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ABSTRACT

Pathway Logic is a step towards a vision of symbolic systems
biology. It is an approach to modeling cellular processes
based on formal methods. In particular, formal executable
models of processes such as signal transduction, metabolic
pathways, and immune system cell-cell signaling are de-
veloped using the rewriting logic language Maude and a
variety of formal tools are used to query these models. An
important objective of Pathway Logic is to reflect the ways
that biologists think about problems using informal models,
and to provide bench biologists with tools for computing
with and analyzing these models that are natural. In this
paper we describe the Pathway Logic approach to the mod-
eling and analysis of signal transduction, and the use of the
Pathway Logic Assistant tool to browse and query these
models. The Rac1 signaling pathway is used to illustrate
the concepts.

1 SYMBOLIC SYSTEMS BIOLOGY

Biological processes are complex. They exhibit dynamics
with a huge range of timescales—microseconds to years.
The spatial scales cover 12 orders of magnitude—metabolite
to single protein to cell to organ to whole organism. Oceans
of experimental biological data are being generated. How
can we use this data to develop better models? Important
intuitions are captured in mental models that biologists build
of biological processes and the cartoons they draw. The trou-
ble is that these models are not amenable to computational
analysis.

Symbolic systems biology is the qualitative and quan-
titative study of biological processes as integrated systems
rather than as isolated parts. Our initial goals for sym-
bolic systems biology include: modeling causal networks
of biomolecular interactions in a logical framework at mul-
tiple scales; developing formal models that are as close as
possible to domain experts (biologists) mental models; being
able to compute with and analyze these complex networks.
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The latter includes techniques for abstracting and refin-
ing the logical models; using simulation and deduction to
compute or check postulated properties; and make testable
predictions about possible outcomes, using experimental
results to update the models.

There are many challenges in developing symbolic sys-
tems models. One challenge is choosing the right abstrac-
tions. Biological networks (metabolic, protein, or regulatory,
for example) are large and diverse. It is important to balance
computational complexity against model fidelity and to be
able to move between models of different levels of detail,
using different formalisms in meaningful ways. Biological
networks combine to produce high levels of physiological
organization, for example, circadian clock subnetworks are
integrated with metabolic, survival, and growth subnetworks.
A second challenge is to be able to compose different views
or models of different components into integrated system
models.

Pathway Logic (Eker et al. 2002, Eker et al. 2002,
Talcott et al. 2004) is one piece of a symbolic sys-
tems approach to modeling biological processes. It is
an approach to the modeling and analysis of molecular
and cellular processes based on rewriting logic. Pathway
Logic (PL) models reflect the ways that biologists think
about problems using informal models. They are curated
from the literature, and written and analyzed using Maude
(<http://maude.cs.uiuc.edu>), a rewriting-logic-
based formalism. A Pathway Logic knowledge base includes
data types representing cellular components such as pro-
teins, small molecules, complexes, compartments/locations
protein state, and post-translational modifications. Modi-
fications can be abstract, just specifying being activated,
bound, or phosphorylated, or more specific, for example,
phosphorylation at a particular site. Collections of entities,
treated as ‘liquid’ mixtures, are represented as multisets (un-
ordered collections). Rewrite rules describe the behavior of
proteins and other components depending on modification
state and biological context. Each rule represents a step in a
biological process such as metabolism or intra/inter-cellular
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signaling. A specific model is assembled by specifying an
initial state (called a dish): the cells, their components, and
entities such as ligands in the supernatant.

The Pathway Logic Assistant (Talcott and Dill 2005)
provides an interactive visual representation of PL models.
Using the Pathway Logic Assistant one can

• display the network of signaling reactions for a
specified model;

• formulate and submit queries to find pathways, for
example, activating one protein without activating a
second protein, or exhibiting a phenotype signature
such as apoptosis;

• compare two pathways;
• find single or double knockouts—individual or pairs

of proteins whose omission prevents reaching a
specified state;

• compute and display subnets for which given pro-
teins are critical; and

• map gene expression data onto signaling networks.

The remainder of the paper is organized as follows. §2
provides a brief overview of other work in formally based
symbolic approaches to modeling cellular processes. An
introduction to rewriting logic and Maude is given in §3.
The basic ideas of Pathway Logic are presented in §4, and
illustrated with fragments from a model of Rac1 activation.
Use of the Pathway Logic Assistant tool to browse and
query models is discussed in §5. The paper concludes with
a discussion of future directions in §6.

2 SYMBOLIC MODELING OF CELLULAR
PROCESSES

Symbolic/logical models allow one to represent partial infor-
mation and to model and analyze systems at multiple levels
of detail, depending on information available and questions
to be studied. Such models are based on formalisms that
provide language for representing system states and mech-
anisms of change such as reactions, and tools for analysis
based on computational rules or logical inference. Symbolic
models can be used for simulation of system behavior. In
addition properties of processes can be stated in associ-
ated logical languages and checked using tools for formal
analysis.

A variety of formalisms have been used to develop
symbolic models of biological systems, including Petri nets
(Peterson 1981, Goss and Peccoud 1998, Oliveira et al.
2003), the pi-calculus (Milner 1989, Regev et al. 2001),
stochastic variants (Priami et al. 2001); stochastic logics
and associated model checkers (Calder et al. 2005, Hinton
et al. 2006); membrane calculi (Regev et al. 2003, Nielson
et al. 2003, L.Cardelli 2004); statecharts (Harel 1987,
Efroni et al. 2003), life sequence charts (Kam et al. 2003);
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and rule-based systems including P-systems (Prez-Jimnez
and Romero-Campero 2005); BioCham (Fages et al. 2004,
Chabrier-Rivier et al. 2004); and Pathway Logic (Eker
et al. 2002, Eker et al. 2002, Talcott et al. 2004). Each
of these formalisms was initially developed to model and
analyze computer systems with multiple processes executing
concurrently.

There are many variants of the Petri net formalism and
a variety of languages and tools for specification and anal-
ysis of systems using Petri nets. Petri nets have a graphical
representation that corresponds naturally to conventional
representations of biochemical networks. They have been
used to model metabolic pathways and simple genetic net-
works (e.g., see Hofestädt 1994, Reddy et al. 1996, Goss
and Peccoud 1998, Küffner et al. 2000, Matsuno et al. 2000,
Oliveira et al. 2001, Genrich et al. 2001, Oliveira et al.
2003). These studies have been largely concerned with dy-
namic or kinetic models of biochemistry. In Zevedei-Oancea
and Schuster (2003) a more abstract and qualitative view is
taken, mapping biochemical concepts such as stoichiometry,
flux modes, and conservation relations to well-known Petri
net theory concepts.

A pi-calculus model for the receptor tyrosine
kinase/mitogen-activated protein kinase (RTK/-MAPK) sig-
nal transduction pathway is presented in Regev et al. (2001).
BioSPI, a tool implementing a stochastic variant of the
pi-calculus, has been used to simulate both the time and
probability of biochemical reactions (Priami et al. 2001).

In Calder et al. (2005) a continuous stochastic logic
and the probabilistic symbolic model checker, PRISM, is
used to express and check a variety of temporal queries for
both transient behaviors and steady state behaviors. Pro-
teins are modeled as synchronous concurrent processes, and
concentrations are modeled by discrete, abstract quantities.

BioAmbients (Regev et al. 2003), an adaptation of
the Ambients formalism for mobile computations has been
developed to model dynamics of biological compartments.
BioAmbient type models can be simulated using an extension
of the BioSPI tool. A technique for analysis of control and
information flow in programs has been applied to analysis
of BioAmbient models (Nielson et al. 2003). This can be
used, for example, to show that according to the model a
given protein could never appear in a given compartment,
or a given complex could never form.

Statecharts naturally express compartmentalization and
hierarchical processes as well as flow of control among
subprocesses. They have been used to model T-cell acti-
vation (Kam et al. 2001, Efroni et al. 2003). Although
Statecharts is a mature technology with a number of associ-
ated analysis and verification tools, it does not appear that
these have been applied to the T-cell model. Life Sequence
Charts (Damm and Harel 2001) are an extension of the Mes-
sage Sequence Charts modeling notation for system design.
This approach has been used to model the process of cell
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fate acquisition during C.elegans vulval development (Kam
et al. 2003).

P-systems is a multiset rewriting formalism that provides
a built in notion of location. A continuous variant of P-
systems is used in Prez-Jimnez and Romero-Campero (2005)
to model intra-cellular signaling. Locations are used to
represent compartmental structure of a cell. Abstract objects
represent proteins and small molecules, with different objects
used to represent different modifications / states of the same
protein. The underlying relation between a protein and its
modifications is not made explicit. A system state specifies
the quantity of each object in each location. A rate function
associates to each rule a function from system states to real
numbers, representing the rate of the reaction in that state.
This determines how a system state evolves over time. Such
models can be used to predict concentration of objects, for
example phosphorylated Erk, over time by a discrete step
approximation method.

A simple formalism for representing interaction net-
works using an algebraic rule-based approach very similar
to the Pathway Logic approach is presented in (Fages et al.
2004, Chabrier-Rivier et al. 2004). The language has three
interpretations: a qualitative binary interpretation much like
the Pathway Logic models; a quantitative interpretation in
which concentrations and reaction rates are used; and a
stochastic interpretation. Queries are expressed in a formal
logic called Computation Tree Logic (CTL) and its exten-
sions to model time and quantities. CTL queries can express
reachability (find pathways having desired properties), sta-
bility, and periodicity. Techniques for learning new rules
to achieve a desired system specification are described in
(Calzone et al. 2005).

BioSigNet (BSN) (Baral et al. 2004) is a knowledge-
based system for representing and reasoning about signal-
ing networks. A BSN knowledge base encodes knowledge
about a signal network, including logical statements based
on symbols termed fluents and actions. Fluents represent
the various properties of the cell and its components while
actions denote biological processes (e.g., biochemical re-
actions, protein interactions) or external interventions. The
logical statements describe the impact of these actions on
the fluents, how actions can be triggered or inhibited inside
the cell. A BSN knowledge base is queried using a tempo-
ral logic language over propositions expressing presence or
absence of particular fluents. Three classes of queries are
identified: prediction (can a state be reached); explanation
(find initial conditions that lead to a specified condition);
and planning (determining when an action should occur in
order to achieve a desired result). In Shankland et al. (2005)
BSN is used to model the Erk signaling network.
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3 REWRITING LOGIC AND MAUDE

Rewriting logic (Meseguer 1992) is a logical formalism
that is based on two simple ideas: states of a system are
represented as elements of an algebraic data type; and the
behavior of a system is given by local transitions between
states described by rewrite rules. A rewrite rule has the
form t ⇒ t′ if c where t and t′ are patterns (terms possibily
containing place holder variables) and c is a condition (a
boolean term). Such a rule applies to a system in state s
if t can be matched to a part of s by supplying the right
values for the place holders, and if the condition c holds
when supplied with those values. In this case the rule can
be applied by replacing the part of s matching t by t′ using
the matching values for the place holders in t′. The process
of application of rewrite rules generates computations (also
thought of as deductions). In the case of biological processes
these computations correspond to pathways.

Maude (<http://maude.cs.uiuc.edu>) is a
language and tool based on rewriting logic. Maude provides
a high performance rewriting engine featuring matching
modulo associativity, commutativity, and identity axioms;
and search and model-checking capabilities. Thus, given a
specification S of a concurrent systems, one can execute S
to find one possible behavior; use search to see if a state
meeting a given condition can be reached; or model-check
S to see if a temporal property is satisfied, and if not to see
a computation that is a counter example.

To introduce Maude notation and give some intuition
about how concurrent systems are specified in Maude
we consder a specification of a simple Vending Ma-
chine. The specification is given in a module named
VENDING-MACHINE.

mod VENDING-MACHINE is
sorts Coin Item Marking .
subsorts Coin Item < Marking .
op null : -> Marking . *** empty marking
op _ _ : Marking Marking -> Marking

[assoc comm id: null] .
ops $ q : -> Coin . *** dollar, quarter
ops a c : -> Item . *** apple, cake
rl[buy-c]: $ => c .
rl[buy-a]: $ => a q .
rl[change]: q q q q => $ .

endm

First several sorts (think sets or data types) are declared.
The basic sorts are Coin and Item. They represent what
you put in and get out of the machine. The sort Marking
consists of multisets of items and coins. This is specified by
the subsort (subset) declarations saying that coins and items
are (singleton) markings; and the declaration of the union
operator (_ _). The blanks indicate operator argument
positions, and union of two markings is represented by
8
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placing them side by side, just as one represents a string
of characters. The operator attributes assoc, comm, and
id:null declare it to be associative and commutative with
identity null, the empty marking. (Text following *** is
a comment.) After defining the data types to be used, some
specific constants are declared: $ (dollar) and q (quarter)
of sort Coin; and a (apple) and c (cake) of sort Item (the
keyword ops is used to when declaring multiple constants
of the same sort). Finally there are three rewrite rules
specifying the vending machine behavior. The rule labeled
buy-c says that if you have a dollar you can by a cake.
More formally, any marking containing an occurrence of $
can be rewritten to one in which the $ is replaced by a c.
Similarly the rule labeled buy-a says that with a dollar you
can also get an apple and a quarter change. The rule labeled
change says that when four quarters have accumulated they
can be changed into a dollar. Note that if a dollar is present
in a marking, there are two ways that the marking could be
rewritten, each with a different outcome. If four quarters
are also present, the change rule could be applied before
or after one of the buy rules without affecting the eventual
outcome.

To find one way to use three dollars, ask Maude to
rewrite, and a quarter, an apple, and two cakes are the result.

Maude> rew $ $ $ .
result Marking: q a c c

Although there are several ways to rewrite three dollars,
the Maude rewrite command uses a specific strategy for
choosing rules to apply, and in this case chose to apply
buy-c twice and buy-a once.

To discover more possibilites Maude can be asked to
search for all ways of rewriting three dollars, such that the
final state matches some pattern. For example, we can find
all ways of getting at least two apples using the pattern

a a M:Marking

that is matched by any state that has at least two as.

Maude> search $ $ $ =>! a a M:Marking .
Solution 1 (state 8)
M:Marking --> q q c
Solution 2 (state 9)
M:Marking --> q q q a

There are two ways this can be done. In one solution the
remainder of the state consists of a cake and two quarters,
(indicated by M:Marking -> q q c in Solution 1). In the
other solution, there is a third apple and three quarters.

We can ask Maude to show us a path (list of rules fired)
corresponding to one of these solutions using the function
findPath and the property nApples(2) which holds just
if the state matches the pattern a a M:Marking.
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Maude> red findPath(vm($ $ $),nApples(2)) .
result SimplePath:

spath(’buy-c ’buy-a ’buy-a, vm(q q a a c))

The function findPath calls the Maude model-checker with
the assertion that starting in a state with three dollars there is
no way to apply to rules to reach a state with two apples. The
model-checker looks at all possible sequences of rewrites
(paths) and for each one checks the given assertion. If it
finds a path for which the assertion fails it returns that path
as a counter example to the given assertion. In the example
above the path found applies buy-c then applies buy-a

twice. If no counterexample is found, the model-checker
returns the boolean true.

4 PATHWAY LOGIC BASICS

Pathway Logic models are structured in four layers: (1) sorts
and operations, (2) components, (3) rules, and (4) dishes and
queries. The sorts and operations layer declares the main
sorts and subsort relations, the logical analog to ontology.
The sorts of entities include Chemical, Protein, Complex,
Location (cellular compartments), and Cell. These are all
subsorts of the sort, Soup, that represents ‘liquid’ mixtures,
as multisets (unordered collections) of entities. The sort
Modification is used to represent post-translational protein
modifications. They can be abstract, to specify that a protein
is activated, bound, or phosphorylated, or more specific, for
example, phosphorylation at a particular site. Modifications
are applied using the operator [ - ]. For example the term
[EgfR - act] represents the epidermal growth factor (Egf)
receptor in an activated state and [Rac1 - GTP] represents
Rac1 in its “on” state (loaded with GTP).

A cell state is represented by a term of the form

[cellType | locs]

where cellType specifies the type of cell, for example
Macrophage, and locs represents the contents of a cell
organized by cellular location. Each location is represented
by a term of the form { locName | components } where
locName identifies the location, for example CLm for cell
membrane, and components stands for the mixture of
proteins and other compounds in that location.

The components layer specifies particular entities (pro-
teins, genes, chemicals) and introduces additional sorts for
grouping proteins in families. For example ErbB1L is a
subsort of Protein. This is the sort of ErbB1 ligands whose
elements include the epidermal growth factor Egf. The rules
layer contains rewrite rules specifying individual reaction
steps. In the case of signal transduction, rules represent
processes such as activation, phosphorylation, complex for-
mation, or translocation. The sorts and operations, compo-
nents, and rules layers make up a Pathway Logic knowledge
base. The dishes and queries layer specifies initial states,
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relative to which queries can be answered, and properties
of states to be used in formulating queries. Initial states are
in silico Petri dishes containing a cell, with its components,
and ligands of interest in the supernatant.

Below we give a brief overview of the representation in
Maude of signal transduction processes, illustrated using a
model of Rac1 activation. This model and several others are
available as part of the Pathway Logic Demo available from
the Pathway Logic web site <http://pl.csl.sri.
com/> along with papers, tutorial material and download
of the Pathway Logic Assistant tool.

4.1 Modeling Activation of Rac1 in Pathway Logic

Rac1 is a small signaling protein of the Ras superfamily. It
functions as a protein switch that is “on” when it binds the
nucleotide triphosphate GTP, and “off” when it binds the
hydrolysis product GDP. The Pathway Logic model of Rac1
activation was curated using Schmidt and Hall (2002) and
many other references (cited as metadata associated with
individual rules). In the following we show an initial state
for study of Rac1 activation and two example rules. We
then briefly sketch some of the ways one can compute with
the model. The initial state (called rac1demo) is a dish
PD( ... ) with a single cell, of type Fibroblast, and two
ligands in the supernatant, Egf and FN, represented by the
following term.

rac1demo = PD(Egf FN [Fibroblast |
{CLo | empty}
{CLm | EgfR Ia5Ib1 PIP2}
{CLi | [Hras - GDP] [Rac1 - GDP]

[Cdc42 - GDP] Src}
{CLc | [Actin - poly] [Ksr1 - phos]

1433x1 1433x2 C3g Cas Cbl Crk
Dock Abi1 Elmo Eps8 Erk Fak
Gab1 Grb2 Mek Pak Pax Pdk1 Pi3k
PP2a Raf1 Rsk Shp2 Sos1 Vav2 }]) .

The location just outside of the cell membrane (tag CLo)
is empty. The cell membrane (tag CLm) has an Egf recep-
tor (EgfR), an integrin, Ia5Ib1, that binds to FN, and the
chemical PIP2. The inside of the cell membrane (tag CLi)
contains Rac1, Hras and Cdc42 loaded with GDP ( [Rac1
- GDP], [Hras - GDP],[Cdc42 - GDP]) and Src. Thus
initiallyl, Rac1 in its “off” state.

The cell cytoplasm (location tag CLc) contains ad-
ditional proteins used in one or more of the activating
pathways.

One way to activate Rac1 begins with the activation of
the Egf receptor due to the presence of the Egf ligand. The
following rule represents this signaling step.

rl[1.EgfR.on]:
?ErbB1L:ErbB1L
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[CellType:CellType | ct
{CLo | clo}
{CLm | clm EgfR} ]
=>
[CellType:CellType | ct
{CLo | clo [?ErbB1L:ErbB1L - bound]}
{CLm | clm [EgfR - act]} ] .

The symbol ?ErbB1L:ErbB1L is a variable ranging over
the sort ErbB1L. The symbol ct is a variable standing for
the remaining locations of the cell, and the symbols clo and
clm are variables standing for the remaining components in
their respective locations. The rule matches the rac1demo

dish by binding the variable ?ErbB1L:ErbB1L to Egf, ct
to the locations tagged CLi and CLc, clo to empty, and
clm to Ia5Ib1 PIP2. Applying the rule replaces EgfR by
[EgfR - act] resulting in the dish

PD(Egf FN [Fibroblast |
{CLo | [Egf - bound]}
{CLm | [EgfR - act] Ia5Ib1 PIP2}
{CLi | [Hras - GDP] [Rac1 - GDP]

[Cdc42 - GDP] Src}
{CLc | [Actin - poly] [Ksr1 - phos]

1433x1 1433x2 C3g Cas Cbl Crk
Dock Abi1 Elmo Eps8 Erk Fak
Gab1 Grb2 Mek Pak Pax Pdk1 Pi3k
PP2a Raf1 Rsk Shp2 Sos1 Vav2 }]) .

The following is one of three rules characterizing conditions
for the Rac1 switch to be turned on.

rl[256.Rac1.on-3]:
{CLi | cli [Cas - act] [Crk - reloc]

[Dock - act] [Elmo - reloc]
[Rac1 - GDP]}

=>
{CLi | cli [Cas - act] [Crk - reloc]

[Dock - act] [Elmo - reloc]
[Rac1 - GTP]} .

This rule describes activation resulting from assembly of
Elmo and Crk (modifier reloc), with activated Cas, and
Dock at the cell membrane. Executing the rule replaces
[Rac1 - GDP] by [Rac1 - GTP], turning Rac1 on, and
leaves the remaining components unchanged.

As explained in §3, Maude provides several ways to
compute with or query a model. One can rewrite an initial
state, such as rac1Demo above, to see a possible final
state, or search for all states satisfying some predicate.
The main form of query used in PL is a goals-avoids
query. Goals and avoids are specified in terms of occurrence
properties satisfied when a particular protein occurs in a
given modification state and location. A pathway satisfies
a goals-avoids property if the final state satisfies each of
0
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the goals and no state along the pathway satisfies any of
the avoids.

As an example, to find a path activating Rac1 that
is stimulated by FN alone, we use a query consisting of
one goal and one avoid. The goal is the property that
Rac1 loaded with GTP is present in the location CLi, and
the property to be avoided is that Egf is present on the
outside of the cell, thus forcing the FN stimulus to be
selected. This query could be answered by directly asking
Maude, however the textual representation of cell states and
pathways quickly becomes difficult to use as the size of
a model grows, and an intuitive graphical representation
becomes increasingly important. In addition, it becomes
important to take advantage of the simple structure of PL
models when searching for paths and carrying out other
analyses. In the next section we show how the Pathway
Logic Assistant can be used to visualize a model as a
network of reaction rules, to browse the network, and to
specify and execute queries.

5 THE PATHWAY LOGIC ASSISTANT

The Pathway Logic Assistant (PLA) provides an interactive
graphical view of a PL knowledge base. Given a dish,
PLA generates a Petri net model. Petri nets have a natural
graphical representation, and additionally, there are very
efficient tools for analyzing the Petri net models generated
by PLA. Our Petri net models are a special case of Place-
Transition Nets given by a set of occurrences (places in
Petri net terminology) and a set of transitions (Stehr 2000).
Occurrences can be thought of as atomic propositions as-
serting that a protein (in a given state) or other component
occurs in a given compartment. For example Efg outside a
cell is represented by the occurrence <Egf, out> and Egfr
activated in the cell membrane is represented by <[EgfR

- act], CLm>. A system state is represented as a set of
occurrences (called a marking in Petri net terminology),
giving the propositions that are true. A transition is a pair
of sets of occurrences. A transition can fire if the state
contains the first set of occurrences. In which case the
first set of occurrences is replaced by the second set. PL
goal properties translate to Petri net properties expressed
as occurrences that must be present (places to be marked)
and avoids properties translate to occurrences that must not
appear (places not to be marked) in a computation. Paths
leading from an initial state to a state satisfying a set of
goals can be represented compactly as a Petri net consisting
of the transitions fired in the path, thus giving query results
a natural graphical representation. Execution of the path
net starting with the initial state, leads to a state satisfy-
ing the goals, and the net representation makes explicit the
dependency relations between transitions: some can fire
concurrently (order doesn’t matter), and some require the
output of other transitions to be enabled.
166
To generate a Petri net model given a PL knowledge base
and a dish, the first step is to find all rule instances that
could possibly be enabled by repeated rewriting starting
from that dish. (Actually, a super set is computed for
efficiency.) Then each rule instance is converted into a
Petri net transition which consists of the rule label and two
sets of occurrences, one corresponding to the lefthand side
of the rule and one corresponding to the righthand side.
In each case the occurrences are the location components
paired with their location name. For example the rule labeled
[1.EgfR.on] shown in §4 becomes the transition

pnTrans[1.EgfR.on]:
<Egf, out> <Egfr, CLm>
=>
<Egf - bound, CLo> <[Egfr - act], CLm> .

There is only one instance of this rule in the model generated
from the rac1Demo dish as there is only one ErbB1L ligand
in the dish.

Figure 1 shows a screen shot of the Petri net model
generated by PLA from the rac1Demo dish. Ovals are
occurrences, with initial occurrences darker. Rectangles are
transitions. Dashed arrows indicate an occurrence that is
both input and output. A magnified view of the portion in
the red rectangle is shown in the main view. The thumbnail
sketch in the upper right shows the full network. The
main frame shows a magnified version of the portion of the
network in the red rectangle. The view in the main frame
can be changed by dragging the red rectangle around in the
thumbnail frame. It can also be changed using the scroll
bars. The Finder in the lower right allows one to locate
occurrences and rules by name, and center the view on the
selected node. To make a query, goals and avoids can be
specified either by clicking on the occurrence and selecting
goal or avoid in the selection window that appears, or by
using the selection window directly. Once goals and avoids
have been specified the user can ask to see the relevant
subnet or to find a path. The relevant subnet contains all
of rules needed for any (minimal) pathway satisfying the
query, while the path is just the first path found by the
analysis tool. Figure 2 shows the path found in response to
the query in which the goal is activation of Rac1 (<[Rac1
- GTP], CLi>) and there are no avoids. This path uses
downstream elements stimulated by both the Egf and the
FN ligands.

In addition to generating subnets and pathways, two
subnets and/or pathways can be compared. For this, the two
networks are merged into one. Figure 3 shows the result
of comparing two other pathways found in the rac1Demo
model: one stimulated by Egf only (purple/darker color),
and one stimulated by FN only (blue-green/lighter color).
The common parts (Src and Rac1) are white. PLA can also
be asked to list the knockouts for a given goal (components
1
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Figure 1: Rac1 Activation Model as a Petri Net.
which if deleted prevent the goal from being reached). In
the case of Rac1, Src is the only single knockout.

The logic underlying the goals/avoids queries is a tem-
poral logic and in principle is it possible to formulate more
complex queries, for example expressing that a particular
element is a check-point, or that a particular activation state
is always eventually reachable. In Apolzan (2005) a study
was carried out in which Pathway Logic models were ex-
ported to the SAL language (Shankar 2000) and comparison
of the effectiveness of several model-checkers in answering
temporal logic queries was made. For the large models that
we are interested in querying, bounded model checking was
able to find counter-examples and thus to generate path-
ways, but the special purpose Petri net analysis seems to
scale much better, and the goals/avoids queries are easier
for the biologists to understand.

6 CONCLUSIONS

We have described the Pathway Logic approach to modeling
and analysis of signal transduction networks. The current
Pathway Logic knowledge base has more that fifteen hundred
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components and more than nine hundred curated reaction
rules. The current state of Pathway Logic is one step towards
the grander vision of symbolic systems biology.

The Pathway Logic Assistant uses several representa-
tions of reaction networks. Petri nets have been used for both
visualization and analysis. Special purpose formal notations
exist for representing molecular interactions and pathways.
For example the notation developed by Kitano for repre-
senting pathways (Kitano 2003a, Kitano 2003b), and the
notation developed by Kohn for representing (Kohn 1999,
Kohn 2001). The Kitano notation has existing tool support
(Cell Designer) that connects the graphical representation
to an underlying computational semantics. This could be
used as a graphical interface for curation in Pathway Logic.
An important feature of PLA is the ability to generate path-
ways as query results. In this case the ability to automate
the drawing of pathways is crucial. Automatic drawing of
computed pathways using the Kitano or Kohn notations is
a difficult problem, without good solutions currently.

Pathway Logic does not currently support representing
quantitative information such as reaction rates. The focus
has been on understanding static and dynamic structure of
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Figure 2: A Pathway Activating Rac1.
reaction networks as this is what the underlying formalism
is best suited for. In ongoing projects we are exploring ways
to combine other modeling techniques including stochastic
simulation and information theoretic analyses.

There are several future directions for development.
One is to scale to much bigger models. To make larger
models manageable, it will be necessary to develop algo-
rithms to collapse flat networks into hierarchical networks
where nodes in the hierarchy correspond to meaningful
signaling modules. In addition, developing property pre-
serving abstractions will be important to be able answer
queries against the more complex networks. Another di-
rection is to apply the basic approach to different types of
systems, such as metabolic networks, gene-regulation net-
works, or multi-cellular systems, and to integrate models of
different types of systems to develop a systems level view.
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