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ABSTRACT

Bio-ontologies are hierarchical vocabularies, which are used

to annotate other data sources such as sequence and structure

databases. With the wide use of ontologies their integration,

design, and evolution becomes an important problem. We

show how textmining on relevant text corpora can be used to

identify matching ontology terms of two separate ontologies

and to propose new ontology terms for a given term. We

evaluate these approaches on the GeneOntology.

1 INTRODUCTION

Currently, much research is devoted to the design of bio-

ontologies, which are used to annotate biomedical data. In-

tuitively, ontologies can be seen as defining the basic terms

and relations of a domain of interest, as well as the rules for

combining these terms and relations (Neches et al. 1991).

Ontologies are used in many areas, including bioinformatics

and systems biology (Lambrix 2004, Lambrix et al. 2006).

They are considered to be an important technology for

the Semantic Web (e.g., Lambrix 2005; REWERSE). They

are used for communication between people and organiza-

tions by providing a common terminology over a domain.

They provide the basis for interoperability between systems.

They can be used for making the content in information

sources explicit and serve as an index to a repository of

information. Further, they can be used as a basis for in-

tegration of information sources and as a query model for

information sources. They also support clearly separating

domain knowledge from application-based knowledge as

well as validation of data sources. The benefits of using

ontologies (e.g., Stevens et al. 2000, Lacy and Gerber 2004)

include reuse, sharing and portability of knowledge across

platforms, and improved maintainability, documentation,

maintenance, and reliability. Overall, ontologies lead to a

better understanding of a field and to more effective and

efficient handling of information in that field.
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A prominent example is the Gene Ontology (GO) (The

Gene Ontology Consortium 2000), which comprises some

20.000 terms related to cellular components, biological pro-

cess, and molecular function. The terms of the GO are

then used to annotate protein sequences and structures in

databases such as UniProt and PDB. While GO covers

molecular biology, MeSH, the medical subject headings,

focuses more on medicine and includes, e.g., diseases and

chemical compounds. Both MeSH and GO overlap. Other

ontologies include TAMBIS, GALEN, SNOMED, UMLS,

FSTA (food science), FMA (human anatomy) and the col-

lection of ontologies part of the open biomedical ontologies

OBO.

In systems biology ontologies are currently being de-

veloped in connection to the development of standards for

the representation of molecular interaction data. These

standards (see, e.g., overviews in (Strömbäck and Lambrix

2005; Strömbäck et al. 2006a,b)) aim to provide the ability

to supply information on molecular pathways in a format

that supports efficient exchange and integration. This is

seen as an important prerequisite for advances in the area.

Several standards are being proposed, and use or develop

ontologies for the definition of the important terms in the

area. For instance, the Systems Biology Ontology, con-

nected to the Systems Biology Markup Language (SBML,

Hucka et al. 2003), defines terms used in quantitative bio-

chemistry in four controlled vocabularies: roles of reaction

participants, quantitative parameters, rate laws, and simula-

tion frameworks. The Protein-protein interaction ontology,

connected to the Proteomics Standards Initiative - Molecular

Interaction (Hermjakob et al. 2004, Orchard et al. 2005),

defines terms related to protein-protein interactions such

as interaction detection methods, experimental roles and

biological roles. The Systems Biology Ontology and the

Protein-protein interaction ontology are available via OBO.

The Biological Pathway Exchange (BioPAX) standard aims

to provide an OWL-based data exchange format for pathway

data and is developed as an ontology.
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Ontologies may overlap, so that an integration of two

ontologies requires the identification of the overlap. This is

a difficult problem, as ontology terms may be known under

synonyms in the two ontologies and as a term of the same

name may refer to different meanings in two ontologies.

Thus, alignments based on the names of the terms and

the structure of the ontology may not be sufficient. A

second problem is the design and evolution of an ontology.

The design process varies widely. While GO just requires

informally that all paths from a term to the root must

be “consistent”, SNOMED formally defines all concepts

using a simple description logic. No matter whether the

ontologies are defined formally or informally, it is still

open whether users intuitively understand term names in the

ontology. In this article, we propose to approach ontology

alignment, design and evolution by analysing a suitable text

corpus. Following Wittgenstein’s view that the meaning of

a word is its use in language, we want to align and extend

ontology terms by examining their use in literature. As

literature source we use PubMed (PubMed Central), the

biomedical literature database, which contains 16.000.000

paper abstracts. For the alignment of ontologies we test

two methods. First, a Bayes classifier is generated which

associates ontology terms to documents from a corpus.

Two terms are aligned if the corresponding classifiers share

sufficient documents. Second, PubMed is queried for co-

occurrences of two terms from the two ontologies. Regarding

the design and evolution of ontologies, we also pursue

two approaches. First, we identify common prefixes of

existing ontology terms, as often child terms (such as early

endosome) are extensions of their parents (endosome). In

a second approach, we identify word groups which appear

significantly often for a given term. For example, plasma

membrane appears frequently with endosome, so it is a

good candidate term.

Thus, we test overall four approaches to align and

extend ontologies by analysing a suitable text corpus. We

first present the two approaches for alignment and then the

two for ontology extension. We use test cases based on

GO, as this is one of the most mature efforts in the field

and has reached the status of de facto standard.

2 ALIGNMENT

Many ontologies have already been developed and many of

these ontologies contain overlapping information. Often we

would therefore want to be able to use multiple ontologies.

For instance, companies may want to use community stan-

dard ontologies and use them together with company-specific

ontologies. Applications may need to use ontologies from

different areas or from different views on one area. Ontol-

ogy builders may want to use already existing ontologies

as the basis for the creation of new ontologies by extending

the existing ontologies or by combining knowledge from
1596
different smaller ontologies. In each of these cases it is

important to know the relationships between the terms (con-

cepts and relations) in the different ontologies. It has been

realized that ontology alignment, i.e., finding relationships

between terms in the different ontologies, is a major issue

and some organisations (e.g., the organisation for Standards

and Ontologies for Functional Genomics) have started to

deal with it.

We present two approaches for finding inter-ontology

relationships based on life science literature from PubMed.

In the first approach we define a similarity measure between

concepts based on the PubMed literature related to the

concepts. Concepts that are closely related according to this

similarity measure are candidates for aligning. In the second

approach we cluster the concepts of two ontologies according

to a distance measure based on PubMed document counts.

Concepts from different ontologies in the same cluster are

candidates for alignment. We discuss the feasibility of these

approaches on parts of GO and Signal-Ontology (SigO)

(Takai-Igarashi et al. 1998) as well as GO and the Enzyme

Nomenclature (EC).

2.1 Text Classification Approach

We can define a similarity measure between concepts in

different ontologies based on the probability that documents

about one concept are also about the other concept and vice

versa. We implemented a strategy containing the following

basic steps (Lambrix and Tan 2006). (i) For each ontology

that we want to align we generate a corpus of PubMed

abstracts by using the concepts as query terms. In our

implementation we generated a corpus of maximally 100

PubMed abstracts per concept. (ii) For each ontology a

document classifier is generated. This classifier returns for

a given document the concept that is most closely related

to the document. To generate a classifier the corpus of

abstracts associated to the classifier’s ontology is used. In

our algorithm we use a naive Bayes classification algo-

rithm. (iii) Documents of one ontology are classified by the

document classifier of the other ontology and vice versa.

(iv) A similarity measure between concepts in the different

ontologies is computed by using the results of step (iii).

The similarity is computed as

sim(C1,C2) =
nNBC2(C1,C2)+nNBC1(C2,C1)

nD(C1)+nD(C2)

where nD(C) is the number of documents originally associ-

ated with C, and nNBCx(Cp,Cq) is the number of documents

associated with Cp that are also related to Cq as found by

classifier NBCx related to ontology x. (v) Pairs of concepts

with a similarity measure higher than or equal to a given

threshold are suggested as candidates for aligning.
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More details about this algorithm as well as some

extensions can be found in (Tan et al. 2006).

2.2 Cluster Approach

This method uses the normalized information distance (Li et

al. 2003) between two concepts. It is based on counting the

number of hits when querying PubMed using the concepts

in the ontologies. The algorithm contains the following

basic steps. (i) For each concept the number of documents

retrieved from PubMed when using the concept as a query

term is retrieved (by querying PubMed). For each pair of

concepts the number of documents retrieved from PubMed

when using the conjunction of the concepts as a query term

is retrieved. (ii) A distance measure between the concepts

is computed by using the results of step (i). The distance

is computed as

NPD(C1,C2) =
max(log f (C1), log f (C2))− log f (C1,C2))

logM−min(log f (C1), log f (C2))

where M is the total number of documents in PubMed (in our

case 16.000.000), f (C) is the number of documents retrieved

from PubMed when using C as a query term, and f (C1,C2)
is the number of documents retrieved from PubMed when

using C1 and C2 as query term. (This distance measure is

similar to the normalized google distance in Cilibrasi and

Vitanyi 2004.) (iii) The concepts are clustered based on their

distance and a given threshold using complete-link hierar-

chical clustering. The maximal distance between elements

in the same cluster is lower than or equal to the thresh-

old. We used an implementation available from LingPipe

(<http://www.alias-i.com/lingpipe/>). (iv)

Concepts from different ontologies in the same cluster are

suggested as candidates for alignment.

2.3 Evaluation

Test cases: Two test cases are based on parts of GO and

SigO. The first case, B (behavior), contains 57 terms from

GO and 10 terms from SigO. The second case, ID (immune

defense), contains 73 terms from GO and 17 terms from

SigO. Domain experts were asked to analyse the cases and

provide alignment relationships based on equivalence and

is-a relations. We used the ontologies and the alignment

relationships from the experts as they were provided to us.

For B this resulted in 4 expected alignments (EA in Tables

1 and 2) and 8 for ID. The other test cases are based on

GO and EC. The case EC1.3 contains 141 terms from GO

and 129 terms from EC. The case EC1.1.3 contains 29

terms from GO and 31 terms from EC. We used the ec2go

mapping (2006/03/27) available on the GO homepage as

the expected result set (115 expected alignments for EC1.3

and 27 for EC1.1.3).
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Table 1: Quality of the Suggestions – Classification; ts/cs:

Total Number of Suggestions (ts), Number of Correct Sug-

gestions (cs).

Case B ID EC1.3 EC1.1.3

Th/EA 4 8 115 27

0.4 4/2 9/6 23/15 8/6

0.5 2/2 5/5 18/13 7/5

0.6 2/2 2/2 13/11 4/4

0.7 2/2 1/1 9/8 4/4

0.8 1/1 0/0 7/6 4/4

Table 2: Quality of the Suggestions – Cluster; tc/cc/cs: Total

Number of Clusters (tc), Number of Clusters Containing

Correct Suggestions (cc), Number of Correct Alignment

Suggestions (cs).

Case B ID EC1.3 EC1.1.3

Th/EA 4 8 115 27

0.6 3/3/4 5/3/5 35/28/32 11/9/10

0.5 4/2/3 5/3/4 36/28/32 12/10/10

0.4 4/2/2 5/3/4 36/29/30 12/10/10

0.3 2/2/2 4/3/4 37/29/30 11/9/9

0.2 2/2/2 3/3/3 26/21/21 6/6/6

Regarding the querying of PubMed, we use the concept

name as query term for GO and SigO concepts and search

in the titles and abstracts of PubMed documents. For EC

concepts we use the EC number as query term and search

in the EC number field for PubMed documents.

Text classification: Table 1 presents the results (ts/cs) of

the classification approach. Terms in different ontologies

with a similarity value higher than or equal to the threshold

Th are suggested alignment candidates (ts). For instance,

for ID and threshold 0.4 the approach suggests 9 alignment

candidates of which 6 (cs) are correct. The other 3 may be

wrong or redundant.

Cluster: Table 2 presents the results (tc/cc/cs) of the cluster-

based approach. The table presents for each case and

threshold the number of clusters with elements from both

ontologies (tc), the number of clusters containing both terms

in at least one expected alignment (cc) and the number

of correct alignments (cs) found using this method. For

instance, for ID and threshold 0.6 the approach creates 5

clusters with terms from both ontologies, 3 of these contain

terms in correct alignments and in total 5 correct alignments

can be identified in these 3 clusters.
7
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2.4 Discussion

The quality of the suggestions for both approaches varies

in the different cases in this evaluation. For instance, when

the threshold is set to 0.4 the recall of the classification

approach is 0.5 for the case B but only 0.13 for the case

EC1.3. Similarly, for the threshold 0.6 the recall for the

cluster approach is 1 for B but only 0.27 for EC1.3. The

precision for the classification approach with threshold 0.4

is, however, higher for EC1.3 (0.65) than for B (0.5). All

clusters with terms from both ontologies in the cluster

approach with threshold 0.6 are relevant for B, but only

80% of the clusters are relevant for EC1.3.

For all cases, the recall of the classification approach

goes down when the threshold becomes higher, e.g., in the

EC1.3 case the recall goes down from 0.13 to 0.05 when

the threshold goes up from 0.4 to 0.8. The recall for the

cluster approach goes down when the threshold becomes

lower, but the change is not as large as in the classification

approach.

The quality of the suggestions depends heavily on the

related literature in PubMed. In the case B there are no

related documents for 10% of the concepts and less than

10 related documents for an additional 4% of the concepts.

In the case EC1.3 there are no related documents for 40%

of the concepts and less than 10 related documents for an

additional 26% of the concepts.

Although the approaches find correct alignments, they

also may give wrong results, even when many documents

are available. For instance, in the case EC1.3 there are 699

documents related to EC:1.3.99.3, 523 documents related to

GO:acyl-CoA dehydrogenase activity and among these

documents 123 contain both concepts. This is a correct

alignment. However, the classification approach assigns a

low similarity value (0.335) and in the cluster approach they

do not appear in the same cluster for the tested thresholds.

In most cases of this evaluation, the cluster approach

outperforms the classification approach and the alignments

found by the classification approach are also found by the

cluster approach. One factor could be that the compu-

tation of the distance in the cluster approach is normal-

ized. For instance, in the case EC1.3 there are 593 doc-

uments related to EC:1.3.1.2, two related documents for

GO:dihydropyrimidine dehydrogenase (NADP+) activ-

ity and these two documents contain both concepts. In the

cluster approach the distance is computed as 0.358 which

means that the concepts are relatively similar. In the clas-

sification approach the similarity between the two concepts

using the formula in Section 2.1 can be at most 0.0067.

3 ONTOLOGY LEARNING

Learning from text corpora is based on methods which try

to extend ontologies by applying natural language process-
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ing techniques to text (Gomez-Perez and Manzano-Macho

2003). Early publications focus on pattern-based concept

and relation extraction, where a concept or relation will be

added to the ontology if it is found to match a predefined

pattern (Morin 1999). As in classical shopping cart analysis,

association rules can also be used for corpus-based learn-

ing of ontologies (Maedche and Staab 2000). Association

rules evaluate the co-occurrence of items within an item

set and use the likelihood of an item A being member of a

set, if B is already a member. A different technique called

conceptual clustering was proposed in (Faure and Poibeau

2000). After the acquisition of syntactic frames in a text,

the learning method relies on the observation of syntactic

regularities in the context of words. Concepts found are

grouped according to their semantic distance and become

this way ordered in a hierarchy. For this, no annotation

is needed beforehand, but the validation of the result is

performed manually and is therefore time-consuming. A

pattern-based learning approach instead would use labeled

examples for extracting instances from texts. While the

annotation of the learning examples is time-consuming, the

quality of the learning results would be predictable and

could be validated automatically.

Ontology learning is the automatization of the ontology

building process with the aim to lower development costs

and shorten the development time. For automatic learning,

information sources like the ontology itself or a text corpus

of relevant documents are needed. We will illustrate our

work on the example of the GO and PubMed abstracts.

We discuss two approaches for the automatic prediction

of candidate terms, namely the superstring prediction and

the term co-occurence analysis. Both approaches require

to make a selection on PubMed abstracts for a given GO

term. We identify subsets of documents using the textmining

capabilities of the GoPubMed project (Doms and Schroeder

2005). We only regard perfect matches for terms.

3.1 Superstring Prediction

In (Ogren et al. 2004) the compositional structure of GO

terms was analyzed. The authors found that many GO terms

contain each other and many GO terms are derived from

each other. For example, the term membrane [GO:0016020]

has inner membrane [GO:0019866] as a direct subconcept.

This knowledge can be used to automatically generate new

candidate terms following the observed patterns. We ana-

lyzed whether these superstring relations observed in GO

can be verified in the text.

* Methodology: By analyzing the GO we identified

3129 out of 20223 terms, where the term is a superstring

of its children. Further for 1781 of these terms, they and

their children were found in the documents. For each term,

we used the PubMed abstracts giving this evidence for

our analysis (see also Table 3). Based on these texts we



Wächter, Tan, Wobst, Lambrix, and Schroeder
Table 3: Analysis of Gene Ontology Annotations for

PubMed Abstract with Respect to Parent–Child Relation-

ships.

Terms in GO 20223

Terms found in abstracts 14905

Terms having children containing themselves 3129

(parent found in text) 2692

(parent and one child found in text) 2239

(parent and all children found in text) 1781

Terms having children 7451

(parent found in abstracts) 5964

(parent and one child found in abstracts) 5185

(parent and all children found in abstracts) 3757

identify the words which precede the actual term and rank

them by their frequency of occurrence. This leads to a list

of newly identified candidate terms to be possibly included

in the ontology. Below we carry out this analysis for some

example terms and highlight how many of the predicted

terms are indeed children in GO.

* Example: GO:0005773 ‘vacuole’ A vacuole is de-

fined as a closed structure, found only in eukaryotic cells, that

is completely surrounded by unit membrane and contains

liquid material. The term has the children ‘autophagic’,

‘contractile’, ‘lytic’, ‘parasitophorous’ and ‘storage vac-

uole’. All are found in the first 50 predicted terms (see

Table 4).

* Example: GO:0005096 ‘GTPase activator activ-

ity’ GTPases are molecular switches. A GTPase activator

is an enzyme that catalyzes the hydrolysis of GTP. GT-

Pase activator activity has the children ‘ARF’, ‘Rab’, ‘Rac’,

‘Ral’, ‘Ran’, ‘Rap’, ‘Ras’, ‘Rho’ and ‘Sar GTPase activator

activity’. Five of the children can be automatically found

(Table 5).

* Example: GO:0016265 ‘Death’ This term has the

children ‘aging’, ‘tissue death’ and ‘cell death’. Out of these

three terms the superstring prediction method is only capable

to find ‘tissue death’ and ‘cell death’ (Table 6). While ‘cell

death’ is found first, ‘tissue death’ is not found within the first

50 predicted terms. Nevertheless by carefully investigating

the result list one will find, that many terms are from

the medical domain rather than molecular biology. Terms

like ‘cardiac death’, ‘neuronal death’, ‘infant death’, ‘fetal

death’, ‘brain death’ and ‘neonatal death’ make perfectly

sense for a medical ontology. Predicted prefixing words

like ‘sudden’, ‘early’ and ‘late’ can easily be filtered using

knowledge about their frequency of occurrence in the English

language.
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Table 4: Example – Vacuole.

pos. count candidate GO

1 autophagic 1219 child

2 cytoplasmic 1048 unknown

3 parasitophorous 933 child

4 large 684 unknown

5 food 496 unknown

6 contractile 387 child

7 phagocytic 383 unknown

8 rimmed 383 unknown

9 lipid 378 unknown

10 intracellular 303 unknown

11 intracytoplasmic 295 unknown

12 digestive 265 descendant

13 endocytic 260 unknown

14 small 247 unknown

15 membrane-bound 240 unknown

.. .. ... ...

20 storage 175 child

.. .. ... ...

44 lytic 36 child

.. .. ... ...

3.2 Term Co-occurrence Analysis

The second hypothesis we wanted to verify, is based on the

co-occurrence of ontology terms in scientific text.

* Methodology: By analyzing the GO we identified

7451 out of 20223 terms, which have children. Further-

more 3757 of these terms and their children are found in

documents. Again, we used the PubMed abstracts giving

this evidence for our analysis (see also Table 3) for each

term.

Additionally to the questions in the previous section,

for the co-occurrence we are now interested in the predicted

terms which are themselves terms in the GO.

* Example: GO:0005768 ‘endosome’ This term has

the children ‘early endosome’, ‘endosome lumen’, ‘endo-

some membrane’ and ‘late endosome’ (Table 7). Further

terms deeper in the hierarchy are mainly combinations of

the named terms. On the one side all children of ‘endo-

some’ apart from ‘endosome lumen’ where predicted. On

the other side predicted terms like ‘recycling endosome’,

‘transferrin receptor’, ‘epithelial cell’, ‘trans-golgi network’,

or ‘receptor-mediated’ endocytosis are valuable candidates

to be included in the GO.

* Example: GO:0001739 ‘sex chromatin’ This GO

term only has two children: ‘Barr body’ and ‘XY body’.

Both child terms are found among the top 15 (Table 8).

Many of the other predictions such as DNA content, cell

nuclei, and electron microscopy are meaningful terms, too.
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Table 5: Example – GTPase Activator Activity.

pos. candidate count GO

1 ras 133 child

2 rho 106 child

3 small 100 similar term

4 intrinsic 88 unknown

5 gap 37 synonym

6 p21ras 34 unknown

7 family 29 unknown

8 arf 23 child

9 triphosphatase 19 similar term

10 rac 17 child

11 p21 16 unknown

12 rab 12 child

.. .. ... ...

Table 6: Example – Death.

pos. candidate count GO

1 cell 60678 child

2 sudden 11521 unknown

3 cardiac 7179 unknown

4 neuronal 5326 unknown

5 infant 3925 unknown

6 fetal 3636 unknown

7 brain 3468 unknown

8 early 2658 unknown

9 late 2079 unknown

10 neonatal 2038 unknown

.. .. ... ...

4 CONCLUSION

We have presented four approaches which use literature to

define the semantics of terms and hence align terms (classi-

fication and cluster approach) and predict new child terms

for a given term (superstring prediction and co-occurrence

analysis).

The evaluation results suggest that using life science

literature is a possible approach for aligning and extending

ontologies, although there still is much room for improve-

ment of the current algorithms. In (Lambrix and Tan 2006)

the classification approach for alignment was compared with

other approaches. In one case the classification approach

performed best, but it was outperformed by other approaches

in other cases. It was also shown that the classification ap-

proach could be combined with other approaches to obtain

superior results. The cluster approach can also be used

in another way. Instead of using the clusters to suggest

alignments, the clusters could be used to filter alignment

suggestions proposed by other algorithms. Similar ideas
160
Table 7: Example – Endosome.

pos. candidate count GO

1 early endosome 675 child

2 plasma membrane 487 existing term

3 late endosome 361 child

4 cell surface 327 existing term

5 degrees c 205 (can be filtered)

6 endosome fusion 200 existing term

7 endocytic pathway 190 unknown

8 recycling endosome 189 unknown

9 cell line 145 unknown

10 transferrin receptor 144 unknown

11 membrane protein 137 unknown

12 endosomal compartment 136 unknown

13 growth factor 130 unknown

14 results suggest 125 (can be filtered)

15 epithelial cell 121 unknown

16 endosomal membrane 116 unknown

17 trans-golgi network 114 unknown

18 endocytic vesicle 109 unknown

19 receptor-mediated

endocytosis 98 unknown

.. .. ... ...

29 endosome membrane 75 child

.. .. ... ...

Table 8: Example – Sex Chromatin.

pos. count word explanation

1 257 sex chromatin existing term

2 59 sex chromosome existing term

3 35 chromatin body not a term

4 32 barr body child

5 18 dna content not a term

6 18 meiotic prophase existing term

7 18 male female (can be filtered)

8 18 cell nuclei not a term

9 16 sex body not a term

10 15 male sex existing term

11 14 klinefelter syndrome not a term

12 14 sex determination existing term

13 13 electron microscopy not a term

14 13 xy body child

15 13 bone marrow existing term

.. .. ... ...

were explored and found useful using a structure-based

cluster approach in (Chen et al. 2006). Regarding the

ontology extension methods, results can be improved by

filtering common words. For all approaches the choice of

the text corpus and appropriate natural language processing

is vital for good results.
0



Wächter, Tan, Wobst, Lambrix, and Schroeder
ACKNOWLEDGMENTS

We acknowledge the financial support of the Swedish

Research Council (Vetenskapsrådet), the Center for In-
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Strömbäck, L., and P. Lambrix. 2005 Representations of

molecular pathways: an evaluation of SBML, PSI MI

and BioPAX, Bioinformatics 21(24):4401-4407.
1
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