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ABSTRACT  

We present a method for estimating (predicting) parameter 
values for an agent-based model of in silico hepatocytes 
(ISH).  The method enables the ISH to interact with simu-
lated drugs to reasonably match results from in vitro hepa-
tocyte excretion studies.  Further, we make the estimation 
method available to the model, itself, to enable it to rea-
sonably anticipate (predict) the biliary transport and excre-
tion properties of a new compound based on the acceptable 
parameter values for previously encountered compounds.  
We use Fuzzy c-Means (FCM) classification algorithm to 
determine the degree of similarity between previously 
tuned compounds and the new compound.  Specifically, a 
set of simulation parameters for enkephalin was predicted 
using the tuned parameter values of salicylate, taurocho-
late, and methotrexate.  The feature space for the FCM 
classification is the physicochemical properties of the 
compounds.   

1 INTRODUCTION 

Accurate estimation of a drug's hepatic disposition (includ-
ing hepatic metabolism, protein binding, intracellular se-
questration, and biliary excretion) is a crucial step in the 
development of clinically practical drugs.  Early in the new 
drug development process there is often a considerable 
over supply of candidates.  Suitable in silico methods can 
help narrow the list of candidate compounds to a manage-
able number before beginning expensive wet-lab evalua-
tion and screening of those selected (Augen 2002, 
Rajasethupathy 2005).  Compounds that are likely to have 
undesirable metabolic and excretory properties need to be 
culled from the list.  The current most widely used in silico 
methods rely on correlational techniques rather than esti-
mates based on knowledge of the mechanisms involved.  
We focus on modeling the biliary excretion of compounds 
at the mechanistic level.  Biliary excretion is a relatively 
complex process involving translocation across the sinu- 
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soidal membrane, movement through the cytoplasm, and 
transport across the canalicular membrane.  Different 
transporters and metabolic enzymes can be involved.  In-
tracellular spatial organization may be important.  Com-
petitive interactions can occur between these components 
and other compounds undergoing the same processes.   

Numerous in vitro systems (e.g., isolated perfused liv-
ers, isolated hepatocyte, short-term cultured hepatocyte 
couplets and long term sandwich cultured hepatocytes) 
have been used to investigate biliary excretion.  In the in 
vitro sandwich-culture system, bile can be sequestered in 
spaces (small lumens) created by adjacent hepatocytes that 
have formed tight junctions between themselves, as illus-
trated in Figure 1A.  The tight junctions form a seal be-
tween the luminal contents and external media.  For the 
low resolution model described herein, the system has been 
broadly subdivided into three spaces: intracellular (cyto-
sol), canalicular lumen, and the incubation medium.  In the 
in vitro system, Ca2+ is responsible for maintaining the bar-
rier function of the tight junctions that form a seal between 
the canalicular lumen and the incubation buffer.  The bar-
rier can be disrupted by depletion of Ca2+.  When that is 
done, the solution (biliary secretions from hepatocytes) that 
had accumulated in the canalicular lumen spaces mixes 
with the incubation medium.  The cumulative uptake when 
the standard media is used represents the amount of sub-
strate in both intracellular (cytosol) and in the canalicular 
lumen.  However, when Ca-free media is used, the cumula-
tive uptake represents the amount of substrate in cytosolic 
compartment only (Liu et al. 1999a).  Thus, the amount of 
substrate excreted in the canalicular lumen (i.e., in vitro 
counterpart to biliary excretion) can be estimated from the 
difference between the cumulative uptake in presence and 
absence of Ca2+.  We constructed a low-resolution (few 
components; limited detail) model to test hypotheses about 
the mechanistic details of biliary transport in vitro and to 
predict transport and excretion properties of newly encoun-
tered compounds.  The biliary excretion estimated by this 
method for several compounds is consistent with in vivo 
biliary excretion data (Liu et al. 1999a).   
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2 THE MODEL 

We use agent-directed programming to construct the 
model.  Within the in silico hepatocytes (ISH) we represent 
cells using fixed agents placed in a 2D grid where mobile 
objects representing solute can interact with them stochas-
tically.  The ISH used here is the same as that presented 
and described previously (Sheikh-Bahaei et al. 2006).  The 
descriptions that follow are consequently brief, yet suffi-
cient for clarity.  Consult (Sheikh-Bahaei et al. 2006) for 
additional detail.  

To avoid confusion hereafter and clearly distinguish in 
vitro components and features from their in silico counter-
parts, such as a “hepatocyte,” a “solute,” or “excreted,” we 
use SMALL CAPS when referring to the in silico system.  We 
model the canalicular lumen (center, Figure 1A) as an ob-
ject acting as a container inside the simulated HEPATOCYTE 
into which SOLUTES can be EXCRETED by TRANSPORTERS.  
Simply eliminating this space simulates Ca2+ disruption of 
tight junctions and mixing of what would have been lu-
minal contents with the extracellular media, as illustrated 
in Figure 1. The sketch illustrates hepatocytes in a sand-
wich culture in vitro and the organization of the compo-
nents within the ISH. Part A shows two hepatic cells 
(white), attached by tight junctions.  A canalicular lumen 
space (shaded) is between them.  The external medium in-
cludes Ca2+.  Part B shows the same system, but the Ca2+ in 
the media has been depleted breaking the tight junctions.  

The Incubation Medium is represented by a 2D square 
grid in which HEPATOCYTES and SOLUTES can be placed to 
interact with each other.  Drug Compounds (SOLUTES) are 
represented as independent, mobile objects that move 
around stochastically (using a Moore neighborhood), gov-
erned by the flow of the incubation medium. During an ex-
periment, the event histories of SOLUTES (and other 
objects), such as SOLUTE that has been TRANSPORTED out 
of a CELL, or that has diffused into a CELL, can be tracked 
individually or as groups.  SOLUTES are initially placed 
uniformly and randomly in the space external to 
HEPATOCYTES.  At each simulation cycle, a SOLUTE may 
stay in place or move randomly in one of eight directions 
(N, NE, E, SE, S, SW, W or NW with a probability of 1/9). 
A SOLUTE may, depending on its properties, PARTITION 
into an encountered HEPATOCYTE.  There is also a chance 
that it may be transported (actively imported) into the CELL 
by TRANSPORTERS.  The pseudorandom numbers were 
generated from a uniform distribution using a Mersenne 
Twister random number generator.   

HEPATOCYTES are constructed from objects that repre-
sent corresponding hepatocyte components and the envi-
ronment: factors that can bind drug, enzymes, transporters, 
and  a  space  for  biliary  excretion.   A Binder is an object 
16
 
Figure 1: Two Adjacent Hepatic Cells in Standard (A) and 
Ca-free Buffers (B).  

 
that can bind or sequester free SOLUTE and hold onto it for 
a specified number of binding cycles.  An ENZYME is a 
specialized form of binder.  It can “metabolize” a bound 
SOLUTE by replacing it, following the binding period, with 
a metabolite object and then destroying the replaced 
SOLUTE (for more details see Sheikh-Bahaei et al. 2005, 
Liu and Hunt 2005, and Liu and Hunt 2006).  
TRANSPORTERS belong to a subclass of binders.  They can 
bind a free SOLUTE that is either inside or outside a CELL, 
and transport it to the opposite side of the CELL 
MEMBRANE, independent of the local SOLUTE concentra-
tion.  Three important TRANSPORTER parameters are 
Transport_in/out_probability (it specifies the probability 
of binding a given SOLUTE), Binding_cycles (specifies how 
many cycles a SOLUTE remains attached), and Excre-
tion_space (the location of excreted SOLUTES until removal 
to an EXTRACELLULAR space).  In cultures with Ca2+, 
SOLUTES in the Excretion_space are not removed simulat-
ing that they are “sealed” within a luminal space (e in Fig-
ure 1A).  Excretion_Mean determines the average number 
of SOLUTE in this space.  

2.1 In Silico Dynamics 

Two parameters, Solute_Membrane_Cross-In_Probability 
and Average_Cell_Capacity, determine when a free 
SOLUTE in the “incubation medium” space that has encoun-
18
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tered a cell may enter it.  The former, which is governed by 
solute properties, is the probability that the SOLUTE enters 
the cell passively.  The latter, the mean of an exponential 
distribution, determines the number of objects a cell can 
accommodate by passive transport.  The probability of par-
titioning into a CELL decreases with increasing 
INTRACELLULAR SOLUTE.  Each unbound INTRACELLULAR 
SOLUTE may also partition out with a probability of Sol-
ute_Membrane_Cross-Out_Probability.   

If a SOLUTE fails to enter the CELL by passive transport, 
it will be given a chance to bind, with probability of trans-
port-in_probability, with a transporter by which it is rec-
ognized.  If recognized, it is transported into the CELL.  We 
assume that TRANSPORTERS are placed randomly within a 
CELL MEMBRANE.   

Once an intracellular solute is bound, there is chance 
that it will get excreted based on an exponential probability 
distribution with mean Excrete_Mean.  If excreted, it will 
be removed by external spaces.  If not removed, the list 
represents solute “sealed” between hepatocytes.  If not ex-
creted, the solute is treated as if it had been transported out 
by a basolateral membrane transporter, and is transferred 
back to the 2D extracellular space (the simulated incuba-
tion medium) in the next simulation cycle.  SOLUTE within 
HEPATOCYTES maps to substrate in the cytosol.  Solute in 
the excretion space maps to material excreted into the ca-
nalicular lumen (bile).  For both standard and Ca-free me-
dia, the in silico cumulative uptake was calculated as:  

 
 Uptakein silico = total of (partitioned-in + transported-in  
+ excreted) solute  (1) 

 
When the Ca-free media is being simulated, the aver-

age number of excreted objects (Excrete_Mean) was set to 
zero to simulate the effect of Ca2+ depletion.  

2.2 Parameter Tuning 

The ISH parameter space consists of several different pa-
rameter types, some of which directly map to measurable 
biological counterparts. However, most of the parameters 
are simulation-specific with no direct biological signifi-
cance.  The ISH behavior space partially overlaps with the 
behaviors of the referent system when parameters have 
been appropriately tuned (adjusted). By so doing, we make 
the ISH behavior space converge on the behavior space of 
the referent system (Figure 3).  In general, the parameter 
hyperspace of this model consists of both biologically 
meaningful (e.g., cell/compound density) and simulation-
specific parameters (e.g., binding or membrane-crossing 
probabilities).  Whereas the simulation-specific parameters 
have no particular constraints, the biologically meaningful 
parameters are constrained to stay within reasonable values 
(so that, at a minimum, outcomes are consistent with cell 
life). Optimizing the whole parameter vector makes it eas-
1619
ier to find solutions within the constrained regions.  A fail-
ure of optimization might be caused by false (biologically 
unrealistic) mechanisms implemented in the model.  On 
the other hand, a successful optimization provides some 
measure of validation for the implemented mechanisms. 
Doing so, however, is not a goal of this paper: we have al-
ready validated this model against data for four compounds 
(Sheikh-Bahaei et al. 2006).   

Parameter tuning can be done by optimization meth-
ods.  Because the model is stochastic and therefore has dis-
continuity and noise in its behavior space, ordinary 
gradient-based Newton and quasi-Newton optimization 
techniques, which are commonly used for differential 
equations parameter tuning, cannot be applied.  Non-
gradient-based methods such as GAs (genetic algorithms) 
or Nelder and Mead Simplex method (Nelder and Mead 
1965) are more successful.  

After each simulation experiment a similarity measure 
(SM) algorithm (Ropella and Hunt 2003) assigns a score to 
the output of the simulation.  This score provides a meas-
ure of similarity of the current output to the referent data.  
The goal is to maximize the SM score.  The optimization 
algorithm used is the Nelder and Mead Simplex (Nelder 
and Mead 1965) method that has been widely used (Lu-
ersen et al. 2002, Tan et al. 2003, Chelouah et al. 2003, 
Lagariaset et al. 1998) to solve parameter estimation prob-
lems with discontinuities or where function values are 
noisy.  Among the several different versions and exten-
sions of this method, we are using the one described in 
(Neddermeijer et al. 2000) with minor changes.   

2.3 Fuzzy C-Means Algorithm 

Since Fuzzy Set Theory (FST) began in the 60’s it has 
been developed as an alternative to probability theory in 
modeling uncertainty.  Pattern recognition, or search for 
structure in data, provided the early motivation for devel-
oping FST because of the fundamental involvement of hu-
man perception (Derrig and Ostaszewski 1995).  

A fuzzy classifier provides a measure of the degree to 
which a pattern fits within a class.  There are several tech-
niques for fuzzy pattern recognition.  A Fuzzy classifier 
based on a genetic algorithm requires a long training time 
and that time can increase dramatically when the training 
data has a high dimension.  A fuzzy classifier having an 
ellipsoidal region has performed well in many classifica-
tion problems, but it needs a vast amount of time to calcu-
late the covariance matrix of the ellipsoidal clusters.  K-
Means-Based fuzzy classifier (Wong et al. 2000) uses the 
K-means algorithm to partition the training data for each 
class into several clusters, and then some fuzzy rules are 
used to construct a fuzzy classifier.  In this work, we use a 
fuzzy pattern recognition technique introduced by Bezdek 
and described in (Bezdek et al. 1984): Fuzzy C-Means 
(FCM) iterative algorithm.   
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FCM clustering involves minimizing an objective 
function or error criterion selected from a family of objec-
tive function clustering algorithms.  A common goal of 
these algorithms is to find an “optimal” partitioning of fea-
ture space given a collection of data samples.  The algo-
rithms that, in addition to minimizing an error function, 
estimate the prototypes of resulting classes within a parti-
tion, are often referred to as C-Means clustering algo-
rithms, where the integer c stands for the number of 
classes. If the classes, for which the prototypes are esti-
mated, are allowed to be fuzzy, the FCM clustering algo-
rithm may be used.  The FCM algorithm minimizes the 
least-squares function that is given by a generalized within-
groups sum of square errors:  

 

 Jm = μik
m

i=1

c

∑
k=1

n

∑ dik
2  (2) 

 
where there are n observations (in our case the physico-
chemical properties of the compounds of interest), c 
classes, μik is the membership of xk (here x is the vector of 
physicochemical properties) in class i, m (the “fuzzy expo-
nent”) is a parameter used to control the fuzziness of the 
class allocation, and 

 
 dik

2 = (xk − vi)
T G(xk − vi)  (3) 
 

is the distance measure, or inner product norm, between xk 
and the mean of class i, denoted vi, induced by the positive 
definite weight matrix G, and vi is determined by, 

 

 vi =
μik

m xkk=1

n∑
μik

m

k=1

n∑
. (4) 

 
The output of FCM, U, is a real c-by-n matrix, con-

taining the values of the membership functions of the fuzzy 
clusters. This matrix satisfies the following two conditions. 
The first condition is that each feature vector xk has its total 
membership value of one divided among all clusters, while 
the second one states that the sum of membership degrees 
of feature vectors in a given cluster does not exceed the to-
tal number of feature vectors. 

2.4 Parameter Estimation  

In this section we present an algorithm which uses FCM to 
estimate the simulation parameters of enkephalin knowing 
the tuned parameters of salicylate, taurocholate, and meth-
otrexate.  Three compounds are minimal.  It is, however, 
sufficient to demonstrate the approach.  In an industry set-
ting data on many more compounds will be available.  The 
four compounds were classified to two and three clusters 
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using Fuzzy c-Means algorithm based on selections of 
physicochemical properties that are expected to contribute 
to biliary clearance of the compounds.  Initially the follow-
ing physicochemical properties were considered: molecular 
weight, logP, hydrogen bond donor count, hydrogen bond 
acceptor count, rotatable bond count, tautomer count, pKa, 
TPSA, volume, GPCR ligand, ion channel modulator, 
kinase inhibitor, and nuclear receptor ligand.  The results 
are shown in Table 1.  (For Table 2, property values were 
obtained from the following sources: <http://www. 
molinspiration.com/cgi-bin/properties>, 
<http://www.syrres.com/esc/est_kowdemo.
htm>, and <http://ibmlc2.chem.uga.edu/ 
sparc/index.cfm>; abbreviations are MW: molecular 
weight, HBD: hydrogen bond donor, HBA: hydrogen bond 
acceptor, RB: rotatable bond, TPSA: topological polar sur-
face area, GPCR: G-protein-coupled receptor, NR: nuclear 
receptor, and IC: ion channel.) 

Table 1: Fuzzy Classification Results of Salicylate, Tauro-
cholate, Enkephalin and Methotrexate Based on Their 
Physicochemical Properties (Table 2), Where C is Number 
of Clusters.  

C Group Sal. Taur. Meth. Enkeph.
1 0.9862 0.0736 0.2308 0.1529 2 
2 0.0138 0.9264 0.7692 0.8471 
1 0.9981 0.0997 0.0492 0.0096 
2 0.0011 0.5492 0.8639 0.0291 3 
3 0.0007 0.3511 0.0869 0.9614 

 
Table 2: Physicochemical Properties of Salicylate, Tauro-
cholate, Methotrexate and Enkephalin. 

Property Sal. Taur. Meth. Enkeph.
MW 140.1 515.7 454.4 645.8 
logP  2.24 0.01 -1.28 2.01 
HBD count  2 5 5 7 
HBA count  3 7 12 8 
RB count  1 7 9 7 
Tautomer count 4 2 24 32 
pKa 2.97 1.8 4.7 10 
TPSA 57.5 144.1 210.6 199.9 
Volume 119.1 483.1 387.4 569.7 
GPCR ligand  -0.44 -0.26 0.22 -0.19 
IC modulator -0.08 -0.15 0.02 -1.05 
Kinase inhibitor -0.65 -0.47 0.11 -0.84 
NR ligand  -0.58 -0.08 -0.36 -0.58 

 
The results show that when divided into two groups, 

taurocholate, enkephalin, and methotrexate have more 
membership in the same group while salicylate belongs to 
another.  However, when divided to 3 groups, taurocholate 
and methotrexate have membership in the same group 
while enkephalin and salicylate belong to different groups.  

Knowing the similarity of the compounds in the phys-
icochemical domain we approximated their model parame-
0

http://www.molinspiration.com/cgi-bin/properties
http://www.molinspiration.com/cgi-bin/properties
http://www.syrres.com/esc/est_kowdemo.htm
http://www.syrres.com/esc/est_kowdemo.htm
http://ibmlc2.chem.uga.edu/sparc/index.cfm
http://ibmlc2.chem.uga.edu/sparc/index.cfm
http://146.107.217.178/lab/alogps/start.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=236971&dopt=Abstract
http://146.107.217.178/lab/alogps/start.html
http://www.molinspiration.com/services/psa.html
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ter values assuming that similarity the in the physico-
chemical domain maps to similarity in the model parameter 
domain.  A set of simulation parameters is acceptable for a 
compound, if it produces simulated results that are good 
enough for the questions or research task at hand, i.e. fa-
cilitate decision making during early drug selection and 
development.  The Similarity Measure algorithm is used to 
measure the quality of the output.  Given the preceding as-
sumption, the parameter vector of compound X is esti-
mated as the weighted average of the in silico parameter 
vectors of the other compounds.  The proportional rele-
vance of the parameter vector of compound Y, depends on 
the degree of similarity of X and Y.   

In general, for a data set, S, containing n compounds 
S= {c1, c2,…, cn},  the following algorithm is used to esti-
mate the simulation parameters of a new compound, cn+1: 

Step 1.  Let q = n, and Snew= {c1 , c2… cn , cn+1}. 

Step 2.  If q = 1 quit. Else, classify Snew into q clusters  

  using FCM.   

Step 3.  If cn+1 is not in the same group with at least an-
other compound, then decrease q to q-1. Repeat 
steps 2 and 3.  

Step 4.  Let’s call the q groups G1, G2… Gq where 
cn+1∈G1.Let μk be the membership degree of cn+1 
to group k. Estimate the simulation parameters of 
cn+1 as:  

 ∑
=

∧
⋅=

q

k
GkkX PP

1

rr
μ  (5) 

where PGk is the average parameter vector of all 
the members of group k.  

The accuracy of this estimation depends, of course, on 
how many compounds similar to compound X exist in the 
data set.  

3 RESULTS 

The referent for this model is an in vitro system used for 
studying primary rat hepatocytes (Liu et al. 1999a).  Liu et 
al. (1999a) show that hepatocytes cultured in a collagen-
sandwich configuration for up to five days establish intact 
canalicular networks, and reestablish polarized excretion of 
organic anions and bile acids.  The system is a useful in vi-
tro model for investigating the hepatobiliary disposition of 
compounds.  The authors report that after the cells have 
been maintained in sandwich culture for five days, the cu-
mulative uptake of [3H] taurocholate (a common compo-
nent of bile) by the hepatocytes was significantly higher in 
standard Ca-containing media, compared with that of Ca-
free media.  The difference is a consequence of accumula-
tion of taurocholate in intracellular canalicular spaces es-
tablished during the prior culture period.  [3H] 
1621
Taurocholate efflux from cells pre-loaded with drug for 
five days was greater in Ca-free compared with standard 
Ca-containing media.  There is, of course, variability both 
within and between experiments.   

Figure 2 shows the correlations between in vitro hepa-
tocyte and in silico ISH uptake values at different times.  
The in vitro values were obtained (Liu et al. 1999a, Liu et 
al. 1999b) using well-established, sandwich-cultured 
hepatocytes using both standard and Ca-free media.  The 
in silico uptake values were calculated using Equation (1). 
The ISH parameter values for each drug were iteratively 
optimized as reported in (Sheikh-Bahaei et al. 2006). 

 
Figure 2:  Correlation Between In Vitro and In Silico Up-
take Values at Four Different Times (0.5, 2, 5 and 10 min-
utes) For Standard (Black Circles) and Ca-free Media 
(Gray Circles).  

The measured uptake of enkephalin in well-
established, sandwich-cultured hepatocytes, using both 
standard and Ca-free media, is presented in Figure 4A.  
Also shown is the model-predicted time course of in vitro 
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enkephalin uptake under those same two conditions.  In 
Figure 3 the matches to both types of uptake are shown 
when model parameter values are iteratively tuned 
(Sheikh-Bahaei et al. 2006).  Note that the in vitro uptake 
of enkephalin is about four times that of taurocholate, 
which has the largest uptake of the three compounds.  The 
predicted uptake of enkephalin in the Ca-free buffer 
reaches its steady state too early.  This might be due to the 
saturation of the uptake TRANSPORTERS used in the model.  
The in silico concentration of enkephalin is much higher 
than for the other three, and that may be a reason for satu-
ration.   

 

4 CONCLUSION AND DISCUSSION 

In Sheikh-Bahaei et al. (2005, 2006) we present an earlier 
version of the ISH which is, upon properly tuning its pa-
rameters, capable of mimicking its biological referents. 
The ISH parameter space consists of both biologically 
meaningful and simulation-specific parameters.  The ISH 
behavior space partially overlaps that of the referent sys-
tem.  By properly adjusting parameters, we make the ISH 
behavior space converge on the behavior space of the ref-
erent system.   In this paper, we use the ISH to predict the 
behavior of the referent system when introduced to a new 
compound not previously encountered.  In order to predict 
that behavior, we needed means to estimate (predict) an 
appropriate set of parameter values. Note that parameter 
prediction is a direct mapping from physicochemical prop-
erties to the ISH parameter space where as parameter tun-
ing draws its information from the biological behavior 
space (Figure 3).  In this work we presented an algorithm 
(Section 2.4) to estimate those values.  It utilizes the FCM 
algorithm to cluster previously encountered compounds 

 
Figure 3: The Relationship Between In Silico Parame-
ter/Behavior Spaces and Their In Vitro Physicochemi-
cal/Behavior Spaces. 
16
based on their physicochemical properties (Figure 3).  Our 
FCM approach offers three important advantages:  

1. Because FCM is an unsupervised learning method 
(to work, it does not need to be trained with training data) 
the problem of over-fitting to the training data is mini-
mized.  That is particularly important in our case due to the 
small size of our data set. 

2. It provides soft clusters.  They are more biologically 
realistic.    

3. Unlike other classification methods (such as ANNs) 
the FCM only needs to specify a few parameters.  In fact, 
in the algorithm presented, it has only one or two, namely 
m and G, where we chose G = I (the Identity matrix).   

We now discuss the acceptability of the results in Fig-
ure 4.  Within experiments, there can be orders of magni-
tude differences between active and passive uptake of 
different compounds along with comparable differences in 
biliary excretion.  Typically, the uptake and biliary excre-
tion values of the same compound, between experiments, 
using essentially the same experimental system, is within a 
factor of two.  The results of simulations can be more pre-
cise, but without drawing on additional information, their 
predictive accuracy can not be better.  The simulations de-
scribed here are intended to be analogous to repeat in vitro 
experiments: an observer should not be able to distinguish 
between data coming from a repeat in vitro experiment and 
data from an experiment on a tuned ISH.  With those 
model use expectations set, the results in Figure 4 are 
minimally acceptable.  They are good enough to facilitate 
decision making during early drug selection and develop-
ment.  The simulated enkephalin results are based on the 
uptake data of only three other compounds.  Our expecta-
tion is that when the above procedure is used with descen-
dants of model in Figure 1 to predict the uptake and 
excretion properties of future new compounds, the useful-
ness of predicted results will improve with each expansion 
of the set of successfully represented compounds.   

The traditional approach to predicting the in vitro and 
in vivo properties of new compounds is to search for pat-
terns within large data sets of measured biological property 
data and then seek patterns within the set of compound 
property values of those compounds for which correlations 
exist.  Knowledge about the mechanisms that generated the 
biological data is only used indirectly.  A contribution of 
this paper is offering a method for combining both the 
knowledge of mechanisms and the patterns found in the 
space of the physicochemical and biological properties.  
The models and approach described herein are designed to 
leverage that knowledge by representing and improving 
our understanding of the generative relationships within 
the target biological system.  The generative relationships 
between components within the ISH stand as a hypothesis 
of how the corresponding in vitro phenomena may be gen-
erated.  As such, the hybrid approach presented here is ex-
pected to significantly improve our ability to anticipate the  
22
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Figure 4:  Comparisons of enkephalin uptake, in vitro and
simulated, for two different growth conditions; the simula-
tions use either the estimated (A) or tuned (B) parameter
values (Table 3).   

 
Table 3: Tuned Vs. Estimated Parameter Values for En-
kephalin.  

Parameter Tuned Estimated 
artHepExcretionMean  1.20 0.51 
artBindersPerCellMin  5 5 
artBindersPerCellMax  10 10 
artCellAverageCapacity    0.19 1.15 
artTransportersPerCellMin  5 5 
artTransportersPerCellMax 10 10 
artSoluteTransportInProb 0.016 0.023 
artSoluteTransportOutProb  0.0808 0.14 
artSoluteTransportCycles 1 2 
artSoluteMembraneCrossInProb 0.012 0.035 
artSoluteMembraneCrossOutProb 0.095 0.37 
artMetabolizationProb 0 0 
artSoluteBindingProb 0.032 0.052 
artSoluteBindingCycles 4 3 
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biological properties of compounds of interest.  The ap-
proach   is  new:   more  work  is  needed  to  uncover   and 
understand limitations and to delineate advantages relative 
to other methods typically used (optimization, data fitting 
etc.).   
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