
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

SBW – A MODULAR FRAMEWORK FOR SYSTEMS BIOLOGY

 Frank T. Bergmann
Herbert M. Sauro

Computational and Systems Biology

Keck Graduate Institute
535 Watson Drive

Claremont, CA 91711, U.S.A.

ABSTRACT

A large number of software packages are available to assist
researchers in systems biology. In this paper, we describe
the current state of the Systems Biology Workbench
(SBW), a modular framework that connects modeling and
analysis applications, enabling them to reuse each other’s
capabilities. We describe how users and developers will
perceive SBW and then focus on currently available SBW
modules. The software, tutorial manual, and test models
are freely available from the Computational and Systems
Biology group at Keck Graduate Institute. Source code is
available from SourceForge. The software is open source
and licensed under BSD.

1 INTRODUCTION

The increasing popularity of systems biology (Kitano
2005) brings with it a demand for computational modeling
and analyzing tools to aid researchers. Many modeling and
model-analysis applications have been written, and using
the popular exchange format SBML (Hucka et al. 2003)
most of these applications allow import/export of SBML
models. Still, the process of exporting and importing mod-
els this way is rather cumbersome and disrupts the work-
flow of researchers. There are two possible solutions for
this problem. The first would be to form an application that
combines all the features a researcher would want. This of
course would be hard to achieve and even harder to main-
tain. The alternative is to allow applications, that are spe-
cialized in different areas of computation, to communicate
with each other.

Instead of developing monolithic applications, we fo-
cused on a modular approach. We chose to focus on a plat-
form/language independent framework of loosely coupled
applications: the Systems Biology Workbench (SBW)
(Hucka et al. 2002). This allows newly developed applica-
tions to reuse functionality from existing applications,
rather than re-implement them. For example, rather than

16371-4244-0501-7/06/$20.00 ©2006 IEEE
implementing a new simulator for a new project, we sim-
ply take advantage of an existing SBW-enabled one.

An alternative approach has been taken by BioSPICE
(Garvey et al. 2003). Here the approach is to “wrap” appli-
cations into Analyzer objects with specified input and out-
put behavior. These Analyzers can then be used within an
IDE to create workflows between applications. While this
approach works for applications that do not require user
input at runtime, it does not work well for a modeling
process. A modeling process requires more flexibility than
a workflow can provide.

1.1 Architecture

The Systems Biology Workbench (SBW) is a resource-
sharing framework based on a broker architecture. SBW
uses a message based system that employs binary format-
ted messages sent over TCP/IP (Sauro et al. 2003). This
basic architecture was chosen with regard to performance,
portability, simplicity, and language-neutrality. We also
considered XML-RPC, Java RMI (Sun Microsystems
2006), and CORBA (OMG 2006) but ultimately favored a
simple peer-to-peer technique.

Binding libraries, provided for most programming lan-
guages, allow applications to become SBW-enabled. This
means that the application can make use of functionality
provided by other SBW-enabled applications or provide
functionality for other applications. The binding libraries
are written to fit the natural pattern of the programming
language of choice. SBW-enabled applications are called
modules. Each module in turn will provide one or more
services and each service will have one or more methods.
Each method is defined by its unique signature and help
string. Help strings are also available at the service and
module level. Help strings provide a degree of internal
documentation to the SBW interface and are useful in a
number of situations (see SBW add-on). Services are also
classified into categories, which allow the discovery of
modules not only by name but also by functionality. Ex-

Bergmann and Sauro

ample categories include simulators (with various levels),
SBML translators, or a simple analyzer category. The con-
vention is that every service belonging to a certain cate-
gory implements specific method signatures that allow the
services to be exchanged at a later time.

At the core of SBW stands the SBW Broker. The Bro-
ker negotiates communication between SBW modules. Its
main function is to provide other modules with events such
as the startup/shutdown of applications, a system shut-
down, or advertising newly registered modules. The Bro-
ker also allows the user to find SBW modules either by
name or by category. While the broker is most often used
to negotiate communications between local modules, it can
also communicate with remote brokers. Furthermore, SBW
allows all SBW modules to be available as Web Services
(W3C 2006). This communication flow can be summarized
as in Figure 1.

Figure 1: SBW Communication Flow

SBW can be used in a hosting environment where it
provides analysis support for SBML models. This has been
done by BioSPICE, BioUML (Kolpakov 2002),
CellDesigner (Kitano et al. 2005), and JDesigner (Sauro et
al. 2003). BioSPICE allows integrating SBW modules as
analyzers into the generated workflow. A simpler way of
integration has been done in CellDesigner and JDesigner
by incorporating a SBW menu.

As shown with PySCeS (Olivier, Rohwer, and
Hofmeyr 2005) scripting can be a powerful tool for re-
searchers. We developed a set of scripts that allow SBW to
be used in the Python interactive mode. Users will be noti-
fied of every module startup and are able to access all
SBW modules from the shell. Similarly, users can access
SBW via scripting from Matlab (Wellock et al. 2005).

A more detailed description of the inner workings of
SBW can be found in (Hucka et al. 2002) and (Sauro et al.
2003).
163
2 SBW FROM A USER’S PERSPECTIVE

A user of an SBW-enabled application will probably never
perceive SBW working at all. For a user, SBW is a collec-
tion of loosely coupled applications, all of which support
SBML. One example would be the use of an SBW-enabled
model editor such as JDesigner, which is a program that
allows the user to load or construct a biochemical model
and then analyze the model. When loading a model created
by another software tool, JDesigner will ask another SBW
module to generate a layout for the loaded model. As
JDesigner has no inherent simulation capabilities, it uses
another SBW module to simulate the loaded model. Simi-
larly, if a user performs structural analysis on the model,
JDesigner will acquire this information via SBW from
Metatool (Pfeiffer et al. 1999).

JDesigner (and CellDesigner) also feature an SBW
menu. This menu is populated dynamically on startup and
lists all SBW modules implementing the SBW analysis
category. When the user selects a program from this menu,
the SBW-enabled program is invoked, the model is passed
to it, and the program performs further analysis on the
model. There is a wide variety of modules available, such
as bifurcation analysis, frequency analysis, (stochastic)
simulation, and 3D Visualization.

Because the SBW menu is shared between many ap-
plications, users now have a new option for moving be-
tween these applications. A user will work on an SBML
model in one program, and by selecting another SBW
module through the SBW menu, sends the model to the
next program where the user can further analyze the model,
and so forth. This “hopping” from program to program is
rather different from the usual export/import scenario and
allows users to efficiently move from tool to tool.

3 SBW FROM A DEVELOPER'S PERSPECTIVE

SBW is a modular framework that gives developers tools
for basic modeling and analysis tasks such as interrogating
models, simulating models, and analyzing models (such as
structural or stoichiometry analysis). Therefore, the devel-
oper of a new software application can use these tools as a
foundation and focus on novel tasks instead of re-inventing
the wheel. It should be noted that the basic analysis tools
are exchangeable, so that, for example, one simulator can
easily be replaced by another one.

Similarly, an existing application written in any sup-
ported programming language can be modified to interact
with SBW with minimal programming overhead. This en-
ables other applications to use its functionality.

3.1 Language Bindings

Native SBW language bindings are available for the most
common programming languages such as C/C++, Java,
8

Bergmann and Sauro

.NET languages, Python, Delphi/Kylix, and Matlab. Other
languages, such as FORTRAN, would use the C libraries
to access SBW. Other languages can be supported; the only
requirement is that the programming language provides
string handling routines and IP socket access.

The language bindings encapsulate all communication
with SBW making remote communication to another mod-
ule as simple as any other method call. A default method
call will result in the application blocking until a result
comes back. Alternatively, asynchronous methods can be
implemented. Should a call to another SBW module result
in failure, exceptions will be thrown in a language depend-
ent way. In other words, for languages that support excep-
tion handling (such as C++, Java, or the .NET languages)
the caller will receive a proper exception, otherwise error
flags have to be checked (for older languages such as C or
FORTRAN).

It should be noted that the binding libraries only sup-
port simple data types such as bytes, characters, complex
numbers, floating point numbers, and strings. Furthermore,
one- and two-dimensional regular arrays of these types are
supported. More complex data types can be constructed by
the use of lists. Lists are recursively defined and can there-
fore contain any combination of other types. With this set
of types, any other data type can be represented.

3.2 SBW Visual Studio Add-on

In order to call a method with SBW, the following four
steps must be executed: First, the chosen SBW module
must be selected; second, the SBW Service containing the
method has to be found; third, the method to execute needs
to be selected; finally, a call has to be made. This proce-
dure is approximately the same for all program languages.
For example, these steps could be written in C# as follows:

// get module instance of a "simulator"

Module oSimulator = new Module("simulator");

// obtain simulation service by category

// lookup

Service oSimService = oSimulator.

findServicesByCategory("simService");

// get a method handle

Method oSimulate = oSimService.

getMethod("double[][] simulate()");

// finally call the method

oSimulate.Call();

The code shown above must be repeated, at least in part,
for every method that an application wishes to use. For any
given module there may be tens or possibly hundreds of
method calls. As a result we have devised an add-on to the
Microsoft Visual Studio programming environment
1639
(Microsoft 2006b) that allows any SBW module to be
automatically wrapped ready for use. The add-on can gen-
erate interface code for Visual Basic (.NET), C# (.NET),
and C++ (unmanaged). The developer simply selects the
SBW module and service to be wrapped, along with sev-
eral options, and a wrapper file will be created and added
to the current project. The programming language will be
detected from the current project. Possible options that
modify the behavior of the wrapper include optimization
options that influence when and how the methods are ac-
quired and an option to automatically restart an applica-
tion, in case it was closed by someone else and is still
needed.

Once this is completed, the SBW module will look
like any other static class in the current project. For the ex-
ample above, this means we can replace the four lines of
code with a single call:

Sim.simulate();

Furthermore, as soon as the model service name is

typed in the Visual Studio editor (“Sim” in the example
above), the developer will be presented with a complete list
of available methods, including help strings that explain
the purpose of the method.

3.3 SBW Web Service Interface

Another useful tool for developers is the SBW Web Ser-
vice Interface. The Web Service Interface allows other
SBW modules to be wrapped into a Web Service (W3C
2006). Once an SBW module and service are selected, the
generator will wrap every method in this service into a
proper web method signature. Method and service help
strings are used to populate web method help fields. In this
way they appear in the WSDL as
wsdl:documentation in the corresponding
wsdl:operation. Special care has to be given to the
data types. All simple types have direct correspondents in
web methods. The same holds for one-dimensional arrays.
Two-dimensional regular arrays have to be represented as
jagged arrays. Finally, the SBW lists are represented as
“ArrayOfAnyType”.

The web services created in this way can be hosted
with Microsoft’s IIS (Microsoft 2006a) (provided
ASP.NET is available) or with Mono’s XSP (Mono-Project
2006) implementation (which can also be integrated into
Apache). This allows the hosting on all supported plat-
forms (WIN32, Linux, and OS X) and so presents a very
easy way to make legacy applications (e.g., applications
written in FORTRAN or C) available as a Web Service.

A sample implementation can be found on the author’s
website. There, a web service can be created for any in-
stalled SBW module / service and tested. (Created Web Ser-
vices will only be available for a limited amount of time.)

Bergmann and Sauro

4 AVAILABLE SBW MODULES

Since the publication of the initial description of SBW
(Hucka et al. 2002) considerable progress has been made in
module development.

4.1 SBW Utility Modules

The following SBW modules provide the core functional-
ity for SBML analysis. They provide the capability to read
any version of SBML and SBML layout annotations. Fur-
thermore, basic mathematical analysis can be performed
with them. It should be noted once again that any of these
modules can be called from any language supported by
SBW. Of course, they also can be wrapped up as a Web
Service and so can be easily used in more dynamic envi-
ronments.

Network Object Model (NOM): This module provides
a unified SBW interface around libSBML (Bornstein et al.
2006). By creating another layer on top of libSBML we
will be able to support future versions of SBML (Finney
and Hucka 2003) with the same interface. libSBML pro-
vides platform independent SBML reading and writing ca-
pabilities for many programming languages and thus is an
indispensable tool for application developers supporting
SBML. The NOM performs a slightly different role. In its
current version, it supports mainly SBML reading, valida-
tion, and conversion capabilities. Furthermore, the NOM
allows several SBW modules working together on an
analysis to share an SBML model in a clipboard-like man-
ner. Instead of the SBML model being parsed repeatedly,
this task has to be performed only once, which can im-
prove the overall runtime.

SBW CLAPACK: This module provides a wrapper
around functions of CLAPACK, which is the C version of
the commonly used Linear Algebra PACKage (Netlib
2006). Since many analysis tools in systems biology need
to compute eigenvalues or singular values, or to perform
matrix factorizations/inversions, we generated an SBW
module that performs these tasks.

SBMLLayoutModule: For the upcoming third version
of SBML, the SBML community decided on a layout ex-
tension (Gauges et al. 2006). This extension will allow the
overall layout (i.e., the position and dimensions of spe-
cies/compartments as well as the way reactions are drawn)
to be stored in an SBML model. Until level three of SBML
is finalized, this SBML extension will be stored in an an-
notation in current models. Based on this layout extension
we developed a rendering extension that specifies all ren-
dering information (i.e., color, font, gradients, and group-
ing information). We implemented the SBMLLayoutMod-
ule so that all SBW modules can take advantage of a
unified layout interface. This module allows reading and
modifying a given layout, or generating a new layout from
scratch. The module also supports the generation of a bit-
164
map containing the layout for use in another program. We
also embedded this SBW module in a Web Application on
the authors’ website (Bergmann 2006). Finally, since the
SBML Layout Extension is not yet widely adopted, the
module provides separate support for JDesigner and
CellDesigner models, as they are the most commonly used
graphical model editors.

DrawNetwork: Since many available SBML models
do not contain any layout information, the next logical step
was to develop an auto-layout SBW module. This has been
done with DrawNetwork. This SBW module uses various
force-directed layout algorithms based on work by
(Fruchterman et al. 1991). Optionally the user of the mod-
ule can decide to generate alias nodes (i.e., multiple copies
of one species that refer to the same element in the
SBML); this simplifies the generated layout immensely.
The module can be used in server or interactive mode. In
server mode, it listens for SBW calls and serves them. In
interactive mode the user can manually modify the gener-
ated layout, moving or locking certain species or alias spe-
cies individually. Figure 2 displays the generated layout
(with aliasing) of BioModel # 14 (from model repository at
www.biomodels.net).

Figure 2: Autolayout of BioModel #14 (From Model Re-
pository at www.biomodels.net)

Translators: Finally, SBW features a number of
SBML translator modules that transform SBML into XPP-,
Matlab-, Simulink-, Java-, Jarnac-files or others. This
makes it easy to transfer models and to analyze them on
these programs.

4.2 SBW Simulators

The dynamic behavior of biochemical networks is one of
the main interests of researchers in systems biology. This
has resulted in a multitude of simulators becoming avail-
able. While in some cases the need exists to devise special-
ized simulators for certain areas, in most cases it will be
enough to consider existing simulators. With SBW this in-
tegration is performed simply. Hence, there is a large vari-
ety of SBW-enabled simulators available, as given below.
0

Bergmann and Sauro

Jarnac: Jarnac is more than just a simulator. It is a
complete scripting environment combining stochastic and
ODE simulation capabilities with a powerful control lan-
guage. It allows for modeling in a shorthand notation as
well as analyzing the models and graphing the results. For
ODE simulations, Jarnac uses the popular integrators
CVODE (Cohen and Hindmarch 1996) or LSODA
(Hindmarch 1983) which can be individually selected by
the user. Stochastic simulations are performed using an
implementation of the Gillespie algorithm (Gillespie
1976). The shorthand language of Jarnac can easily be
converted into SBML and vice versa. It should be noted
that some features of SBML Version 2 have not been im-
plemented, such as events or delay equations. However,
these features can be implemented with functions written
in Jarnac-Script. Acting as an SBW module, Jarnac pro-
vides its simulation capabilities or analysis routines to any
other SBW module. Probably the greatest shortcoming of
Jarnac is that it was written for WIN32 systems only. To
make Jarnac’s functionality available on other systems, we
devised a new SBW module called JarnacLite. This mod-
ule has been written for the sole purpose of quickly trans-
forming SBML into Jarnac-Script, allowing for modifica-
tions in the useful shorthand and then letting other modules
analyze the model by transforming it back into SBML. As
JarnacLite was written using the .NET language C#, it runs
under WIN32 as well as all operating systems supported by
Mono.

roadRunner: In an effort to create a fully SBML com-
pliant simulator we next focused on creating roadRunner.
Instead of interpreting model equations, roadRunner will
compile the model equations dynamically, which results in
much improved performance when compared with tradi-
tional simulators. RoadRunner uses the integrator CVODE
and NLEQ (ZIB 2003) for steady state analysis. To further
speed up the simulation, the model is separated into a sys-
tem of independent and dependent variables. This separa-
tion process is described in detail in (Vallabhajosyula et al.
2006). Again, roadRunner has been written completely in
C#. Provided that CVODE and NLEQ are available for a
given operating system, roadRunner will run on that oper-
ating system. Thus, all major operating systems are sup-
ported.

Dizzy: A further collection of simulators has been de-
veloped by Stephen Ramsey at the Institute for Systems
Biology (Ramsey 2006). Dizzy allows for stochastic simu-
lations using Gillespie, Gibson-Bruck, or Tau-Leap algo-
rithms. Dizzy can be called via the SBW menu in model
editors such as JDesigner or CellDesigner.

Oscill8: Developed by Emery Conrad (Conrad 2006),
Oscill8 is used for bifurcation analysis and time-course
simulations. Oscill8 provides a user-friendly interface
around AUTO (Doedel 1981), allowing for one and two
parameter bifurcation diagrams (Figure 3) or bifurcation
searches. For SBW, it provides a simulation service and
1641
additionally is available through the SBW menu to perform
bifurcation analysis. Oscill8 is available for WIN32, Linux,
and OS X. The front-end requires a .NET implementation
such as the .NET Runtime or Mono.

Figure 3: One Parameter Bifurcation-diagram Generated
by Oscill8

Stochastic Simulators: Finally, we also include SBW

simulation services that implement the Gillespie Algorithm
(Direct Method and First Reaction Method), Gibson-Bruck
Algorithm (Gibson and Bruck 2000), and Chemical
Langevin Equation (Gillespie, 2000) for operating systems
WIN32, Linux, and OS X.

SimDriver: To implement a unified user-interface to
interact with all these simulators, we wrote the SimDriver.
There are several implementations of this module avail-
able. For non-WIN32 operating systems, we use a Java
implementation. On WIN32 systems, we use a .NET ver-
sion of the SimDriver (Figure 4) with additional function-
ality such as steady state analysis, continuous time-course
simulations, and modifications to parameter values. The
SimDriver works for all simulators implementing one of
the SBW simulator API’s (Sauro and Bergmann 2006).
There are several levels of this API with an increasing
number of features. The user interface will disable all con-
trols not supported by the selected simulator. The Sim-
Driver also supports stochastic simulators and therefore
provides additional facilities to aid the analysis of stochas-
tic models, in particular, probability density function esti-
mation, frequency analysis, and noise injection at particu-
lar points in the model.
 3D Visualization Tool: Traditionally the simulation
results are available as either data tables or X-Y plots. Data
tables are helpful for further processing by other computa-
tional tools. X-Y plots, on the other hand, tend to get com-
plex even for a limited number of species. In creating a
new visualization tool, we had two goals in mind. The first

Bergmann and Sauro

Figure 4: Time-course Simulation Using the SimDriver

goal was to strongly tie the simulation results to the model.
The other goal was to be able to view the simulation in real
time to refine or broaden it where necessary. These goals
have been realized in form of a 3D Time-course Visualiza-
tion module. The layout of an SBML model, as obtained
by the SBMLLayoutModule, or generated by the auto lay-
out module, implements the basis of the 3D visualization
tool and is projected onto a 3D plane. Furthermore, all po-
sitions of species are recognized and rendered as columns
on top of the 3D plane. The height of the columns, repre-
senting the current species concentration, will vary during
the time-course simulation (Figure 5). This way, interest-
ing dynamic behaviors of the models can easily be seen.
Since the time course simulation will be performed con-
tinuously, it is possible to dynamically change time-steps
to focus on certain aspects of the model.

Figure 5: 3D Time-course Simulation of Jana Wolf's Gly-
colysis Model (Ruoff et al. 2003)
1642
4.3 SBW Analysis Tools

The Structural Analysis Module is a graphical user inter-
face that allows the user to analyze conservation laws of an
SBML model. The tool uses SBW to identify the conserva-
tion cycles in a model as described in (Vallabhajosyula et
al. 2006). This allows separating independent from de-
pendent variables, which is important in order to compute a
non-singular Jacobian matrix. The Jacobian matrix repre-
sents the basis for further analysis on the model. The Struc-
tural Analysis Module is available through the SBW menu.

Metatool, by Stefan Schuster (Pfeiffer et al. 1999), is a
command line tool for the calculation of conservation vec-
tors, elementary modes, and the null-space and stoichiome-
try matrix. This tool has been wrapped up as an SBW
menu. This module has been tightly integrated into
JDesigner in order to highlight the modes in the graphical
model.

The Bifurcation Discovery Tool is an SBW module
that will perform a parameter scan of the given SBML
model to search for interesting behavior such as switching
and oscillation. The Bifurcation Discovery Tool is avail-
able through the SBW menu or supports loading SBML
files directly. It has no simulation capabilities on its own
but will use one of the SBW simulators to perform time
course simulations and steady state analysis in order to per-
form the parameter scan. In principle, it implements a ge-
netic algorithm with elitism, which evaluates slightly
modified models in the parameter space. A detailed de-
scription is available in (Chickarmane et al. 2005).

The Frequency Analysis Module allows the user to se-
lect a parameter and a species of an SBML model and gen-
erates the corresponding frequency response. It is available
through the SBW menu.

We also developed a suite of optimizers within the
BioSPICE project. These optimizers fit experimental data
to an SBML model. Five different algorithms were imple-
mented for this purpose: a genetic algorithm with tourna-
ment selection, a hybrid algorithm combining a genetic al-
gorithm with the simplex algorithm, the Levenberg-
Marquardt algorithm, a hybrid combining simulated an-
nealing and simplex, and finally the Nelder and Mead Sim-
plex Algorithm. These algorithms have been implemented
in Matlab and are accessible via the SBW-Matlab Bridge
(Wellock, Chickarmane, and Sauro 2005), which allows
Matlab scripts to be wrapped into SBW modules.

4.4 SBW Modeling Environments

JDesigner is a graphical modeling environment for bio-
chemical reaction networks. It allows drawing the network
on screen and selecting the appropriate kinetic laws from a
wide selection of available rate laws or to define new rate
laws. The current version of JDesigner has been redesigned
to take advantage of modern rendering technologies.

Bergmann and Sauro

JDesigner is the module that probably profits the most
from SBW. Via the previously described auto-layout and
SBML layout extension modules, it is able to render any
SBML file. Using the SBW menu, it can pass the loaded
model to a wide variety of analysis tools. Time-course
simulation and steady state analysis can be performed by
either roadRunner or Jarnac. Furthermore, it uses Metatool
for structural analysis. Finally, it dynamically finds mod-
ules from the SBML exporter category at runtime so the
model can be exported into a variety of file formats includ-
ing Matlab, Java, or XPP.

Figure 6 demonstrates the analysis capabilities of
JDesigner. Via the Metatool integration, one of the elemen-
tary modes of the model are highlighted. The pane on the
bottom shows the time-course behavior of the model. The
drawing area in the middle displays a generated layout for
the model.

CellDesigner, a graphical modeling environment de-
veloped by the Systems Biology Institute, Tokyo, Japan,
also features the SBW menu. While JDesigner uses the
model of hyper-graphs to visualize the biochemical net-
work, CellDesigner uses the Process Diagram (Kitano et al.
2005) notation (i.e., a state diagram). CellDesigner has
been written in Java and is available for most operating
systems.

Figure 6: JDesigner Analyzing BioModel #12 (From
Model Repository at www.biomodels.net)

5 FUTURE DIRECTIONS

So far, SBW development was primarily WIN32-centric.
While the binding libraries were available for most operat-
ing systems, all of our modules were mainly developed for
WIN32. As SBW nears its third version, we face new pos-
sibilities. Finally, open source alternatives to the .NET run-
time (Mono-Project 2006) are stable enough for daily use.
We will therefore dedicate more time to make SBW more
useful on non-WIN32 systems.

Additions to the SBW core will include more metadata
to allow SBW modules to negotiate their data types in a
1643
more sophisticated way. This will resolve ambiguity of
data types such as strings, which could represent a file-
name, an SBML model, or any other string. This will also
allow for more interesting user interfaces.

We will also spend more time with the development of
additional categories, possibly even with an enforcement
policy that ensures that the methods of the category are
implemented. Categories proved immensely effective as
we have seen with the SBW menu and the SBML Exporter
category.

6 SUMMARY

SBW represents a flexible framework allowing the integra-
tion of software components in a language-neutral way.
The core framework is available for many operating sys-
tems, among them WIN32, Linux, and OS X. Binding li-
braries are available for the most common programming
languages: C/C++, the .NET languages, Delphi, Java, Py-
thon, and Matlab. Other programming languages can be
supported by calling the C bindings.

A growing collection of SBW-enabled applications are
available for analyzing, modeling, simulating, and visuali-
zation. SBW is stable⎯open source and free downloads
are available from the project website at <http://sys-
bio.org>.

ACKNOWLEDGMENTS

The initial work has been funded by the Japan Science and
Technology Corporation under the ERATO Kitano Sys-
tems Biology Project. Funded through the generous sup-
port of ERATO, DARPA (contract number MIPR 03-
M296-01) and the DOE (under Grand No. DE-FG02-
04ER63804, “Computational Resources for GTL”). Origi-
nal Program Investigators: Hiroaki Kitano, John Doyle, in
collaboration with Hamid Bolouri, Andrew Finney, and
Mike Hucka.

We wish to acknowledge in particular the authors of
BioSPICE, CellDesigner, COPASI, Dizzy, Oscill8, and
Virtual Cell, as well as the SBML community for their
support. We also thank Anastasia Deckard, Klaus Maier,
Sri Rama Krishna Paladugu, and Ravishankar Rao Vallab-
hajosyula. Finally we would like to thank our user-base for
their support and feedback.

REFERENCES

Bergmann, Frank T. 2006. SBML Layout Viewer.
<http://sys-bio.org/Layout/> [accessed
May 26, 2006].

Bornstein, B. J., Sarah Keating, and Andrew Finney. 2006.
libSBML.
<http://sbml.org/software/libsbml/>
[accessed May 26, 2006].

http://sys-bio.org/
http://sys-bio.org/
http://sys-bio.org/Layout/
http://sbml.org/software/libsbml/

Bergmann and Sauro

Chickarmane, Vijay, Sri Rama Krishna Paladugu, Frank T.

Bergmann, and Herbert M Sauro. 2005. Bifurcation
discovery tool. Bioinformatics 21.18: 3688-3690.

Cohen, S. D., and A. C. Hindmarch. 1996. CVODE, a
stiff/nonstiff ODE solver in C. Computers in Physics
10.2: 138-143.

Conrad, Emery. 2006. Oscill8. <http://oscill8
.sourceforge.net> [accessed May 26, 2006].

Doedel, E. J. 1981. AUTO: a program for the automatic
bifurcation analysis of autonomous systems.
Proceedings of the 10th Manitoba Conference on
Numerical Mathematics and Computing, 265-284.

Finney, Andrew, and Michael Hucka. 2003. Systems
biology markup language: level 2 and beyond.
Biochemical Society Transactions 31.6 (2003): 1472-
1473.

Fruchterman, T. M. J., and E. M. Reingold. 1991. Graph
drawing by force-directed placement. Software -
Practice and Experience 21.11: 1129-1164.

Garvey, Thomas D., Patrick Lincoln, Charles John
Pedersen, David Martin, and Mark Johnson. 2003.
BioSPICE: access to the most current computational
tools for biologists. OMICS 7.4: 411-420.

Gauges, Ralph, Ursula Rost, Sven Sahle, and Katja
Wegner. 2006. A model diagram layout extension for
SBML. Bioinformatics (to appear).

Gibson, M. A. and J. Bruck. 1999. Efficient exact stochas-
tic simulation of chemical systems with many species
and many channels. Journal of Physical Chemistry A
104:1876-1889.

Gillespie, D. T. 1976. A general method for numerically
simulating the stochastic time evolution of coupled
chemical species. Journal of Computational Physics
22: 403-434.

Gillespie, D. T. 2000. The chemical Langevin equation.
The Journal of Chemical Physics 113.1: 297-306.

Hindmarch, A. C. 1983. ODEPACK: a systematized
collection of ODE solvers. Scientific Computing.

Hucka, Michael, Andrew Finney, Herbert M. Sauro,
Hamid Bolouri, John C .Doyle, and Hiroaki Kitano.
2003. The systems biology markup language (SBML):
a medium for representation and exchange of
biochemical network models. Bioinformatics 19.4:
524-531.

Hucka, Michael, Andrew Finney, Herbert M. Sauro, John
C. Doyle, and Hiroaki Kitano. 2002. The ERATO
Systems Biology Workbench: enabling interaction and
exchange between software tools for computational
biology. Pacific Symposium on Biocomputing. 450-
261.

Kitano, Hiroaki. 2005. International alliances for
quantitative modeling in systems biology. Molecular
Systems Biology.

Kitano, Hiroaki, Akira Funahashi, Yuhiko Matsuoka, and
Kanae Oda. 2005. Using process diagrams for the
1644
graphical representation of biochemical networks.
Nature Biotechnology 23.8: 961-966.

Kolpakov, F. A. 2002. BioUML - framework for visual
modeling and simulation of biological systems.
Proceedings of the International Conference on
Bioinformatics of Genome Regulation and Structure.

 Le Novere, Nicholas, et al. 2005. BioModels Database: a
free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular
systems. Nucleic Acids Research 34: 689-691.

Mathworks, The. 2006. MATLAB and Simulink for
Technical Computing. <http://www mathworks
.com/> [accessed May 26, 2006].

Microsoft. 2006a. Internet Information Services.
<http://www.microsoft.com/Windows
Server2003/iis/default.mspx> [accessed
May 26, 2006].

Microsoft. 2006b. Visual Studio 2005. <http://
msdn.microsoft.com/vstudio/> [accessed
May 26, 2006].

Mono-Project. 2005. ASP.NET-Mono.
<http://www.mono-project.com/
ASP.NET> [accessed May 26, 2006].

Netlib. 2006. LAPACK - Linear Algebra PACKage.
<http://www.netlib.org/lapack/>
[accessed May 26, 2006].

Olivier, Brett G., Johann M. Rohwer, and Jan-Hendrik S.
Hofmeyr. 2005. Modelling cellular systems with
PySCeS. Bioinformatics 21.4: 560-561.

OMG. The OMG's CORBA website. 2006.
<http://www.omg.org/corba/> [accessed
May 26, 2006].

Pfeiffer, T., I. Sanchey-Valdenebro, J. C. Nuno, F.
Montero, and S. Schuster. 1999. METATOOL: for
studying metabolic networks. Bioinformatics 15.3:
251-257.

Ramsey, S., D. Orrell, and H. Bolouri. 2005. Dizzy:
stochastic simulation of large-scale genetic regulatory
networks. Journal of Bioinformatics and
Computational Biology 3.2: 415-36.

Ruoff P., M. K. Christensen, J. Wolf, and R. Heinrich.
2003. Temperature dependency and temperature
compensation in a model of yeast glycolytic
oscillations. Biophysical Chemistry 106.2: 179-192.

Sauro, Herbert M., and Frank T. Bergmann. 2006. SBW
simulation API. <http://sbw.kgi.edu/
downloads/SimAPI.pdf> [accessed May 26,
2006].

Sauro, Herbert M., et al. 2003. Next Generation Simulation
Tools: the Systems Biology Workbench and
BioSPICE integration. OMICS 7.4: 35-372.

Sun Microsystems, Inc. 2006. Java RMI over IIOP.
<http://java.sun.com/products/rmi-
iiop/> [accessed May 26, 2006].

http://oscill8.sourceforge.net/
http://oscill8.sourceforge.net/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.microsoft.com/WindowsServer2003/iis/default.mspx
http://www.microsoft.com/WindowsServer2003/iis/default.mspx
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/
http://www.mono-project.com/ASP.NET
http://www.mono-project.com/ASP.NET
http://www.netlib.org/lapack/
http://www.omg.org/corba/
http://sbw.kgi.edu/downloads/SimAPI.pdf
http://sbw.kgi.edu/downloads/SimAPI.pdf
http://java.sun.com/products/rmi-iiop/
http://java.sun.com/products/rmi-iiop/

Bergmann and Sauro

Vallabhajosyula, Ravishankar Rao, Vijay Chickarmane,

and Herbert M. Sauro. 2006. Conservation analysis of
large biochemical networks. Bioinformatics 22.3: 346-
353.

W3C. 2006. Web Services. <http://www.w3.org/
2002/ws/> [accessed May 26, 2006].

Wellock, Cameron, Vijay Chickarmane, and Herbert M.
Sauro. 2005. The SBW-MATLAB interface.
Bioinformatics 21.6: 823-824.

ZIB (Zuse Institute Berlin). 2003. Affin-invariant Newton
Techniques (ANT) - NLEQ2. <http://www.
zib.de/Numerik/numsoft/ANT/nleq2.en.
html> [accessed May 26, 2006].

AUTHOR BIOGRAPHIES

FRANK BERGMANN is currently a PhD student under
the supervision of Herbert Sauro at the Keck Graduate In-
stitute. He received his first degree in computer science
from the Johann Wolfgang Goethe University Frankfurt,
Germany. For his diploma he specialized in computer
graphics and carried out his senior thesis on visualization
of reaction-diffusion systems in biology. He is the lead de-
veloper for the Systems Biology Workbench and his PhD
is concerned with the development of tools and applica-
tions of computer science to Systems Biology. His e-mail
address is <fbergman@kgi.edu>, and his web page is
<http://public.kgi.edu/~fbergman>.

HERBERT SAURO was originally educated as a bio-
chemist/microbiologist but became interested in the use of
simulation and theory to understand cellular networks after
accidentally coming across a paper by David Garkfinkel on
the simulation of glycolysis. He wrote one of the first bio-
chemical simulators for the PC (SCAMP) in the 1980s to
assist work on extending metabolic control analysis (a the-
ory closely related to biochemical systems theory). How-
ever, with the lack of community interest in systems biol-
ogy during the late 80s and early 90s, he left science to
start a software company and offer consultancy work to fi-
nance firms in the UK. With the surge in interest in sys-
tems biology in the US in the late 90s, he secured a posi-
tion at Caltech to assist in the development of the Systems
Biology Markup Language. Since then he moved to a fac-
ulty position at the Keck Graduate Institute where he con-
tinues to do research on network motifs, theory, and soft-
ware. His e-mail address is <hsauro@kgi.edu>.
1645

http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.zib.de/Numerik/numsoft/ANT/nleq2.en.html
http://www.zib.de/Numerik/numsoft/ANT/nleq2.en.html
http://www.zib.de/Numerik/numsoft/ANT/nleq2.en.html
mailto:fbergman@kgi.edu
http://public.kgi.edu/~fbergman
mailto:<hsauro@kgi.edu

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

