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ABSTRACT 

This paper summarizes one group of recent simulation 
studies comparing replenishment strategies. Time-phased 
planning, implemented using DRP and MRP logic, con-
tinuous-review reorder point (ROP) and single-card Kan-
ban (KBN) systems are considered.  These differ in terms 
of decision-making information, logic and integration re-
quirements.  Experimental results have been statistically 
analyzed and explained using simple stochastic models.  
Steps have also been taken to evaluate which strategies are 
most suitable under various demand patterns, levels of un-
certainty and capacity constraints. Results show that 
DRP/MRP is superior under time-varying demand, regard-
less of whether or not capacity constraints are present.  
With no capacity constraints and level demand, ROP is su-
perior to KBN, in part because it considers backorder in-
formation.  With capacity constraints behavior is compli-
cated by queuing effects.  Under level demand, KBN may 
slightly outperform ROP, given assumptions of equal lot 
sizes, order placement delays and transportation times.  

1 INTRODUCTION 

The purpose of this paper is to summarize some of the re-
cent findings of a research stream being pursued by the au-
thors.  The results relate to studies performed using a sin-
gle test bed and methodology.  This facilitates making  
comparisons across scenarios and gaining more general in-
sights.  The lack of consistency in methodologies and 
measures is one reason there is still ambiguity in the re-
search literature regarding replenishment in supply chains.   

One of the main objectives of this research is to inves-
tigate differences in performance using alternative replen-
ishment strategies.  This includes determining under what 
conditions one strategy is preferable to others.  The three 
basic strategies considered are those most commonly en-
countered in practice, namely the time-phased, reorder 
point and Kanban strategies.  Comparing these under dif-
ferent supply chain assumptions, such as configuration and 
demand pattern, is important.  In supply chains without ca-
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pacity constraints, Distribution Requirements Planning 
(DRP) logic is used to implement time-phased replenish-
ment.  With capacity constraints, Material Requirements 
Planning (MRP) logic is implemented.   In both cases these 
are assumed to be time-bucketed systems driven by a mas-
ter schedule, which in turn relies on forecast information.  
This forecast information is assumed to be unbiased 
throughout the demand cycle.  Regeneration of plans oc-
curs on a periodic basis.  The reorder point (ROP) system 
considered uses continuous review.  The Kanban (KBN) 
implementation is based on single-card logic.  In all cases, 
it is assumed that order placement is instantaneous.  This 
biases the Kanban system slightly toward greater respon-
siveness since in practice the circulation of cards used in 
placing orders usually involves a significant delay.  

The experimental methodology is one of modeling 
supply chain networks using discrete-event simulation.  A 
simple, flexible and user-friendly test bed designed for this 
purpose is discussed in Enns and Suwanruji (2003).  Ex-
perimentation is performed using designed experiments 
with factors relating to the supply chain environment, such 
as demand uncertainty, or to operating variables under 
management control, such as lot sizes.  Performance is 
measured in terms of inventory counts for all parts in the 
supply chain and delivery mean tardiness for customer de-
liveries.  Tradeoff curves between these two measures are 
generated, as shown in Figure 1.  This is done by varying 
the planned lead times, order points and number of cards 
for the time-phased (DRP/MRP), reorder point and Kanban 
replenishment strategies, respectively.  Results are ana-
lyzed by determining the area under the trade-off curves 
and then statistically comparing them.  This allows factor 
effects and interactions to be determined.  As well, the per-
formance across different replenishment strategies can be 
statistically compared.  A curve closer to the origin results 
in a smaller area and better performance.  In other words, 
less inventory is required for the same delivery perform-
ance (or vice versa) as the curve shifts closer to the origin.  
This methodology is explained further in Suwanruji and 
Enns (2004).  
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The next section examines performance without ca-
pacity constraints.  In Section 3 the effect of queues result-
ing from capacity constraints is considered.  Finally Sec-
tion 4 discusses comparisons with and without capacity 
constraints. 
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Figure 1. Inventory-Mean Tardiness Trade-Off Curves 

2 PERFORMANCE EVALUATION WITHOUT 
CAPACITY CONSTRAINTS 

An initial study of a simple distribution system without ca-
pacity constraints was considered.  The configuration is 
shown in Figure 2.  A full factorial experimental design 
was created in which two levels of demand patterns (DP), 
two levels of lot sizes (LS), two levels of demand uncer-
tainty (DU) and two levels of transit time uncertainty (TU) 
were used.  For the demand pattern, the first level assumed 
a stationary demand pattern through time and the second 
level assumed seasonal demand with a one-year cycle.  The 
two levels for the other factors represented low and high 
settings for the variables controlling lot sizes or uncertain-
ties.  Details of the model and experimental design can be 
found in Suwanruji and Enns (2006a). 

Extensive experimentation resulted in tradeoff curve 
areas for all combinations of factor settings.  A least-
squares regression model was then developed using the 
area under the curves as the response.  Independent vari-
ables included the factor settings and interactions between 
these settings.  Table 1 summarizes the main effects of 
moving from a low (-1) to high (+1) setting.  For current 
purposes only the relative size of effects, not the actual re-
sponse values, are of interest.  A positive value for the ef-
fect indicates performance is better at the low level since 
the area under the curve is lower. 

The results in Table 1 show that DRP is insensitive to 
the demand pattern (DP) whereas ROP and KBN perform-
ance deteriorates as demand becomes seasonal.  This sug-
gests that time-phased planning is particularly beneficial if 
demand is seasonal and if this seasonality can be accu-
1447
rately forecasted.  The sensitivity to demand seasonality is 
also less for ROP than for KBN.  This is at least partially 
due to the ability of ROP to consider backorders at the time 
of order placement, something KBN does not facilitate 
(Suwanruji and Enns, 2002). 
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Figure 2.  Configuration of Distribution System 

 
Table 1. Main effects 

 DRP ROP KBN 
DP - 9787 21913 
LS 1371 2006 7198 
DU 5208 3118 2407 
TU 3523 2983 3942 

 
 The lot size (LS) results show that small lot sizes are 
better for all replenishment strategies.  However, this result 
does not consider order or delivery costs.  In most cases 
these are significant and relationships such as the Eco-
nomic Order Quantity (EOQ) can be used to determine 
reasonable order quantities.  The demand uncertainty (DU) 
and transit time (TU) uncertainty results indicate that in-
creasing levels of uncertainty cause performance to dete-
riorate.  This result is consistent with expectations. 
 Extensive comparisons can be made between replen-
ishment strategies.  Table 2 summarizes results for com-
parisons across all other factor settings except the demand 
pattern (DP).  The demand patterns are separated out in 
this table since they have a dominant effect and obscure 
identification of other significant effects.  The values in 
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Table 2 indicate pair-wise 95% confidence intervals, ad-
justed using the Bonferroni technique for multiple com-
parisons.  An interval that contains zero indicates no statis-
tical significance whereas an interval that contains only 
positive values indicates the second strategy in the pair is 
superior.  For example, the confidence interval for the 
mean difference when areas under the DRP response 
curves are subtracted from those under the Kanban curves 
(KBN-DRP) is (7304, 8383) under level demand.  Since 
the area under the curves is greater for KBN, performance 
is worse. 
 

Table 2. Confidence Intervals 
 ROP-DRP KBN-DRP KBN-ROP 

Level 
Demand 

(-831, 
247) 

(7304, 
8383) 

(7596, 
8675) 

Seasonal 
Demand 

(9174, 
9927) 

(29401, 
30155) 

(19851, 
20605) 

 
The results in Table 2 show that under level demand 

DRP and ROP perform about the same, while KBN per-
formance is not quite as good.  However, under seasonal 
demand DRP performs better by far, followed by ROP and 
KBN.  These observations are consistent with Table 1.  
The forecast information used by DRP, assumed to be un-
biased in this research, is particularly beneficial under sea-
sonal demand since it allows proactive replenishment ad-
justments.  ROP and KBN both adjust to demand changes 
on a reactive basis, although backorder information helps 
ROP to a limited extent. 
 These results provide only a very basic understanding 
but one that is essential to evaluating replenishment strate-
gies.  In addition there are various interaction effects that 
are significant.  These are beyond the scope of this paper 
but are considered in Suwanruji and Enns (2006a). 

3 PERFORMANCE EVALUATION WITH 
CAPACITY CONSTRAINTS 

The introduction of capacity-constrained resources, such as 
manufacturing machines, results in quite different behav-
ior.  This is largely due to queuing effects.  Batch, or lot, 
flowtimes through capacity constrained machines can be 
modeled using queuing approximations.  The following is 
a common GI/G/1 approximation used to model flowtimes 
through a single capacity-constrained resource (Whitt, 
1983).   
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where Wq is the weighted mean queue time, x  is the 
weighted mean lot service time, ca is the coefficient of 
variation for lot interarrival times, cs is the coefficient of 
144
variation for lot service times and  ρ is the utilization rate.  

When lots of different part types are processed at the ma-
chine, additional equations for x , cs  and  ρ are required 

(Enns and Choi, 2002). 
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where j is the product type index, Dj is the demand rate, Qj 
is the product type lot size, Pj is the part processing rate, 
and ji ,τ  is the lot setup time. 
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 It is obvious that increasing variability of lot interarri-
val times increases flowtimes, since this causes ca to in-
crease.  When flowtimes increase either inventory levels 
will increase, as stated by Little’s Law (Little, 1961), or 
delivery performance will deteriorate.  Therefore uncer-
tainty negatively affects performance, just as in the case of 
unconstrained systems.  It is also obvious that as through-
put increases, the machine utilization will increase and this 
will also cause average flowtimes to increase. 
 The effect of lot sizes in capacity-constrained systems 
is harder to evaluate but more interesting.  Assuming each 
lot of parts requires a setup time, the relationship between 
lot sizes and flowtimes is convex.  Given the above rela-
tionships, this can be proved for the single product case 
and demonstrated for multiple product cases (Enns and 
Zhu, 2005).  Lot sizes that minimize the estimated average 
lot flowtimes can be easily obtained using non-linear opti-
mization.  However, a significant problem in lot size selec-
tion is that Equation (1) assumes lot interarrival times are 
independent.  This is not usually true in either supply, 
manufacturing or distribution systems.  Under most condi-
tions the interarrival times are auto-correlated and the pre-
diction of flowtimes using Equation (1) is poor.  Enns and 
Li (2004) suggest a dynamic feedback approach that cor-
rects for auto-correlation effects.   
 Lot size optimization using queuing analysis results in 
Fixed Order Quantity (FOQ) lot sizes.  This lot-sizing pol-
icy can be applied in the same manner to DRP/MRP, ROP 
and KBN.  It is therefore an appropriate lot-sizing policy to 
8
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be used when comparing different replenishment strategies 
since comparisons are kept fair.  However, in the case of 
time-phased systems there are many other lot-sizing poli-
cies that can be implemented.  Two common ones in prac-
tise are Lot-for-lot (LFL) and Period-Order-Quantity 
(POQ), both of which are often recommended because they 
reduce remnant inventory.  The weakness of these policies 
is that lot sizes are propagated through levels of planning 
without consideration of capacity constraints.  Performance 
can be quite poor as a result.  A recent study using MRP 
has demonstrated that FOQ lot sizes based on flowtime 
minimization result in much better performance than LFL 
or POQ (Enns and Suwanruji, 2005).  These results are 
consistent with the idea that lot sizes should be based on 
bottleneck resources (Goldratt, 1984). 
   In addition, there are more likely to be coordination 
issues in capacity-constrained supply chains, especially as 
it relates to lots of parts going into assembly operations.  
Preliminary investigations have shown that the ability to 
coordinate parts depends on the replenishment strategy be-
ing used.  Time-phased replenishment generally results in 
less delay waiting for the arrival of all component part lots 
going into parent part assemblies. 

4 COMPARISONS WITH AND WITHOUT 
CAPACITY CONSTRAINTS 

A second study can be used to illustrate and compare dif-
ferences in performance between supply chains with and 
without capacity constraints.  The scenario used for ex-
perimentation is shown in Figure 3.  This scenario includes 
locations, L3 to L6, that can be treated as capacity con-
strained resources.  As well, there are assembly operations 
involved, as indicated by the Bill-of-Materials (BOM) in-
volved in creating the final products shown in the Bill-of-
Distribution (BOD).  Further details of the scenario are 
given in Suwanruji and Enns (2006b).  

The three replenishment strategies previously identi-
fied were again used in an experimental design.  However, 
the time-phased strategy assumed use of MRP logic at the 
capacity constraints.  The other two factors were the capac-
ity constraint and the demand pattern, both run at two lev-
els.   For the capacity constraint, the first level indicates 
there are no constraints or queuing effects, while the sec-
ond level indicates there are setup and processing times 
that constrain flow at capacitated machines.  For the de-
mand pattern, the first level assumes a stationary demand 
pattern and the second level assumes seasonal demand.  
The simulation test bed identified previously was again 
used to run the experimental design.  As well, inventory 
counts and delivery tardiness measures were used to create 
tradeoff curves, with the area under these curves was 
treated as the response. 

Pair-wise Bonferroni 95% confidence intervals were 
again created to compare the replenishment systems.  
1449
These are shown in Table 4.  For this supply chain scenario 
it can be observed that, with no capacity constraints, ROP 
performed slightly better than DRP/MRP.  This was fol-
lowed by KBN.  Under seasonal demand DRP was the 
best, followed by ROP and KBN.  This is consistent with 
the findings in Section 2.  However, with capacity con-
straints and level demand it can be observed that KBN per-
formed the best, followed by DRP/MRP and ROP.  With 
capacity constraints and seasonal demand DRP/MRP per-
formed best, followed by ROP and KBN.  These results are 
also summarized in Figure 4, where the left to right order 
of strategies in each corner of the matrix indicates increas-
ing area (decreasing performance). 
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Figure 3.  Configuration of Supply Chain Network 
 
The most interesting result is that the Kanban system 

performed the best when the demand pattern was level and 
there were capacity constraints.  This behavior was not ob-
served without capacity constraints.  As well, it is not intui-
tive since under the assumptions made, the main difference 
between the KBN and ROP strategies was the use of back-
order information for ROP.  It would usually be anticipated 
that more information should lead ROP to outperform 
KBN.  However, further analysis showed that the lot inter-
arrival time coefficients of variation, ca, were lower when 
using KBN and therefore average queue lengths were 
shorter.  The lot interarrival time variability is a function of 
the demand uncertainty, the way the replenishment strategy 
releases orders, and the upstream supply availability.  It 
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Table 4. Confidence Intervals for Pairwise Comparisons. 

Capacity 
Con-

straint 

Demand  
Pattern 

ROP-
DRP/ 
MRP 

KBN-
DRP/ 
MRP 

KBN-
ROP 

No Level  (-507, 
-243) 

(502, 
766) 

(877, 
1142) 

 Seasonal  (152, 
518) 

(1291, 
1657) 

(955, 
1322) 

Yes Level  (41, 
317) 

(-300, 
-23) 

(-479, 
-203) 

 Seasonal  (210, 
1079) 

(664, 
1534) 

(19, 
889) 

 
was found that the use of backorder information actually 
caused ROP to overreact in situations where the variability 
was simply random over time, thus increasing order inter-
arrival time variability and queue lengths. 
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Figure 4.  Replenishment Strategy Performance Ranking 
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