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ABSTRACT 

Global optimization has proven to be a powerful tool for 
solving parameter estimation problems in biological appli-
cations, such as the estimation of kinetic rate constants in 
pathway models. These optimization algorithms sometimes 
suffer from slow convergence, stagnation or misconver-
gence to a non-optimal local minimum. Here we show that 
a nonuniform sampling method (implemented by running 
the optimization in a transformed space) can improve con-
vergence and robustness for evolutionary-type algorithms, 
specifically Differential Evolution and Evolutionary 
Strategies. Results are shown from two case studies exem-
plifying the common problems of stagnation and miscon-
vergence. 

1 INTRODUCTION 

Estimation of kinetic rate parameters is an important and 
often rate-limiting step in systems biology (Periwal and 
Szallasi 2002; Schoeberl et al. 2002; Voit 2002; Tsai and 
Wang 2005).  The parameter estimation problems that arise 
from fitting complex models to data are typically nonlinear 
and may have multiple local minima. Standard local opti-
mization algorithms used to solve these problems can fail 
for various reasons (Mendes and Kell 1998), and global 
optimization has become an increasingly important tool. 

The popularity of global parameter estimation is due 
primarily to the increased robustness of these methods, and 
although convergence can be slow, global methods may be 
more efficient overall than restarted local methods (Moles 
et al. 2003).  Some of the most promising methods have 
been Differential Evolution (Storn and Price 1996) and 
Evolutionary Strategy (Runarsson and Yao 2000). For ex-
ample, a recent study found Evolutionary Strategies far su-
perior to others for estimating metabolic pathway parame-
ters (Moles et al. 2003). While these methods are more 
robust than local algorithms, convergence failure can occur 
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(Lampinen and Zelinka 2000).  Failure is either due to 
stagnation, in which convergence slows or stops before an 
optimum is found, or misconvergence, in which the algo-
rithm converges to a suboptimal local minimum. A possi-
ble source of these problems is the uniformly distributed 
samples used to generate the initial population and to gen-
erate mutations for subsequent generations. It is demon-
strated here that nonuniform sampling methods can im-
prove both the speed and robustness of Stochastic Ranking 
Evolutionary Strategy (SRES) and Differential Evolution 
(DE). 

2 SYSTEMS AND METHODS 

The general optimization problem we consider is to find 
the vector p that globally minimizes the function f(p) sub-
ject to p∈Ω, where Ω = {p: LBj <= pj <= UBj, ∀ j} defines 
a rectangular feasible region. Nonuniform sampling is im-
plemented by defining a new function to minimize 
f*(p)=f(p*) where 
 
 jp*

j jp 10 offset= − ,  

 
 offsetj = max(ε,-2*LBj), 
 
and ε is a small number (e.g., eps in Matlab). The offset is 
used to properly handle feasible regions that include zero. 
In addition, the lower and upper bounds on the parameters 
are transformed so that:  
 
 LB*

j = log10(offsetj+LBj) and UB*
j = log10(offsetj+UBj). 

 
We present results from two case studies exemplifying 

the common problems of stagnation and misconvergence. 
The first case study is a synthetic metabolic pathway used 
in prior published work comparing global optimization 
methods (Moles et al. 2003). The model is comprised of 
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eight ordinary differential equations with 36 kinetic pa-
rameters. We applied the same basic procedure described 
in (Moles et al. 2003), and attempted to fit all 36 kinetic 
parameters of the model. Lower and upper bounds were 
chosen as in (Moles et al. 2003): [0.1, 10] for the Hill coef-
ficients and [10-12, 1012] for all other parameters. The error 
function is a weighted sum-of-squares comparing observed 
and predicted values. 

Next, we study the “waterfall problem,” which has a 
single global minimum at x=x*, y = y*. 

 
Minimize: 

 
 f(x,y) = 20 + a2  + b2 –10{cos( 2πa) + cos( 2πb)}, 
 
where 
 a = (x-x*), 
  b = (y-y*), 
  
subject to x, y, x*, y* ∈ [0,1010]. 

 
All of the optimization methods and simulations were 

implemented in Matlab or in a Matlab interface to external 
compiled code. While DE was run using its default set-
tings, SRES used the settings applied in (Moles et al, 
2003): λ = 350, μ = 30, pf = 0.450, varphi = 1. Integration 
of the synthetic pathway model was performed with the 
LSODA algorithm (Hindmarsh 1983) with algorithmic en-
hancements and Matlab interface developed by The Bio-
Analytics Group LLC. 

3 RESULTS 

3.1 Nonuniform Sampling Speeds Convergence 

Stagnation (or very slow convergence) of optimization al-
gorithms such as Differential Evolution is a well-known 
phenomenon (Kelley 2000, Lampinen and Zelinka 2000). 
This was also the observation of (Moles 2003) on a syn-
thetic biochemical pathway model. Figures 1A and 1B 
show the convergence of DE and SRES on this problem. In 
the figures, DE-log and SRES-log refer to the nonuniform 
sampling versions of DE and SRES, respectively. SRES-
log-initial includes nonuniform sampling only for generat-
ing the initial population, while SRES-log-iterations in-
cludes it only during subsequent iterations. These results 
can be compared with Figure 2 in (Moles et al. 2003). 
However, while they plot convergence as a function of 
CPU time, we graph convergence as a function of the 
number of simulation runs (i.e., function evaluations). This 
allows for easy comparison across multiple computer ar-
chitectures. Our results confirm that SRES converges more 
quickly than DE. However, over the number of function 
evaluations we considered, they both reached a point 
where convergence slowed to an unacceptable rate. In fur-
1612
ther agreement with (Moles et al. 2003), several runs of a 
local optimizer (FMINCON) also failed to converge. 
 Nonuniform (logarithmic) sampling dramatically im-
proves the performance of both DE and SRES on this prob-
lem (Figures 1A and 1B). SRES with nonuniform sampling 
performs the best, consistently converging to the ‘true’ pa-
rameter values. This improvement is not due to the initial 
population sampling since a modified version of SRES in-
cluding only this aspect does not show improved perform-
ance. However, uniform sampling of the initial population 
followed by nonuniform sampling during the iterations 
performs equivalently to nonuniform sampling throughout. 
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Figure 1A: Representative Convergence Plots for the Syn-
thetic Metabolic Pathway Case 
 

 
Figure 1B: Representative Convergence Plots for the Syn-
thetic Metabolic Pathway Case 

3.2 Convergence to Correct Local Minimum 

There is a well-known tradeoff between the speed of con-
vergence and the probability to misconverge (Storn and 
Price 1996). To explore the impact of nonuniform sam-
pling on the potential to misconverge, we applied our algo-
rithms to the waterfall problem, which has a large number 
of local minima, but a single global one (Figure 2). Spe-
cifically, we analyzed the relative performance of the un-
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modified and modified versions of DE and SRES on the 
waterfall problem for various locations of the global mini-
mum. At each location of the global minimum (i.e., every 
combination of log(x*) = [-10,-9,…,9,10] and log(y*) = [-
10,-9,…,9,10]), 100 optimizations were run for 100 itera-
tions each, and the difference in the fraction of runs that 
converged (nonuniform - uniform sampling) was calcu-
lated. Convergence was defined as reaching a function 
value below 10-4. In all cases, the actual function value at 
the global minimum is zero. 

 

Figure 2: The Waterfall Function with Global Minimum at 
(x*=1,y*=1), Solid Line, or at (x*=5,y*=5), Dashed Line, 
with the y Value Set to the Global Minimum y* 

 
DE often misconverges on this problem. For all tested 

values of the global minimum, the fraction of runs that 
converged averaged 0.08 ± 0.03. In most cases, nonuni-
form sampling greatly improves the performance, increas-
ing the fraction converged by up to 0.97 (Figure 3). A no-
table exception occurs when the x or y value of the global 
minimum has a value of one (or zero in log space). In these 
cases, nearby local minima occur at x or y equal to zero. 
The log transform expands the basin of this minimum and, 
since only the global minimum has a lower value, many 
points end up here (Figure 2). It is a far jump from a value 
near zero (as small as -16 in transformed space) to a value 
near one (0 in transformed space) so leaving this basin is 
difficult and the optimization often stagnates here resulting 
in misconvergence. Although this “worst-case” scenario 
reveals one potential pitfall of nonuniform sampling based 
on the log transform, this appears to be a peculiarity of the 
waterfall problem. We have not yet encountered this issue 
in real-world parameter estimation problems. 

The unmodified version of SRES already performs 
well on this problem (with an average fraction converged 
of 0.90 ± 0.08). Nonuniform sampling is still useful since it 
reduces the average number of iterations until convergence 
from 57 ± 1 to 28 ± 18, among optimizations that con-
verged. As was the case for stagnation in the previous sec-
1613
tion, this improvement is mainly due to the impact of non-
uniform sampling during the iterations. Nonuniform 
sampling of the initial population distribution only shows 
an improvement when the global minimum is very near the 
lower boundary. Like DE, the modified version of SRES 
performs poorly when the global minimum has x or y equal 
to one (for the reasons discussed above). However, its per-
formance does not degrade when the global minimum is 
near the upper boundary of the feasible region (data not 
shown). 

 

Figure 3: Difference in Performance of the Unmodified 
and Modified Versions of DE on the Waterfall Problem 

 
The benefit of nonuniform sampling, as well as the 

performance of these optimization algorithms in general, 
will depend not only on the location of the optimum, but 
also on the precise bounds for the feasible region. Al-
though we have not investigated this issue in detail, a lim-
ited analysis suggests that the results presented here are not 
overly sensitive to the particular choice of upper bound. 
For example, choosing upper bounds for x and y anywhere 
between 10-6 and 1020 does not significantly alter the per-
formance of DE with nonuniform sampling at either good 
or poor performing optima, (10-6, 10-6) and (106, 106) re-
spectively, so long as the upper bound is greater than the 
optimal value (data not shown). On the other hand, increas-
ing the lower bound for x and y (e.g., up to 10-6) can dra-
matically improve robustness at the otherwise poorly per-
forming optimum (106, 106). This is not surprising since 
raising the lower bound will decrease the search space for 
the optimization. 

3.3 Test Cases from the “Real-world” 

In addition to the two synthetic case-studies described 
above, we have extensive experience applying these global 
optimization approaches to dozens of industrial and re-
search problems. Here we briefly highlight two real-world 



Kleinstein, Bottino, Georgieva, Sarangapani, and Lett 

 
examples from the pharmaceutical industry. Specifically, 
we have considered a PBPK model and a biologically-
based pathway model as test cases to evaluate the optimi-
zation methods. In both cases we tested SRES, DE, and DE 
with nonuniform sampling. SRES with nonuniform sam-
pling was not tested on these problems since it had not 
been implemented when these projects were ongoing.  

3.3.1 Physiologically-based Pharmacokinetic Modeling 

A human physiologically-based pharmacokinetic (PBPK) 
model for a liver-active drug was developed to describe the 
in vivo clinical PK in humans (Figure 4). This model con-
sists of multiple compartments representing the gut, liver, 
blood, poorly perfused and richly perfused tissues. The 
model compartments are connected by systemic circulation 
and are assumed to be homogenous and well-mixed. The 
venous effluents of the various compartments combine to 
yield a flow-averaged venous drug concentration. The ve-
nous blood exiting each compartment was equilibrated 
with the mixed-mean tissue concentration of the drug in 
the respective compartments. The orally administered drug 
was assumed to be cleared from the three compartment gut 
lumen by a first-order elimination process into the feces 
and another first-order uptake process into the liver via the 
portal blood flow. Derivation of the governing mass bal-
ance equations in each compartment have been described 
elsewhere (Sarangapani et al. 2003). 

All the physiological parameters, such as tissue vol-
ume and regional tissue blood perfusion rates, and physio-
chemical parameters, such as partition coefficient and 
plasma protein binding, were obtained from either the lit-
erature or in vitro experimentation. Phase I clinical data 
from 32 healthy subjects was used as the basis to estimate 
the remaining eleven unknown kinetic parameters by 
global optimization. 
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Figure 4: Schematic of the PBPK Model Structure 
 
The model parameter estimation was conducted in two 

steps. In the first step, all eleven unknown parameters were 
estimated using the PK data by minimizing the sum-
squared error (SSE) between the model predictions and the 
1614
measured data. All of the global optimization algorithms 
tested converged reasonably well on this problem. How-
ever, DE with nonuniform sampling achieved the fastest 
convergence with the smallest SSE (Figure 5). Several runs 
of a local optimizer (FMINSEARCH) failed to converge, 
including some with starting points very near the optimal 
value. Adaptive simulated annealing (Ingber 1989) was 
also tried on this problem with results that were better than 
SRES and DE, but not as good as DE with nonuniform 
sampling (data not shown). Following this initial optimiza-
tion, we identified a reduced set of three highly observable 
parameters by exploring the SSE function in the neighbor-
hood of the optimal estimates. We further optimized these 
parameters while the remaining kinetic parameters were 
assigned physiologically feasible values. Once again, DE 
with nonuniform sampling had the fastest convergence 
(data not shown). 
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Figure 5: Convergence Plot with All Parameters Being Op-
timized for the PBPK Model Shown in Figure 4 

 

3.3.2 Signal Transduction Pathway Modeling 

We also tested the ability of nonuniform sampling to im-
prove convergence on a model of the Wnt signal transduc-
tion pathway extended from (Lee et al. 2003). This  model 
consists of a system of twenty ordinary differential equa-
tions describing the concentration of various protein and 
protein complexes in the pathway as a function of time. 
Each rate equation follows mass action kinetics and re-
quires two parameters. 

Several parameter values (including both rate con-
stants and protein expression levels) were taken from the 
literature or measured directly. Time course kinetic infor-
mation for a downstream entity in the pathway was then 
used as a basis to estimate the remaining twelve unknown 
parameters by global optimization. All approaches con-
verged and yielded model predictions that were very close 
to the fitting data. Nevertheless, DE with nonuniform sam-
pling converged 20% faster compared with the uniform 
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sampling version, and with a SSE that was 10% of that for 
uniform sampling. 

4 CONCLUSIONS 

Nonuniform sampling of parameters proved effective in 
improving speed of convergence and avoidance of stagna-
tion for both DE and SRES. The results are mixed regard-
ing misconvergence. Logarithmic transformation preferen-
tially increases the density of samples near the region of 
parameter space where parameters have small magnitude. 
Consequently, the likelihood of misconvergence may in-
crease if the solution is near the opposite end of the feasi-
bility region. We found this was a problem for DE at the 
extreme upper boundary, but SRES performed well regard-
less of the location of the global minimum. The usual rem-
edy for this problem in DE is to adjust the parameters to 
increase diversity in the sampled population (Storn and 
Price 1996), which may be an option. However, this moti-
vates the search for a nonuniform sampling method (such 
as the logit transformation) that preserves samples in both 
ends of the feasibility intervals. 

The idea of nonuniform distributions of parameters 
has been applied to other algorithms. Globalized Nelder-
Mead uses a nonuniform distribution of parameters in re-
started Nelder-Mead, but the method is applied to untrans-
formed parameters (Luersen and Riche 2002). Thus we ex-
pect Globalized Nelder-Mead would suffer the same 
convergence problems seen in the benchmark cases in this 
paper. Thus, it may be worth investigating whether Global-
ized Nelder-Mead can be accelerated using nonuniform 
transformation of the parameters.  In equation of state 
phase calculations in fluid modeling, the partition coeffi-
cient is often transformed using the logarithm to accelerate 
convergence of optimization methods to minimize Gibbs 
free energy. In this case, however, local derivative-based 
methods are used to solve the resulting optimization prob-
lem. Logarithmic transformation of parameters as used in 
this approach is not applicable to general optimization 
problems.  

In global optimization, nonuniform distribution of ini-
tial guesses is a standard technique.  TOMLAB© is a 
commercial optimization package that has options for non-
uniform distributions of initial populations. A deterministic 
distribution of population members at corners and cen-
troids of hypercubic feasible regions in bounds constraint 
problems, and a Latin hypercube probabilistic distribution 
is used to distribute initial populations in global methods. It 
would be of interest to combine the Latin hypercube ex-
perimental design with nonlinear transformation of pa-
rameters as described in this paper. 

In summary, we have demonstrated that nonuniform 
sampling can improve both the speed and robustness of the 
evolutionary-type algorithms SRES and DE. Although 
there is no single optimization approach that is guaranteed 
1615
to work well for all problems (Wolpert and Macready 
1997),  we have found that SRES and DE with nonuniform 
sampling work well in practice for estimating kinetic rate 
constants in several types of biological pathway models. 

Matlab code for the SRES and DE methods used here 
are available on the Web at the following URLs: <http: 
//www.cs.princeton.edu/~stevenk/optimiz
ation> and  <http://www.bioanalyticsgroup. 
com/default_files/Page295.htm>. 
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