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ABSTRACT 

This paper presents a stochastic traffic signal optimization 
method that consists of the CORSIM microscopic traffic 
simulation model and a heuristic optimizer.  For the heuris-
tic optimizer, the performance of three widely used optimi-
zation methods (i.e., genetic algorithm, simulated anneal-
ing and OptQuest Engine) was compared using a real 
world test corridor with 12 signalized intersections in Fair-
fax, Virginia, USA.  The performance of the proposed sto-
chastic optimization method was compared with an exist-
ing signal timing optimization program, SYNCHRO, under 
microscopic simulation environment.  The results indicated 
that the genetic algorithm-based optimization method out-
performs the SYNCHRO program as well as the other sto-
chastic optimization methods in the optimization of traffic 
signal timings for the test corridor. 

1 INTRODUCTION 

The traffic signal is one of the most common facilities be-
ing operated by traffic engineers to control traffic in an or-
derly manner.  Traffic signal timing optimization has been 
recognized as one of the most cost-effective methods for 
improving accessibility and mobility at signalized urban 
transportation networks.  
 Urban transportation networks provide services to 
various transport modes including many types of motor-
ized vehicles and non-motorized modes such as bikes and 
walks. Stochastic nature of drivers’ characteristics on re-
sponses to traffic control as well as interactions with adja-
cent vehicles make the efforts of modeling of urban trans-
port.  As such, traditional traffic signal timing plan 
optimization approaches were based on macroscopic and 
deterministic models.  

Example of these macroscopic and deterministic 
model-based traffic signal timing plan optimization pro-
grams includes SYNCHRO (Husch and Albeck 2004), 
TRANSYT-7F (Hale 2005), and PASSERTM V-03 (Texas 
Transportation Institute 2002).  The macroscopic models 
are computationally fast and simple in input requirements.  
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However, these models are limited in reflecting various 
drivers’ behaviors, interaction between running vehicles 
and variability in demands (Park et al. 2001).  As such, re-
cent version of TRANSYT-7F (T7F) introduced “direct 
CORSIM optimization,” which consists of a genetic algo-
rithm (GA) and a microscopic traffic simulation program 
CORSIM to overcome those demerits of the macroscopic 
and deterministic optimization models.  However, it is un-
able to optimize phase sequences and any additional signal 
control parameters such as extension time, minimum green 
time, and detector settings (Hale 2005).  Foy et al. (1992) 
introduced a GA in the determination of signal timing for a 
two phase system in 1992.  Hadi and Wallace (1993) in-
vestigated the use of a GA in combination with the T7F 
optimization routine to select signal timing (cycle length, 
green splits and offsets) and signal phasing.  They con-
cluded that a GA has potential in optimizing signal timing 
and phasing.  Rouphail et al. (2000) developed a direct sig-
nal timing optimization strategy by linking a GA and 
CORSIM for a pre-timed traffic signal network and com-
pared its performance with T7F.  Park et al. (2001) devel-
oped a stochastic signal optimization method using a GA 
interfaced with CORSIM to optimize cycle length, green 
splits, and offsets simultaneously for a pre-timed traffic 
signal system.  Park and Schneeberger (2003) expanded 
the method to a coordinated actuated traffic signal control 
system to optimize offsets, and compared the results with 
those of SYNCHRO and T7F as well as the existing timing 
plan.  In their research, a GA with the microscopic simula-
tion program VISSIM was used.  Recently, the authors of 
this paper, Park and Yun (2006) developed three stochastic 
optimization methods via linking CORSIM with three heu-
ristic optimization methods, including a GA, simulated an-
nealing (SA) and OptQuest Engine, using simple theoreti-
cal networks and showed the potential of the methods in 
the coordinated actuated signal systems.  Given the suc-
cessful applications of this previous work conducted by the 
authors of this paper, this paper aims at applying various 
stochastic optimization methods to an actual large-scale 
signalized corridor operating under coordinated actuated 
signal control mode.  
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The remainder of this paper is consisted as follows.  
Methodology section provides the selection of microscopic 
simulation model, descriptions of stochastic optimization 
methods, traffic signal control optimization variables and 
objective function.  The test network used in the optimiza-
tion is presented, and followed by results.  Finally, conclu-
sions and recommendations are provided. 

2 METHODOLOGY 

This section firstly covers the selection of an adequate mi-
croscopic simulation model as well as suitable optimiza-
tion methods, and then discusses the development of sto-
chastic optimization methods used in this study.  

2.1 Microscopic Simulation Model Selection 

This study selected CORSIM because of its long history of 
development and support from FHWA, its capability of 
modeling common U.S. traffic signal controllers (e.g., 
NEMA or Type 170 controllers), and its fast simulation run 
time compared to other models.   
 Park and Yun (2003) compared various microscopic 
traffic simulation models, including PARAMICS, VISSIM, 
CORSIM and SIMTRAFFIC in terms of computation time 
and capability of modeling a coordinated actuated signal 
control system.  CORSIM was the fastest in simulation run 
time and it is equipped with a built-in traffic signal control 
logic for the coordinated actuated signal control system.  
VISSIM and PARAMICS can mimic the traffic signal con-
trol system using an external program such as VAP and 
API, respectively.  Actually, the VISSIM program provides 
the VAP program and example codes, and several users of 
PARAMICS have developed APIs for actuated signal con-
trol systems in the United States (Park and Yun 2003).  
SIMTRAFFIC was computationally most expensive 
among these models.  

2.2 Heuristic Optimization Methods 

It is noted that traditional optimization methods (i.e., New-
ton or conjugate gradient methods) which require a closed-
form function to find directions for next movement, are not 
applicable for microscopic simulation-based stochastic op-
timization because microscopic simulation models do not 
provide such a function.  Thus, heuristic optimization 
methods have to be adopted.  Three commonly used opti-
mization methods: a GA, SA and a commercial optimiza-
tion program OptQuest Engine were chosen.  Brief de-
scriptions of these methods are presented in this section.  

2.2.1 Genetic Algorithm 

The GA was developed by John Holland in the early 1970s 
at the University of Michigan (Holland 1975).  The GA 
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makes up a family of computational models inspired by 
evolution (Whitley 1994).  The GA encodes a potential so-
lution for a specific problem into simple chromosome-like 
data structures and applies recombination operators to the 
structures so as to preserve critical information.  It has 
been used to solve problems with objective functions that 
are difficult to work out with mathematical approaches 
(Holland 1975, Davis 1991, Goldberg 1989).  The GA ma-
nipulates a population of potential solutions and imple-
ments a “survival of the fittest” concept to search for better 
solutions (global solutions).  This provides an implicit as 
well as explicit parallelism (Houck 1995).  Explicit paral-
lelism allows for the exploitation of several promising ar-
eas of the solution space at the same time through genera-
tions.  The implicit parallelism is due to the schema theory 
developed by Holland (1975).  The GA has been shown to 
solve linear and nonlinear problems by exploring all re-
gions of search space and exponentially exploiting promis-
ing areas through selection, crossover and mutation opera-
tions (Michalewicz 1994).  

2.2.2 Simulated Annealing  

Simulated annealing (SA) was first introduced by Me-
tropolis et al. (1953).  SA is based on the analogy between 
a stochastic search for a minimum in a system and the 
physical annealing process in which a metal gradually 
cools into a minimum crystalline structure with the mini-
mum energy (Carson and Maria 1997).  The application of 
SA for deterministic optimization problems was introduced 
by Kirkpatrick et al. (1983).  As an analogy of the anneal-
ing process for a thermodynamic system, SA firstly deter-
mines an initial energy level at initial high temperature.  
By perturbing the initial set of optimization variables for 
the system at a constant temperature, SA keeps computing 
the change in energy.  When the energy decreases the new 
configuration becomes the next search point.  Even though 
the energy increases SA determines the acceptance of the 
new configuration with a probability given by the Boltz-
mann factor, which becomes smaller as temperature de-
creases according to annealing schedule.  The perturbation 
is repeated until SA achieves good sampling statistics for 
the current temperature, and then SA reduces the tempera-
ture (cooling).  Based on the above process, SA is able to 
avoid getting stuck in local minima to find the best objec-
tive function value by accepting a new search point that in-
crease the objective value as well as a search point that de-
crease it.  Generally, the escape from local minima in SA is 
dependent on the annealing schedule, the choice of initial 
temperature, and the number of perturbation at each tem-
perature, and the amount of temperature reduction 
(Venkataraman 2001).  
4
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2.2.3 OptQuest Engine  

OptQuest Engine is commercial optimization software de-
veloped by Fred Glover in OptTek Systems Inc. (Opttek 
Systems Inc. 2000).  The OptQuest Engine integrated Tabu 
search, scatter search, integer programming, and neural 
networks into a single search algorithm for deterministic or 
stochastic optimization problems.  Especially, neural net-
work plays a role to guide the search for best solutions.  In 
addition, it remembers good solutions and recombines 
them into new solutions in order to avoid getting trapped in 
local minima cased by noisy model (Glover et al. 2006).  
The OptQuest Engine is in the format of a Windows dy-
namic linked library (DLL) for the use with Visual Basic, 
C, COM, C++, .NET, and Java applications so that the 
user-written application is necessary to evaluate each solu-
tion generated by OptQuest Engine (Glover et al. 2006).  
OptQuest®, a software version of OptQuest engine, has 
been embedded in several commercial programs or simula-
tion software such as CrystalBall (Opttek Systems Inc. 
2000), and Arena (Rockwell Automation 2004), as an op-
timization module. 

2.3 Development of Stochastic Optimization Methods  

Three heuristic optimization methods for signal timing op-
timization were developed based on a GA and SA using 
the MATLAB program and OptQuest using the Visual 
C++.Net program.  This section presents the development 
of the heuristic optimization.  Figure 1 shows the concep-
tual framework for the proposed method.  As illustrated in 
Figure 1, the stochastic signal control settings optimization 
method works as follows: 
 

• A heuristic optimization method produces indi-
vidual or a population of a set of signal control 
settings, according to the solution generation rule. 

• An optimization-simulation interface module gen-
erates a CORSIM input file including a set of sig-
nal control sets transferred from the heuristic op-
timization method. 

• CORSIM conducts random-seeded multiple simu-
lation runs. 

• Performance measures from the output files of the 
CORSIM runs are fed back to the heuristic opti-
mization method by the optimization-simulation 
interface module. 

• A heuristic optimization method evaluates the 
performance measures in an attempt to minimize 
pre-defined measures of effectiveness (MOE), and 
then generates a new set of signal control settings. 

• This process continues until certain stopping crite-
ria are met. 
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Global Optimization Module
(GA, SA or OptQuest)

Microscopic Simulation Module
(CORSIM)

Optimization-Simulation 
Interface Module

CORSIM Input File including
Signal Control Settings

Value of Objective Functions
(Queue Time)

 
Figure 1: Conceptual Frameworks for Proposed Method 
(Yun 2006) 
 
 The basic signal timings (i.e., optimization variables) 
for a coordinated actuated signal control system are cycle 
length, force-off points, offsets and phase sequences: 
(Husch and Albeck 2004, Gordon 1996, ITT Industries Inc. 
2001).  

During the stochastic optimization, traffic signal tim-
ings have to meet various constraints such as minimum 
green time requirement, barriers, equality requirement be-
tween cycle length and the sum of green splits, etc.  Thus, 
it is practical to adopt a decoding scheme such that optimi-
zation variables reside within feasible region during opti-
mization.  This study adopted a fraction-based decoding 
scheme, which was introduced by Park et al. (1999).  The 
decoding scheme allows all of the signal timings to be fea-
sible during the optimization.  It is noted that the force off 
points, needed for the coordinated actuated signal control, 
are calculated from the cycle length, green splits and phase 
sequence optimized by the stochastic optimization.  The 
same decoding scheme is applied to all three stochastic op-
timization methods.   

In addition, it should be noted that the proposed sto-
chastic optimization methods actually accommodate not 
only the basic traffic signal timings (i.e., cycle length, 
green splits, offsets and phase sequences), but also addi-
tional traffic signal control settings such as detector length, 
minimum green and vehicle extension times, which can 
play important roles in the efficiency of coordinated actu-
ated signal control systems (Park and Yun 2006).  In this 
paper, however, the signal timings to be optimized are con-
fined to the basic signal timings in order to compare the 
performance of stochastic optimization methods with that 
of SYNCHRO, of which optimization capability is limited 
to the basic signal timings (Husch and Albeck 2004).  

The CORSIM simulation program provides various 
system wide performance measures such as queue time, 
delay, throughput, stop time, etc (ITT Industries Inc. 
2001).  Since the objective function should adequately cap-
ture the performance of traffic signal control settings, the 
selection of objective function is critical.  In this study, 
5
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stochastic optimization methods use the total queue time in 
vehicle-minutes (Park and Yun 2006).  

 

3 FIELD STUDY  

This section describes the test site, the data collection, the 
CORSIM network building, and calibration, followed by 
optimization results.    

3.1 Site Selection and Data Collection 

The test site is an urban corridor in Fairfax, Virginia, USA. 
The test site, presented in Figure 1, is a corridor in the Lee 
Jackson Memorial Highway (U.S. Route 50), including 11 
coordinated actuated signals and one fully actuated signal 
between Sully Road and the Fairfax County Parkway. This 
site was chosen due to the availability of assistance from 
Northern Virginia Smart Traffic Signal System personnel 
and the ease of data collection.  Real-time signal-timing 
plans and detector data for the 12 intersections could be ex-
tracted from the Management Information System for 
Transportation (MIST) workstation located in the Smart 
Travel Laboratory at the University of Virginia. 
 

 
Figure 1: Test site: Lee Jackson Memorial Highway, Fairfax, 
Virginia (Source: <http://earth.google.com/>) 
 
Data collection efforts were designed to provide simulation 
program input values and output measures of performance 
for calibration and validation of the CORSIM microscopic 
simulation program.  While signal timings and link geome-
try attributes were provided from MIST and the Virginia 
Department of Transportation (VDOT), other data includ-
ing traffic counts for network building, travel times, and 
maximum queue lengths for calibration and validation 
were collected directly from the site for two weekdays in 
2001 (Park and Schneeberger 2003). 

3.2 CORSIM Network Building 

The CORSIM network for the test site was prepared in 
TSIS Version 5.1 by converting a SYNCHRO network, 
developed by VDOT, to a CORSIM network using the fea-
14
ture of “Transfer for CORSIM Analysis” in SYNCHRO 
version 6.  However, the transfer feature was not perfect, 
so a significant amount of effort was involved in the devel-
opment of comparable networks across the two programs.  
For fine tuning of the CORSIM network, an aerial photo-
graph was used as a background image. 
 However, the lengths of cross streets on the CORSIM 
network are longer than those on the SYNCHRO network.  
In the use of microscopic traffic simulation models, it may 
happen that vehicles generated in a link cannot enter the 
network due to a long queue when the queue reaches up to 
the “vehicle entering point” of the link.  The long queue 
may occur during the optimization process due to bad solu-
tions randomly generated by the heuristic optimizer.  In or-
der to avoid such a situation, it is necessary to extend the 
link sufficiently to accommodate all generated vehicles 
from any conditions. 

3.3 CORSIM Network Calibration and Validation 

CORSIM includes numerous calibration parameters to be 
fine-tuned by the user in order to replicate observed field 
traffic conditions (ITT Industries Inc. 2001).  Among these 
parameters, the driver behavior parameters were calibrated 
to match the field traffic conditions.  The total of 14 cali-
bration parameters was selected after careful reviews of the 
CORSIM manual and related references (ITT Industries 
Inc. 2001, Park and Qi 2005, Park et al. 2006).   
 Previously proposed microscopic simulation model 
calibration and validation procedure by Park and Qi (2005) 
and Park et al. (2006) was applied to this CORSIM net-
work. The calibration and validation procedure followed in 
this paper is briefly provided below. Readers who wanted 
to access to the entire procedure should refer to Park and 
Qi (2005) and Park et al. (2006).   
 

• Simulation model setup 
• Initial evaluation 
• Feasibility test using Latin Hyper-cube design 
• Parameter calibration using a genetic algorithm 
• Evaluation of the parameter set 
• Validation and visualization  
 
As a measure of effectiveness (MOE) for calibration, 

the eastbound travel times experienced by vehicles using 
the most left lane were used.  The 613.2 seconds in Figure 
2 is the average travel time from the field survey.  The his-
tograms were drawn using the travel times from 100 ran-
dom-seeded CORSIM simulation runs based on the default 
and the fine-tuned calibration parameters, found by the 
GA-based optimization.  Figure 2 depicts the distribution 
of travel times among 20 bins, with centers specified by 
ticks on the x-axis. 
96
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Figure 2: Histogram of Travel Times of CORSIM Net-
works with the Default and the Calibrated Parameters 
(note: Y-axis is frequency) 
 

In order to validate the set of calibrated parameters us-
ing the GA-based optimization, the data set of maximum 
queue length, which has not been used in the calibration, 
was applied in this section.  The simulated maximum 
queue length in the validation is very close to the actual 
maximum queue length as shown in Figure 3.  The 24 ve-
hicles in Figure 3 is the average value of the maximum 
queue lengths from the field survey. The histogram was 
drawn using the maximum queue lengths from the same 
CORSIM simulation runs used in Figure 2. 
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Figure 3: Maximum Queue of CORSIM Network with 
Calibration Parameters from GA (note: Y-axis is fre-
quency) 

3.4 Settings for Heuristic Optimization Methods 

In this paper, a total of 82 signal timings including a cycle 
length, green splits, offsets and phase sequences were op-
timized.  During the optimization, two other stopping crite-
ria were used in conjunction with the maximum number of 
iterations (2,500): (i) lack of improvement in the fitness of 
the best solution after 1,000 iterations or, (ii) no difference 
between the fitness of best solution and the average fitness 
of all solutions after 1,000 iterations. A completed descrip-
1497
tion of for the proposed heuristic optimization methods as 
well as two existing signal timing optimization programs 
can be found in Yun (2006). 

3.5 Convergence of Stochastic Optimization 
Methods 

The convergence properties of all the three stochastic op-
timization methods are graphically presented in Figure 4 
by illustrating the best value of queue time in vehicle-
minutes in each iteration. As shown in Figure 4, the SA-
based and the OptQuest-based methods ended at the 1642nd 
and the 1800th iterations, respectively, due to no improve-
ment in the queue time of its best solution while the GA-
based method was terminated at the maximum generation 
number. 
 

0   500 1000 1500 1642 1800 2000 2500
3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Iterations

GA
OptQuest
SA

 
Figure 4: Convergence of Three Stochastic Optimization 
Methods (note: Y-axis is total queue time in vehicle-
minutes) 

3.6 Comparison of Performance  

Performance of the existing signal timing optimization 
program, SYNCHRO, and three stochastic optimization 
methods developed in this paper was compared in Table 1 
with the average values of control delay in seconds per ve-
hicles and queue times in vehicle-minutes from 100 ran-
dom-seeded CORSIM simulation runs.  It is noted that the 
base case in Table 1 indicates the existing traffic condi-
tions prior to applying SYNCHRO and the three stochastic 
optimization methods.  The queue time was used in opti-
mization process as an objective function and the control 
delay was added because it is known as the most important 
and easiest MOE to measure the level of service of a signal 
system.  
 In Table 1, SYNCHRO showed 13.3% reduction in 
queue time when it was compared with the Base Case.  The 
GA-based method indicated 31.2% reduction in the same 
MOE whereas the OptQuest and the SA-based methods 
produced 15.0% and 11.5% reductions, respectively.  
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 Like the previous study (Park and Yun 2006), the GA-
based method showed the best performance.  However, 
SYNCHRO shows its limitation in considering field traffic 
patterns during the optimization process because it is based 
on macroscopic equations, to calculate MOEs related to 
optimization.  The OptQuest-based method produced a 
similar performance to SYNCHRO.  The SA-based method 
produced worse performances unlike the previous study 
(Park and Yun 2006).  This may be because the parameter 
settings for the SA-based optimization were determined via 
a sensitivity analysis based on the test network used in the 
previous study, and then the settings were applied to this 
study without any changes.  In addition, the number of sig-
nal timing optimized in this paper is larger than the one in 
the previous study.  Therefore, it can be concluded that the 
SA-based optimization is sensitive to the parameter set-
tings for optimization and the number of signal timings to 
be optimized, unlike the GA-based optimization method.  
 

Table 1.  Comparison of Optimization Results  

Type of Op-
timization 

Control Delay 
(Average/Standard 

deviation), 
seconds per vehicle 

Queue Times 
(Average/Standard 

deviation), 
vehicle-minutes 

Base Case 23.11 / 0.63 6,014.05 / 181.68 
SYNCHRO 20.23 / 1.11 5,215.26 / 281.93 

GA 17.21 / 1.16 4,138.36 / 325.83 
SA 22.68 / 1.14 5,321.50 / 372.43 

OptQuest 20.98 / 2.01 5,114.15 / 658.20 

4 CONCLUSIONS AND RECOMMENDATIONS 

This paper presented an application of stochastic optimiza-
tion method for a large-scale signalized corridor.  The de-
velopment of the proposed stochastic optimization methods 
was conducted via linking the CORSIM microscopic traf-
fic simulation model with one of heuristic optimization 
methods including GA, SA, and OptQuest.  The main fea-
ture of the proposed stochastic optimization method is the 
ability to optimize signal timings in a more realistic micro-
scopic simulation environment by taking account of the 
stochastic variability common in a transportation system.  
 The results of analyses in this study indicated that the 
GA-based optimization method consistently outperformed 
SYNCHRO and other methods including the OptQuest-
based and the SA-based optimization methods.  The signal 
timings optimized by the GA-based method consistently 
reduced both control delay and queue time in those average 
values as shown in Table 1.   
 Even though this application is successful, there is a 
need for further research effort in the application of the 
GA-based optimization method.  First, it was found that 
the stochastic optimization method may be sensitive to the 
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parameter settings for optimization and the number of sig-
nal timings to be optimized.  Therefore, the transferability 
of the stochastic optimization method in terms of the pa-
rameter settings for optimization and the number of signal 
timings, which is proportional to the size of the network 
under examination, should be dealt in a systematic way.  A 
significant demerit of the stochastic optimization method is 
huge computational requirement.  The reduction of re-
quired computational time can be achieved by further en-
hancements in computer technology and parallel comput-
ing.  Finally, the signal timings optimized by SYNCHRO 
and the stochastic optimization methods were evaluated 
using the calibrated CORSIM network even though the 
CORSIM model was already used in the optimization 
process.  This may cause a problem of unfair comparison 
between SYNCHRO and other methods. Therefore, there 
is a need for the use of unbiased evaluation methods to 
validate signal timings.   
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