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ABSTRACT 

A large number of software packages are available to assist 
researchers in systems biology. In this paper, we describe 
the current state of the Systems Biology Workbench 
(SBW), a modular framework that connects modeling and 
analysis applications, enabling them to reuse each other’s 
capabilities. We describe how users and developers will 
perceive SBW and then focus on currently available SBW 
modules. The software, tutorial manual, and test models 
are freely available from the Computational and Systems 
Biology group at Keck Graduate Institute. Source code is 
available from SourceForge. The software is open source 
and licensed under BSD.  

1 INTRODUCTION 

The increasing popularity of systems biology (Kitano 
2005) brings with it a demand for computational modeling 
and analyzing tools to aid researchers. Many modeling and 
model-analysis applications have been written, and using 
the popular exchange format SBML (Hucka et al. 2003) 
most of these applications allow import/export of SBML 
models. Still, the process of exporting and importing mod-
els this way is rather cumbersome and disrupts the work-
flow of researchers. There are two possible solutions for 
this problem. The first would be to form an application that 
combines all the features a researcher would want. This of 
course would be hard to achieve and even harder to main-
tain. The alternative is to allow applications, that are spe-
cialized in different areas of computation, to communicate 
with each other.  

Instead of developing monolithic applications, we fo-
cused on a modular approach. We chose to focus on a plat-
form/language independent framework of loosely coupled 
applications: the Systems Biology Workbench (SBW) 
(Hucka et al. 2002). This allows newly developed applica-
tions to reuse functionality from existing applications, 
rather than re-implement them. For example, rather than 
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implementing a new simulator for a new project, we sim-
ply take advantage of an existing SBW-enabled one. 

An alternative approach has been taken by BioSPICE 
(Garvey et al. 2003). Here the approach is to “wrap” appli-
cations into Analyzer objects with specified input and out-
put behavior. These Analyzers can then be used within an 
IDE to create workflows between applications. While this 
approach works for applications that do not require user 
input at runtime, it does not work well for a modeling 
process. A modeling process requires more flexibility than 
a workflow can provide.  

1.1 Architecture 

The Systems Biology Workbench (SBW) is a resource-
sharing framework based on a broker architecture. SBW 
uses a message based system that employs binary format-
ted messages sent over TCP/IP (Sauro et al. 2003). This 
basic architecture was chosen with regard to performance, 
portability, simplicity, and language-neutrality. We also 
considered XML-RPC, Java RMI (Sun Microsystems 
2006), and CORBA (OMG 2006) but ultimately favored a 
simple peer-to-peer technique.  

Binding libraries, provided for most programming lan-
guages, allow applications to become SBW-enabled. This 
means that the application can make use of functionality 
provided by other SBW-enabled applications or provide 
functionality for other applications. The binding libraries 
are written to fit the natural pattern of the programming 
language of choice. SBW-enabled applications are called 
modules. Each module in turn will provide one or more 
services and each service will have one or more methods. 
Each method is defined by its unique signature and help 
string. Help strings are also available at the service and 
module level. Help strings provide a degree of internal 
documentation to the SBW interface and are useful in a 
number of situations (see SBW add-on). Services are also 
classified into categories, which allow the discovery of 
modules not only by name but also by functionality. Ex-
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ample categories include simulators (with various levels), 
SBML translators, or a simple analyzer category. The con-
vention is that every service belonging to a certain cate-
gory implements specific method signatures that allow the 
services to be exchanged at a later time.  

At the core of SBW stands the SBW Broker. The Bro-
ker negotiates communication between SBW modules. Its 
main function is to provide other modules with events such 
as the startup/shutdown of applications, a system shut-
down, or advertising newly registered modules. The Bro-
ker also allows the user to find SBW modules either by 
name or by category. While the broker is most often used 
to negotiate communications between local modules, it can 
also communicate with remote brokers. Furthermore, SBW 
allows all SBW modules to be available as Web Services 
(W3C 2006). This communication flow can be summarized 
as in Figure 1.  

 

 
 

Figure 1: SBW Communication Flow 
 

SBW can be used in a hosting environment where it 
provides analysis support for SBML models. This has been 
done by BioSPICE, BioUML (Kolpakov 2002), 
CellDesigner (Kitano et al. 2005), and JDesigner (Sauro et 
al. 2003). BioSPICE allows integrating SBW modules as 
analyzers into the generated workflow. A simpler way of 
integration has been done in CellDesigner and JDesigner 
by incorporating a SBW menu.  

As shown with PySCeS (Olivier, Rohwer, and 
Hofmeyr 2005) scripting can be a powerful tool for re-
searchers. We developed a set of scripts that allow SBW to 
be used in the Python interactive mode. Users will be noti-
fied of every module startup and are able to access all 
SBW modules from the shell. Similarly, users can access 
SBW via scripting from Matlab (Wellock et al. 2005).    

A more detailed description of the inner workings of 
SBW can be found in (Hucka et al. 2002) and (Sauro et al. 
2003).  
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2 SBW FROM A USER’S PERSPECTIVE 

A user of an SBW-enabled application will probably never 
perceive SBW working at all. For a user, SBW is a collec-
tion of loosely coupled applications, all of which support 
SBML. One example would be the use of an SBW-enabled 
model editor such as JDesigner, which is a program that 
allows the user to load or construct a biochemical model 
and then analyze the model. When loading a model created 
by another software tool, JDesigner will ask another SBW 
module to generate a layout for the loaded model. As 
JDesigner has no inherent simulation capabilities, it uses 
another SBW module to simulate the loaded model. Simi-
larly, if a user performs structural analysis on the model, 
JDesigner will acquire this information via SBW from 
Metatool (Pfeiffer et al. 1999).  

JDesigner (and CellDesigner) also feature an SBW 
menu. This menu is populated dynamically on startup and 
lists all SBW modules implementing the SBW analysis 
category. When the user selects a program from this menu, 
the SBW-enabled program is invoked, the model is passed 
to it, and the program performs further analysis on the 
model. There is a wide variety of modules available, such 
as bifurcation analysis, frequency analysis, (stochastic) 
simulation, and 3D Visualization.  

Because the SBW menu is shared between many ap-
plications, users now have a new option for moving be-
tween these applications. A user will work on an SBML 
model in one program, and by selecting another SBW 
module through the SBW menu, sends the model to the 
next program where the user can further analyze the model, 
and so forth. This “hopping” from program to program is 
rather different from the usual export/import scenario and 
allows users to efficiently move from tool to tool.  

3 SBW FROM A DEVELOPER'S PERSPECTIVE 

SBW is a modular framework that gives developers tools 
for basic modeling and analysis tasks such as interrogating 
models, simulating models, and analyzing models (such as 
structural or stoichiometry analysis). Therefore, the devel-
oper of a new software application can use these tools as a 
foundation and focus on novel tasks instead of re-inventing 
the wheel. It should be noted that the basic analysis tools 
are exchangeable, so that, for example, one simulator can 
easily be replaced by another one.  

Similarly, an existing application written in any sup-
ported programming language can be modified to interact 
with SBW with minimal programming overhead. This en-
ables other applications to use its functionality. 

3.1 Language Bindings 

Native SBW language bindings are available for the most 
common programming languages such as C/C++, Java, 
8
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.NET languages, Python, Delphi/Kylix, and Matlab. Other 
languages, such as FORTRAN, would use the C libraries 
to access SBW. Other languages can be supported; the only 
requirement is that the programming language provides 
string handling routines and IP socket access.  

The language bindings encapsulate all communication 
with SBW making remote communication to another mod-
ule as simple as any other method call. A default method 
call will result in the application blocking until a result 
comes back. Alternatively, asynchronous methods can be 
implemented. Should a call to another SBW module result 
in failure, exceptions will be thrown in a language depend-
ent way. In other words, for languages that support excep-
tion handling (such as C++, Java, or the .NET languages) 
the caller will receive a proper exception, otherwise error 
flags have to be checked (for older languages such as C or 
FORTRAN).  

It should be noted that the binding libraries only sup-
port simple data types such as bytes, characters, complex 
numbers, floating point numbers, and strings. Furthermore, 
one- and two-dimensional regular arrays of these types are 
supported. More complex data types can be constructed by 
the use of lists. Lists are recursively defined and can there-
fore contain any combination of other types. With this set 
of types, any other data type can be represented.  

3.2 SBW Visual Studio Add-on 

In order to call a method with SBW, the following four 
steps must be executed: First, the chosen SBW module 
must be selected; second, the SBW Service containing the 
method has to be found; third, the method to execute needs 
to be selected; finally, a call has to be made. This proce-
dure is approximately the same for all program languages. 
For example, these steps could be written in C# as follows:  
 

// get module instance of a "simulator" 

Module oSimulator = new Module("simulator"); 

 

// obtain simulation service by category  

// lookup 

Service oSimService = oSimulator. 

findServicesByCategory("simService"); 

 

// get a method handle 

Method oSimulate = oSimService. 

getMethod("double[][] simulate()"); 

 

// finally call the method 

oSimulate.Call(); 

 
The code shown above must be repeated, at least in part, 
for every method that an application wishes to use. For any 
given module there may be tens or possibly hundreds of 
method calls.  As a result we have devised an add-on to the 
Microsoft Visual Studio programming environment 
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(Microsoft 2006b) that allows any SBW module to be 
automatically wrapped ready for use. The add-on can gen-
erate interface code for Visual Basic (.NET), C# (.NET), 
and C++ (unmanaged). The developer simply selects the 
SBW module and service to be wrapped, along with sev-
eral options, and a wrapper file will be created and added 
to the current project. The programming language will be 
detected from the current project. Possible options that 
modify the behavior of the wrapper include optimization 
options that influence when and how the methods are ac-
quired and an option to automatically restart an applica-
tion, in case it was closed by someone else and is still 
needed.  

Once this is completed, the SBW module will look 
like any other static class in the current project. For the ex-
ample above, this means we can replace the four lines of 
code with a single call:  
 

Sim.simulate(); 

 
Furthermore, as soon as the model service name is 

typed in the Visual Studio editor (“Sim” in the example 
above), the developer will be presented with a complete list 
of available methods, including help strings that explain 
the purpose of the method.  

3.3 SBW Web Service Interface 

Another useful tool for developers is the SBW Web Ser-
vice Interface. The Web Service Interface allows other 
SBW modules to be wrapped into a Web Service (W3C 
2006). Once an SBW module and service are selected, the 
generator will wrap every method in this service into a 
proper web method signature. Method and service help 
strings are used to populate web method help fields. In this 
way they appear in the WSDL as 
wsdl:documentation in the corresponding 
wsdl:operation. Special care has to be given to the 
data types. All simple types have direct correspondents in 
web methods. The same holds for one-dimensional arrays. 
Two-dimensional regular arrays have to be represented as 
jagged arrays. Finally, the SBW lists are represented as 
“ArrayOfAnyType”.  

The web services created in this way can be hosted 
with Microsoft’s IIS (Microsoft 2006a) (provided 
ASP.NET is available) or with Mono’s XSP (Mono-Project 
2006) implementation (which can also be integrated into 
Apache). This allows the hosting on all supported plat-
forms (WIN32, Linux, and OS X) and so presents a very 
easy way to make legacy applications (e.g., applications 
written in FORTRAN or C) available as a Web Service.  

A sample implementation can be found on the author’s 
website. There, a web service can be created for any in-
stalled SBW module / service and tested. (Created Web Ser-
vices will only be available for a limited amount of time.) 
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4 AVAILABLE SBW MODULES 

Since the publication of the initial description of SBW 
(Hucka et al. 2002) considerable progress has been made in 
module development. 

4.1 SBW Utility Modules 

The following SBW modules provide the core functional-
ity for SBML analysis. They provide the capability to read 
any version of SBML and SBML layout annotations. Fur-
thermore, basic mathematical analysis can be performed 
with them. It should be noted once again that any of these 
modules can be called from any language supported by 
SBW. Of course, they also can be wrapped up as a Web 
Service and so can be easily used in more dynamic envi-
ronments.   

Network Object Model (NOM): This module provides 
a unified SBW interface around libSBML (Bornstein et al. 
2006). By creating another layer on top of libSBML we 
will be able to support future versions of SBML (Finney 
and Hucka 2003) with the same interface. libSBML pro-
vides platform independent SBML reading and writing ca-
pabilities for many programming languages and thus is an 
indispensable tool for application developers supporting 
SBML. The NOM performs a slightly different role. In its 
current version, it supports mainly SBML reading, valida-
tion, and conversion capabilities. Furthermore, the NOM 
allows several SBW modules working together on an 
analysis to share an SBML model in a clipboard-like man-
ner. Instead of the SBML model being parsed repeatedly, 
this task has to be performed only once, which can im-
prove the overall runtime. 

SBW CLAPACK: This module provides a wrapper 
around functions of CLAPACK, which is the C version of 
the commonly used Linear Algebra PACKage (Netlib 
2006). Since many analysis tools in systems biology need 
to compute eigenvalues or singular values, or to perform 
matrix factorizations/inversions, we generated an SBW 
module that performs these tasks.  

SBMLLayoutModule: For the upcoming third version 
of SBML, the SBML community decided on a layout ex-
tension (Gauges et al. 2006). This extension will allow the 
overall layout (i.e., the position and dimensions of spe-
cies/compartments as well as the way reactions are drawn) 
to be stored in an SBML model. Until level three of SBML 
is finalized, this SBML extension will be stored in an an-
notation in current models. Based on this layout extension 
we developed a rendering extension that specifies all ren-
dering information (i.e., color, font, gradients, and group-
ing information). We implemented the SBMLLayoutMod-
ule so that all SBW modules can take advantage of a 
unified layout interface. This module allows reading and 
modifying a given layout, or generating a new layout from 
scratch. The module also supports the generation of a bit-
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map containing the layout for use in another program. We 
also embedded this SBW module in a Web Application on 
the authors’ website (Bergmann 2006). Finally, since the 
SBML Layout Extension is not yet widely adopted, the 
module provides separate support for JDesigner and 
CellDesigner models, as they are the most commonly used 
graphical model editors.  

DrawNetwork: Since many available SBML models 
do not contain any layout information, the next logical step 
was to develop an auto-layout SBW module. This has been 
done with DrawNetwork. This SBW module uses various 
force-directed layout algorithms based on work by 
(Fruchterman et al. 1991). Optionally the user of the mod-
ule can decide to generate alias nodes (i.e., multiple copies 
of one species that refer to the same element in the 
SBML); this simplifies the generated layout immensely. 
The module can be used in server or interactive mode. In 
server mode, it listens for SBW calls and serves them. In 
interactive mode the user can manually modify the gener-
ated layout, moving or locking certain species or alias spe-
cies individually. Figure 2 displays the generated layout 
(with aliasing) of BioModel # 14 (from model repository at 
www.biomodels.net). 
 

  
 
Figure 2: Autolayout of BioModel #14 (From Model Re-
pository at www.biomodels.net) 
 

Translators: Finally, SBW features a number of 
SBML translator modules that transform SBML into XPP-, 
Matlab-, Simulink-, Java-, Jarnac-files or others. This 
makes it easy to transfer models and to analyze them on 
these programs.  

4.2 SBW Simulators 

The dynamic behavior of biochemical networks is one of 
the main interests of researchers in systems biology. This 
has resulted in a multitude of simulators becoming avail-
able. While in some cases the need exists to devise special-
ized simulators for certain areas, in most cases it will be 
enough to consider existing simulators. With SBW this in-
tegration is  performed simply. Hence, there is a large vari-
ety of SBW-enabled simulators available, as given below. 
0
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Jarnac:  Jarnac is more than just a simulator. It is a 
complete scripting environment combining stochastic and 
ODE simulation capabilities with a powerful control lan-
guage. It allows for modeling in a shorthand notation as 
well as analyzing the models and graphing the results. For 
ODE simulations, Jarnac uses the popular integrators 
CVODE (Cohen and Hindmarch 1996) or LSODA 
(Hindmarch 1983) which can be individually selected by 
the user. Stochastic simulations are performed using an 
implementation of the Gillespie algorithm (Gillespie 
1976). The shorthand language of Jarnac can easily be 
converted into SBML and vice versa. It should be noted 
that some features of SBML Version 2 have not been im-
plemented, such as events or delay equations. However, 
these features can be implemented with functions written 
in Jarnac-Script. Acting as an SBW module, Jarnac pro-
vides its simulation capabilities or analysis routines to any 
other SBW module. Probably the greatest shortcoming of 
Jarnac is that it was written for WIN32 systems only. To 
make Jarnac’s functionality available on other systems, we 
devised a new SBW module called JarnacLite. This mod-
ule has been written for the sole purpose of quickly trans-
forming SBML into Jarnac-Script, allowing for modifica-
tions in the useful shorthand and then letting other modules 
analyze the model by transforming it back into SBML. As 
JarnacLite was written using the .NET language C#, it runs 
under WIN32 as well as all operating systems supported by 
Mono.  

roadRunner: In an effort to create a fully SBML com-
pliant simulator we next focused on creating roadRunner. 
Instead of interpreting model equations, roadRunner will 
compile the model equations dynamically, which results in 
much improved performance when compared with tradi-
tional simulators. RoadRunner uses the integrator CVODE 
and NLEQ (ZIB 2003) for steady state analysis. To further 
speed up the simulation, the model is separated into a sys-
tem of independent and dependent variables. This separa-
tion process is described in detail in (Vallabhajosyula et al. 
2006). Again, roadRunner has been written completely in 
C#. Provided that CVODE and NLEQ are available for a 
given operating system, roadRunner will run on that oper-
ating system. Thus, all major operating systems are sup-
ported.  

Dizzy: A further collection of simulators has been de-
veloped by Stephen Ramsey at the Institute for Systems 
Biology (Ramsey 2006). Dizzy allows for stochastic simu-
lations using Gillespie, Gibson-Bruck, or Tau-Leap algo-
rithms. Dizzy can be called via the SBW menu in model 
editors such as JDesigner or CellDesigner.  

Oscill8: Developed by Emery Conrad (Conrad 2006), 
Oscill8 is used for bifurcation analysis and time-course 
simulations. Oscill8 provides a user-friendly interface 
around AUTO (Doedel 1981), allowing for one and two 
parameter bifurcation diagrams (Figure 3) or bifurcation 
searches. For SBW, it provides a simulation service and 
1641
additionally is available through the SBW menu to perform 
bifurcation analysis. Oscill8 is available for WIN32, Linux, 
and OS X. The front-end requires a .NET implementation 
such as the .NET Runtime or Mono.  

 

 
 

Figure 3: One Parameter Bifurcation-diagram Generated 
by Oscill8 

 
Stochastic Simulators: Finally, we also include SBW 

simulation services that implement the Gillespie Algorithm 
(Direct Method and First Reaction Method), Gibson-Bruck 
Algorithm (Gibson and Bruck 2000), and Chemical 
Langevin Equation (Gillespie, 2000) for operating systems 
WIN32, Linux, and OS X.  

SimDriver: To implement a unified user-interface to 
interact with all these simulators, we wrote the SimDriver. 
There are several implementations of this module avail-
able. For non-WIN32 operating systems, we use a Java 
implementation. On WIN32 systems, we use a .NET ver-
sion of the SimDriver (Figure 4) with additional function-
ality such as steady state analysis, continuous time-course 
simulations, and modifications to parameter values. The 
SimDriver works for all simulators implementing one of 
the SBW simulator API’s (Sauro and Bergmann 2006). 
There are several levels of this API with an increasing 
number of features. The user interface will disable all con-
trols not supported by the selected simulator. The Sim-
Driver also supports stochastic simulators and therefore 
provides additional facilities to aid the analysis of stochas-
tic models, in particular, probability density function esti-
mation, frequency analysis, and noise injection at particu-
lar points in the model. 
 3D Visualization Tool: Traditionally the simulation 
results are available as either data tables or X-Y plots. Data 
tables are helpful for further processing by other computa-
tional tools. X-Y plots, on the other hand, tend to get com-
plex even for a limited number of species. In creating a 
new visualization tool, we had two goals in mind. The  first  
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Figure 4: Time-course Simulation Using the SimDriver 
 

goal was to strongly tie the simulation results to the model. 
The other goal was to be able to view the simulation in real 
time to refine or broaden it where necessary. These goals 
have been realized in form of a 3D Time-course Visualiza-
tion module. The layout of an SBML model, as obtained 
by the SBMLLayoutModule, or generated by the auto lay-
out module, implements the basis of the 3D visualization 
tool and is projected onto a 3D plane. Furthermore, all po-
sitions of species are recognized and rendered as columns 
on top of the 3D plane. The height of the columns, repre-
senting the current species concentration, will vary during 
the time-course simulation (Figure 5). This way, interest-
ing dynamic behaviors of the models can easily be seen. 
Since the time course simulation will be performed con-
tinuously, it is possible to dynamically change time-steps 
to focus on certain aspects of the model.  
 

  
Figure 5: 3D Time-course Simulation of Jana Wolf's Gly-
colysis Model (Ruoff et al. 2003) 
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4.3 SBW Analysis Tools 

The Structural Analysis Module is a graphical user inter-
face that allows the user to analyze conservation laws of an 
SBML model. The tool uses SBW to identify the conserva-
tion cycles in a model as described in (Vallabhajosyula et 
al. 2006). This allows separating independent from de-
pendent variables, which is important in order to compute a 
non-singular Jacobian matrix. The Jacobian matrix repre-
sents the basis for further analysis on the model. The Struc-
tural Analysis Module is available through the SBW menu.  

Metatool, by Stefan Schuster (Pfeiffer et al. 1999), is a 
command line tool for the calculation of conservation vec-
tors, elementary modes, and the null-space and stoichiome-
try matrix. This tool has been wrapped up as an SBW 
menu. This module has been tightly integrated into 
JDesigner in order to highlight the modes in the graphical 
model.  

The Bifurcation Discovery Tool is an SBW module 
that will perform a parameter scan of the given SBML 
model to search for interesting behavior such as switching 
and oscillation. The Bifurcation Discovery Tool is avail-
able through the SBW menu or supports loading SBML 
files directly. It has no simulation capabilities on its own 
but will use one of the SBW simulators to perform time 
course simulations and steady state analysis in order to per-
form the parameter scan. In principle, it implements a ge-
netic algorithm with elitism, which evaluates slightly 
modified models in the parameter space. A detailed de-
scription is available in (Chickarmane et al. 2005). 

The Frequency Analysis Module allows the user to se-
lect a parameter and a species of an SBML model and gen-
erates the corresponding frequency response. It is available 
through the SBW menu.  

We also developed a suite of optimizers within the 
BioSPICE project. These optimizers fit experimental data 
to an SBML model. Five different algorithms were imple-
mented for this purpose: a genetic algorithm with tourna-
ment selection, a hybrid algorithm combining a genetic al-
gorithm with the simplex algorithm, the Levenberg-
Marquardt algorithm, a hybrid combining simulated an-
nealing and simplex, and finally the Nelder and Mead Sim-
plex Algorithm. These algorithms have been implemented 
in Matlab and are accessible via the SBW-Matlab Bridge 
(Wellock, Chickarmane, and Sauro 2005), which allows 
Matlab scripts to be wrapped into SBW modules.  

4.4 SBW Modeling Environments 

JDesigner is a graphical modeling environment for bio-
chemical reaction networks. It allows drawing the network 
on screen and selecting the appropriate kinetic laws from a 
wide selection of available rate laws or to define new rate 
laws. The current version of JDesigner has been redesigned 
to take advantage of modern rendering technologies. 



Bergmann and Sauro 

 
JDesigner is the module that probably profits the most 
from SBW. Via the previously described auto-layout and 
SBML layout extension modules, it is able to render any 
SBML file. Using the SBW menu, it can pass the loaded 
model to a wide variety of analysis tools. Time-course 
simulation and steady state analysis can be performed by 
either roadRunner or Jarnac. Furthermore, it uses Metatool 
for structural analysis. Finally, it dynamically finds mod-
ules from the SBML exporter category at runtime so the 
model can be exported into a variety of file formats includ-
ing Matlab, Java, or XPP.  

Figure 6 demonstrates the analysis capabilities of 
JDesigner. Via the Metatool integration, one of the elemen-
tary modes of the model are highlighted. The pane on the 
bottom shows the time-course behavior of the model. The 
drawing area in the middle displays a generated layout for 
the model.  

CellDesigner, a graphical modeling environment de-
veloped by the Systems Biology Institute, Tokyo, Japan, 
also features the SBW menu. While JDesigner uses the 
model of hyper-graphs to visualize the biochemical net-
work, CellDesigner uses the Process Diagram (Kitano et al. 
2005) notation (i.e., a state diagram). CellDesigner has 
been written in Java and is available for most operating 
systems.  

 

 
 

Figure 6: JDesigner Analyzing BioModel #12 (From 
Model Repository at www.biomodels.net) 

5 FUTURE DIRECTIONS 

So far, SBW development was primarily WIN32-centric. 
While the binding libraries were available for most operat-
ing systems, all of our modules were mainly developed for 
WIN32. As SBW nears its third version, we face new pos-
sibilities. Finally, open source alternatives to the .NET run-
time (Mono-Project 2006) are stable enough for daily use. 
We will therefore dedicate more time to make SBW more 
useful on non-WIN32 systems.  

Additions to the SBW core will include more metadata 
to allow SBW modules to negotiate their data types in a 
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more sophisticated way. This will resolve ambiguity of 
data types such as strings, which could represent a file-
name, an SBML model, or any other string. This will also 
allow for more interesting user interfaces.  

We will also spend more time with the development of 
additional categories, possibly even with an enforcement 
policy that ensures that the methods of the category are 
implemented. Categories proved immensely effective as 
we have seen with the SBW menu and the SBML Exporter 
category.  

6 SUMMARY 

SBW represents a flexible framework allowing the integra-
tion of software components in a language-neutral way. 
The core framework is available for many operating sys-
tems, among them WIN32, Linux, and OS X. Binding li-
braries are available for the most common programming 
languages: C/C++, the .NET languages, Delphi, Java, Py-
thon, and Matlab. Other programming languages can be 
supported by calling the C bindings.  

A growing collection of SBW-enabled applications are 
available for analyzing, modeling, simulating, and visuali-
zation. SBW is stable⎯open source and free downloads 
are available from the project website at <http://sys-
bio.org>.  
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