power similar to the stochastic process calculus, and

therefore can be viewed as an alternative, compositional

language for inducing discrete-state stochastic models of

Section 2.2. However, it is based on multi-way synchroni-

sation rather than binary channel communication. Figure 5

shows a fragment of the PRISM language code for our

running example, relating to FGFR and its interactions with

FGF and Src. Each system component is described by a

separate module, whose state is represented by a number

of finite-values variables. The stochastic behaviour of each

component is described by a set of guarded commands.

Modules can interact through synchronisation, which is

achieved by annotating commands in two or more modules

with the same label.

PRISM has already been successfully applied to the

modelling and analysis of several biochemical reaction net-

works, such as the Ras/Raf/ERK signalling pathway (Calder

et al. 2006a, Calder et al. 2006b), cyclin (PRISM 2006) and

FGF (Heath et al. 2006). These case studies demonstrate

the use of PRISM for both population- and individual-based

models. Similarly to the π-calculus, PRISM models are also

easy to modify at the level of individual molecules or ensem-

bles, for example when formulating an alternative hypothesis

for the mechanism under study, and can be manipulated via

text processing tools. Based on Eccher (2006), automated

translation of PRISM models from SBML is feasible and

would avoid the difficulties with binary synchronisation.

4 ANALYSIS TECHNIQUES

4.1 Differential Equations

As described in Section 2.1, continuous deterministic models

of biochemical reaction networks describe the time evolution

of molecular concentrations as a set of coupled ordinary

differential equations (ODEs).
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module fgfr

fgfr fgf : [0..1] init 0; // FGF bound

fgfr ph1 : [0..1] init 0; // state receptor 1 phosphorylated

fgfr src : [0..1] init 0; // Src bound

reloc fgfr : [0..1] init 0; // FGFR relocated

· · ·
// binding and release of FGF

[bind fgf ] reloc fgfr=0∧fgfr fgf =0→k1 : (fgfr fgf ′=1);

[rel fgf ] reloc fgfr=0∧fgfr fgf =1→k2 : (fgfr fgf ′=0);

// phosphorylation/dephosphorylation (release SRC under dephosphorylation)

[] reloc fgfr=0∧fgfr fgf =1∧fgfr ph1=0 →k3 : (fgfr ph1′=1);

[] reloc fgfr=0∧fgfr ph1=1∧fgfr src=0 →k5 : (fgfr ph1′=0);

[rel src] reloc fgfr=0∧fgfr ph1=1∧fgfr src=1 →
k5 : (fgfr ph1′=0)∧(fgfr src′=0);

// binding and release of Src

[bind src] reloc fgfr=0∧fgfr ph1=1∧fgfr src=0→k7 : (fgfr src′=1);

[rel src] reloc fgfr=0∧fgfr src=1→k8 : (fgfr src1′=0);

// relocation (caused by Src)

[] reloc fgfr=0∧fgfr src=1→1/(15*60) : (reloc fgfr′=1);

endmodule

Figure 5: PRISM Language Description Fragment

To build the differential equation model for our run-

ning example, we used Cellerator (Shapiro et al. 2003),

a Mathematica-based tool for generating, translating and

solving complex signal transduction networks. Cellerator

supports a convenient input of fundamental biochemical re-

actions with arrow-based notation to represent biochemical

reactions. Examples of chemical formulae recognised by

Cellerator include association, dissociation, synthesis and

degradation, and conversion reactions. Reactions are auto-

matically translated into differential equations based on the

law of mass action or enzymatic kinetic models.

For illustration purposes Figure 6 shows a fragment of

the ODEs automatically generated for our example, relating

to FGFR and its interactions with FGF and Src. Cellerator

also supports solution of these ODEs. Figure 7(a) shows the

results generated for the concentration of relocated FGFR

and Grb2 bound to FGFR over a time period of 4 hours.

We assumed concentrations to be of the order of 10−5 M,

which necessitates the rescaling of binary reaction rates by

the same factor. The system of ODEs is solved for initial

conditions of 10−5 M for FGF, FGFR, Src and Grb2.

ODE models are particularly suitable for studying events

in a linear pathway mediated by sequential reactions. In-

deed, it is often possible, for small systems of ODEs aris-

ing from simple biochemical networks, to utilise matched

asymptotics and quasi-steady state approximations to de-

velop accurate analytical approximations (Murray 1989).

Our running example is sufficiently simple to be amenable

to such an approach, but we do not illustrate this as such

techniques are not extendable to large systems, which must

be addressed using numerical techniques.

In particular, if we allow parallel molecular state

changes, such as the formation of complexes of multiple

proteins, the complexity of the model significantly increases.

The number of different system-wide states that fully de-

scribe the interactions between different proteins increases
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exponentially with the number of participating molecules,

as does the number of equations.

While there exist algorithms capable of solving these

very large systems of ODEs arising from networks of bio-

chemical reactions, they are generally far too inefficient.

This is because the ODEs are usually very stiff, that is the

underlying reactions possess disparate timescales. Stability

requirements for the use of explicit ODE solvers with such

problems enforce an extremely small timestep and thus

an excessively prolonged runtime. Implicit schemes are

even more prohibitive in terms of runtime. An attempt to

circumvent such difficulties is illustrated in (Tokman 2006).

ODE models predict the time course of average val-

ues of concentrations or substance, but their applicability is

limited to cases with large numbers of molecules (on which

the continuous abstraction depends). As we demonstrate

in the next section, averages may be misleading for small

numbers of molecules. On the other hand, ODEs are capa-

ble of modelling complex dynamics, such as higher order

biochemical reactions, and are less dependent on the strong

assumptions of constant volume and temperature.

Many other techniques for analysing systems of ODEs

are also applicable in this domain. Bifurcation theory,

for example, studies the dramatic changes in the solution

behaviour when some parameters undergo a small change,

allowing a modeller to narrow significantly the search for key

dynamical behaviour in the parameter space. Also of interest

is the use of hybrid automata as a computational modelling

formalism for biological systems (Piazza et al. 2005).

Hybrid automata support a combination of continuous and

discrete system dynamics.

4.2 Simulation

For approaches based on discrete stochastic models, the

most common analysis technique is the use of discrete

event Monte Carlo simulation, which evolves the system

over time in order to estimate the quantities of concentrations

of specified complexes. This can be done directly from the

syntactic description of the model, and corresponds to the

algorithm of (Gillespie 1977) for population-based models.

A number of simulation tools exist, including BioSPI (Regev

and Shapiro 2004) and SPiM (Phillips and Cardelli 2005) for

the stochastic π-calculus, and PRISM simulator for PEPA

and PRISM models (Hinton et al. 2006).

Although useful information about a model can be

extracted from a single random run, to obtain more robust

estimates of the system behaviour over time it is necessary

to average over several simulation runs. These can then be

compared with experimental outcomes. We used BioSPI as

the simulation platform for the stochastic π-calculus model

of the FGF fragment. The BioSPI system inputs the π-

calculus code and performs simulations using the Gillespie

algorithm, starting from a given initial state. Figures 7(b) and



Kwiatkowska, Norman, Parker, Tymchyshyn, Heath, and Gaffney
Fgfr′0,0(t) =−bindfgf ·Fgf (t)·Fgfr0,0(t)+relfgf ·Fgfr Fgf 0,0(t)+dph1·Fgfr1,0(t)+dph1·Fgfr2,0(t) . . .

Fgfr′1,0(t) =−bindfgf ·Fgf (t)·Fgfr1,0(t)+relfgf ·Fgfr Fgf 1,0(t)−dph1·Fgfr1,0(t)
−bindsrc·Src(t)·Fgfr1,0(t)+relsrc·Fgfr2,0(t) . . .

Fgfr′0,1(t) =−bindfgf ·Fgf (t)·Fgfr0,1(t)+relfgf ·Fgfr Fgf 0,1(t)+dph1·Fgfr1,1(t)+dph1·Fgfr2,1(t) . . .

Fgfr′1,1(t) =−bindfgf ·Fgf (t)·Fgfr1,1(t)+relfgf ·Fgfr Fgf 1,1(t)−dph1·Fgfr1,1(t)
−bindsrc·Src(t)·Fgfr1,1(t)+relsrc·Fgfr2,1(t) . . .

Fgfr′2,0(t) =−bindfgf ·Fgf (t)·Fgfr2,0(t)+bindsrc·Src(t)·Fgfr1,0(t)+relfgf ·Fgfr Fgf 2,0(t)− relsrc·Fgfr2,0(t)
−reloc·Fgfr Fgf 2,0(t)−dph1·Fgfr Fgf 2,0(t) . . .

Fgfr′0,2(t) =−bindfgf ·Fgf (t)·Fgfr0,2(t)+relfgf ·Fgfr Fgf 0,2(t)+dph1·Fgfr2,2(t)+dph1·Fgfr1,2(t) . . .

Fgfr′2,2(t) =−bindfgf ·Fgf (t)·Fgfr2,2(t)+relfgf ·Fgfr Fgf 2,2(t)− relsrc·Fgfr2,2(t)− reloc·Fgfr2,2(t)
−dph1·Fgfr2,2(t)+bindsrc·Src(t)·Fgfr1,2(t) . . .

Fgfr′2,1(t) =−bindfgf ·Fgf (t)·Fgfr2,1(t)+bindsrc·Src(t)Fgfr Fgf 1,1(t)+relfgf ·Fgfr Fgf 2,1(t)− relsrc·Fgfr2,1(t)
−reloc·Fgfr2,1(t)−dph1·Fgfr2,1(t) . . .

Fgfr′1,2(t) =−bindfgf ·Fgf (t)·Fgfr1,2(t)+relsrc·Fgfr Fgf 2,2(t)+relfgf ·Fgfr Fgf 1,2(t)−dph1·Fgfr1,2(t)
−bindsrc·Src(t)·Fgfr1,2(t) . . .

In the terms Fgfrres1 ,res2
and Fgfr Fgf res1 ,res2

the components res1 and res2 correspond to two independent

residues of the protein: 0 (unphosphorylated), 1 (phosphorylated) and 2 (bound to Src or Grb2).

Figure 6: Fragment of the Automatically Generated ODEs
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(b) BioSPI (1 run)
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(c) BioSPI (10 runs)
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(d) PRISM

Figure 7: Results of Analysis of the Example: Concentration/Quantity of Two Forms of FGFR over Time
7(c) show the results generated for the amount of relocated

FGFR and Grb2 bound to FGFR over a time period of 4

hours, both for a single simulation run and averaged over

10 runs. In each case, we assume an initial population of

100 FGF, FGFR, Src and Grb2 molecules.

In the model for the running example above, Src-

mediated endocytic internalization of FGFR was presumed

to attenuate signalling by relocating and degrading receptor

complex. Recent evidence suggests that FGF-stimulated

signalling can be amplified by internalization (Ware et al.

1997, Frame 2004). Src can alter cell structure, in particular

the actin cytoskeleton, resulting in changes of intracellular

trafficking of Src and FGFR. Src might positively regu-

late FGFR signalling by recruiting non-active FGFR to the

membrane. This can be modelled by adding the following

schematic reaction to the model:

FGFR : Src −→ FGFR : Src+FGFR+Src

and adapting the π-calculus model appropriately. We change

the initial amount of Src from 100 to 10 molecules in the

π-calculus model and from concentration 10−5 M to 10−6

M in the ODE model (all other initial conditions remain the

same as before). Figure 8 shows plots of the amount of Grb2
1671
bound to FGFR. In this case, the ODE result disagrees with

averaged simulation runs from the π-calculus model. This

is because the stochastic approach is more accurate when

the number of molecules is small and the behaviour of the

reaction system becomes non-continuous. The behaviour

of the ODE model differs because Src cannot be totally

degraded (the degradation is balanced by the formation of

new Src), whereas in the stochastic model the random walk

of Src, which starts at 10, can easily lead to 0.
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Figure 8: An Extended Example Demonstrating the Differ-

ence between ODE and Stochastic Modelling Results

Monte Carlo simulation techniques can be implemented

efficiently. However, it is well known that the number of

runs that need to be generated is quadratic in the inverse

of the desired accuracy. Thus, obtaining accurate approxi-
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mations can be costly. In particular, this is unavoidable if

the quantities concerned are very small. In systems with

considerably differing timescales, which is the case in bio-

chemical networks, long-run average properties cannot be

obtained with simulation. Alternative algorithms, e.g., as

supported by StochSim (Novère and Shimizu 2001), can

simulate individual molecules and their spatial arrangement.

4.3 Verification

For discrete-state stochastic models, an alternative to Monte

Carlo simulation is formal verification, and in particular, in

this context, probabilistic model checking. This approach

proceeds by first building a representation of the underlying

continuous-time Markov chain, usually in some compact

form, followed by exhaustive exploration of the paths of

the system in order to produce answers to quantitative

temporal queries expressible in temporal logic. Note that

this differs from simulation approaches, which can generate

system trajectories from the syntax of model description.

The properties include the probability of an event, transient

probability of an event (i.e., at a particular time instant),

long-run probability, or expectation.

Probabilistic model checking tools, such as PRISM,

compute values for these quantitative properties using nu-

merical solution algorithms, typically based on iterative

methods. Usually computation reduces to the problem of

solving a system of linear equations, for which well-known

efficient iterative methods such as Gauss-Seidel exist. How-

ever for transient probabilities, an iterative method known

as uniformisation is used, which is based on discretisation.

For more information see, e.g., Rutten et al. (2004).

In Figure 7(d) we show, similarly to the previous two

sections, experimental results for the amount of relocated

FGFR and Grb2 bound to FGFR. Here, the results have

been generated with PRISM for the case when there is one

molecule of each species, and hence we have plotted the

probability of FGFR being relocated and Grb2 being bound.

The main obstacle associated with probabilistic model

checking (and formal verification in general) is the state-

space explosion, i.e., that the parallel composition of N

components (molecules) leads to systems whose state space

is exponential in N. State-of-the-art techniques developed in

the area enable the analysis of systems with billions of states.

These include symbolic methods, using sophisticated data

structures based on binary decision diagrams (BDDs) and

techniques such as symmetry reduction (Kwiatkowska et al.

2006), which in the biological setting actually corresponds

to employing the population based approach, as well as

using an abstract notion of quantities (Calder et al. 2006b).

Returning to our running example, the state space ex-

plosion problem can be seen when increasing the number

of molecules of each type; for example, increasing this

number from 1 to 5 leads to an increase in the state space
1672
from 22 to 4,568,094. On the other hand, using symmetry

reduction or employing the population based approach, we

have, for the case of 5 molecules of each type, a reduction

in the state space from 4,568,094 to 63,756.

Figure 9 presents further results obtained with PRISM:

both the expected number of reactions of a certain type and

the expected time a complex is present by time T .
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Figure 9: Further PRISM Results

Below we include a number of long-run properties

analysed using probabilistic model checking with PRISM.

• The probability that FGF, Src or Grb2 is free when

FGFR degrades equals 4.0e-7, 0 and 0.50660 re-

spectively. The probability for Src is 0 because

Src must be bound for FGFR to degrade. The val-

ues for FGF and Grb2 are justified as FGF binds

quickly and is released slowly, whereas the binding

and release of Grb2 happens at the same rate.

• The expected number of phosphorylations of type

1 and 2 before FGFR degrades equal 92.09 and

91.84. The expected number is higher for type 1

because type 1 must occur for FGFR to degrade.

• The expected time until FGFR degrades is 30.53

minutes and the expected time that FGF, Src or Grb2

spend bound to FGFR before degradation equals

30.53, 15.00 and 15.04 minutes respectively. This

shows that FGF is bound for most of the time that

FGFR is present and can be attributed to the fact that

FGF binds quickly and is released slowly. Src and

Grb2 spend roughly half the time bound because

their complexation and decomplexation rates are

the same. Grb2 is bound for slightly longer than

Src because, the binding of Src causes degradation.

We demonstrate further quantitative properties that can be

automatically verified using PRISM with the help of the

full FGF pathway studied in (Heath et al. 2006), see also

(PRISM 2006). The full pathway additionally includes the

following elements: FRS2, Plc, Spry, Sos, Cbl and Shp2.

We were able to verify, amongst others:

• “The expected time Grb2 spends bound to FRS2

before either degradation or relocation occurs.”

• “The expected number of times Grb2 binds to FRS2

before either degradation or relocation occurs.”
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• “The probability that each possible cause of degra-

dation/relocation occurs first.”

For illustration, the graph in Figure 10 shows the amount

of Grb2 bound to FRS2 (not included in the running ex-

ample). The plots show the result of our in silico genetics

experimentation, that is, how the variation in quantity is

affected by the removal of certain key components.
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Figure 10: The Variation in the Amount of Grb2 Bound to

FRS2 in the Full FGF Pathway Model

As illustrated above, automatic verification techniques

can greatly enhance the range of analyses possible for bio-

chemical networks. Verification is based on an exploration

of the full model, and is therefore able to inspect the

temporal relationships between events in fine detail, and in

particular detect ‘corner cases’ such as unwanted deadlocks.

Related work of interest in this area is a technique from

the tool Simpathica (Antoniotti et al. 2003) which evalu-

ates temporal logic queries against a set of system traces

obtained through simulation. For quantitative verification,

probabilistic model checking is, based on the quality of

the data provided, (numerically) exact, as opposed to sim-

ulation which produces estimates, and can automatically

identify scenarios that yield best/worst case answers. Note

that discrete quantities (such as expected bindings) cannot

be obtained with ODE models. However, the size of the

resulting models is at present a limitation on applicability

of automatic verification techniques.

5 CONCLUSIONS

In this paper we gave an overview of the ODE, simulation

and verification approaches to the analysis of biochemi-

cal reaction networks. Such networks can be described

in SBML, and the corresponding ODE or discrete-state

models generated automatically, subject to certain restric-

tions. The ODE models are continuous and deterministic

with respect to average concentrations, and while this ad-

mits complex dynamics and a broad range of solvers, the

approach cannot handle small numbers of molecules and

discrete quantities such as expected number of bindings.

Discrete event simulation can be applied to generate time

trajectories of approximate reactant quantities directly from

their syntactic representation. This method is inefficient if

the quantities are very small, and not feasible for long-run
167
averages, though, on the other hand, it is easy to parallelise.

Automatic verification techniques aim to produce a detailed

analysis of the causal and temporal relationships between

events in the model, which necessitates the construction of

the full model and its systematic exploration. This approach

supports a wide range of qualitative and quantitative tempo-

ral queries, is exact and can produce best/worst case answers

and the corresponding scenarios. However, Monte Carlo

simulation and ODEs can tackle a larger class of models.

The size of the resulting models remains the main limi-

tation of the automatic verification approaches, motivating

the need for research into compositional reasoning.
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