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ABSTRACT 

We develop a simulation model to aid in identifying and 
evaluating promising alternatives to achieve improvements 
in weapon system-level availability when services for sys-
tem components are outsourced. Two outcomes are valued: 
improvements in average operational availability for the 
weapon system, and reductions in the probability that op-
erational availability of the weapon system falls below a 
given planning threshold (readiness risk). In practice, these 
outcomes must be obtained through performance-based 
agreements with logistics providers. The size of the state 
space, and the non-linear and stochastic nature of the out-
comes, precludes the use of optimization approaches. In-
stead, we use designed experiments to evaluate simulation 
scenarios in an intelligent way. This is an efficient ap-
proach that enables us to assess average readiness and 
readiness risk outcomes of the alternatives, as well as to 
identify the components and logistics factors with the 
greatest impact on operational availability.  

1 INTRODUCTION 

Performance Based Contracts are becoming increasingly 
popular in both the Department of Defense and the com-
mercial defense industry. Performance Based Logistics 
(PBL) contracts are a type of performance based contract 
intended to improve weapon system availability at a re-
duced cost.  

The unique aspect of performance based contracts is 
their focus on outcomes; the client organization specifies 
key performance goals, and allows the vendor to determine 
the best way of obtaining those goals (ASN-RDA 2003). 
Such contracts are called contra proferentem, because in 
contrast to typical contract law, ambiguities in the contract 
(in particular, lack of detail in methods for obtaining the 
contracted results) are construed in favor of the client or-
ganization, rather than the vendor. Indeed, the main point 
of performance based contracts is to outsource not only the 
tasks involved in obtaining an outcome (e.g., the inventory 
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management required to improved system availability), but 
also the risk associated with those tasks. In other words, 
the client wishes to rely on the outcomes specified in the 
contract, and to have the vendor bear the risks associated 
with insuring the delivery of those outcomes. Hence, in 
such contracts it is important for the client organization to 
evaluate not only expected outcomes, but also the associ-
ated risk (Doerr, Lewis and Eaton 2005).  

One valued outcome is high system operational avail-
ability, or the average percentage of assets which are avail-
able for operations (Ao). Another is low readiness risk 
(Kang et al. 2005) which is a measure of the risk associated 
with contract performance. This is the probability that a 
vendor will fail to deliver a desired threshold of opera-
tional availability, such as the probability that less than 
80% of a given type of aircraft will be available for opera-
tions at any given time. Our simulation model allows us to 
consider both measures of performance.  

The simulation approach we describe in this paper is 
intended to help decision makers develop the most effec-
tive alternatives for increasing the average operational 
availability and reducing readiness risk of a weapon sys-
tem. The alternatives involve specifying component-level 
outcomes for one or more of four logistics elements: com-
ponent-level inventory service level, reductions in compo-
nent failure rate, increases in component repair rate, or re-
ductions in component logistics delay (the time required 
for transportation and administrative work). Our model 
captures the joint effect of all of these component-level lo-
gistics elements on operational availability, and calculates 
a lifecycle cost for each alternative. We then use a design-
of-experiments approach developed for large-scale simula-
tion experiments (Kleijnen et al. 2005) to sample the state 
space of possible alternatives in an intelligent way. Using 
this approach, we can estimate which logistics elements 
and which components have the greatest potential to im-
prove availability.  

The contribution of our work lies in the integrative na-
ture of our solution approach. We apply a recently devel-
oped method for sampling in large-scale simulation ex-

 



Kang, Doerr, and Sanchez 

 
periments, and use a performance metric (readiness risk) 
designed for performance-based agreements.  

2 BACKGROUND 

2.1 Performance Based Logistics 

There is a small but growing literature on various aspects 
of Performance Based Logistics (PBL) contracting. Ber-
kowitz et al. (2003) conduct a survey of military applica-
tions of PBL, and formulate a set of best practice recom-
mendations. Apgar and Keane (2004) describe the strategic 
goals of PBL, and assert that the principle of specifying 
outcomes rather than methods is consistent with a long-
standing military strategy known as “commander’s intent.” 
Doerr, Lewis and Eaton (2005) examine metrics for PBL, 
and developed an argument for the centrality of risk meas-
urement in such contracts. Kim, Cohen and Netessine 
(2006) look at a situation in which a contractor awarded a 
system-level prime contract for availability improvement 
must negotiate with subcontractors to achieve given com-
ponent-level performance. But a recent Government Ac-
countability Office report (GAO, 2004) is critical of sys-
tems-level PBL contracts, and recommends greater 
emphasis on PBL contracts at the component level to better 
maintain control over costs and performance. As Kang et 
al. (2005) show, the proper valuation and management of 
such component level contracts entails the development of 
a comprehensive model which incorporates key perform-
ance dimensions of all critical components. They demon-
strate tradeoffs between readiness risk and lifecycle cost on 
given alternatives, with a numerical analysis using two 
(disjoint) models.  

Risk-based capacity models such as the one proposed 
in this paper have been the subject of a great deal of re-
search in the commercial sector (Van Miegham 2003) and 
have also been applied to the acquisition of production ca-
pacity for airfoils used in military aircraft (Prueitt and Park 
2003). Risk-based capacity models deal with technological, 
demand, or price uncertainty, and are not directly applica-
ble to the valuation of logistics services or the impact those 
services will have on system availability. The probability 
that operational availability (Ao) will remain above a cer-
tain planning threshold, or target readiness, is what we call 
readiness risk. This measure is not new—it is one of many 
imbedded in a system used by the U. S. Air Force for plan-
ning levels of spare-parts inventory (Slay et al. 1996). 
Methodologically, it is simply a type of quantile analysis. 
But from the war fighter’s point of view, this risk may be 
the key performance dimension (Eaton, Doerr and Lewis 
2006). The war fighter, after all, is less concerned with the 
average number of mission capable aircraft than with the 
probability that he will have enough aircraft to fly a par-
ticular mission.  
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Performance based contracting changes the way risk 
should be valued and measured in component-level con-
tracts to improve system availability. The impact of vari-
ance in component level reliability (failure rates) and main-
tainability (repair time) on average system availability was 
well understood (Blanchard, Verma and Peterson 1996) be-
fore PBL contracts ever became popular. More recent work 
examines alternatives for reliability or maintenance im-
provement at the component level, with the primary out-
come being system level availability; Cassady, Pohl, and 
Jin (2004) use a cost function which assumes a continuous 
range of available alternatives for both reliability and 
maintenance. However, they do not examine logistics de-
lay, which we will show to be a critical logistics element in 
determining system availability, nor do they use readiness 
risk as an outcome measure. 

 Within the field of reliability engineering, reliability 
allocation methods seek to minimize the cost of allocating 
resources for component-level reliability in order to obtain 
a given system-level reliability requirement (Kececioglu 
1991, pp. 363-399). These procedures generally assume a 
continuous range of reliability is available for each compo-
nent, and that the cost of achieving higher reliability levels 
increases exponentially. Our work differs from this in that 
they are primarily focused on reliability (failure rates) as 
an outcome measure at the component and system level.  

2.2 Design of Experiments 

Clearly, simulation models of even relatively simple logis-
tics systems can have a very large number of inputs—
many of which may be uncertain or unknown—that poten-
tially impact the model’s performance. In the design of ex-
periments (DOE) literature, these are referred to as factors. 
Factors can be qualitative or quantitative. They can include 
distributional models (e.g., the use of exponential, triangu-
lar, or (truncated) normal distributions for service times); 
parameters of these distributions (e.g., means, standard de-
viations, or rates); or different policy choices that deter-
mine how a subsystem within the model behaves (e.g., use 
of priority queues to process critical components more rap-
idly).  

In real-world experiments, it is difficult to control 
more than a handful of factors at a time. This is not the 
case for simulation experiments, where the analyst has the 
ability to specify the levels (values) for all of the input fac-
tors before running the simulation. Still, once the factors 
and potential levels have been determined, this creates a 
huge number of potential scenarios (or design points). For 
example, if an analyst wished to explore nine factors, each 
at 10 levels, there are one billion (109) different scenarios 
that could be considered. The design might need to be rep-
licated for stochastic simulations, because specifying all 
input factors does not remove randomness from the output. 
Such a large experiment is clearly impractical. Even if it 
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were possible to run all scenarios in a reasonable amount 
of time, the volumes of output data would easily over-
whelm most post-processing analytic tools, leaving the 
analyst limited in their abilities to statistically interpret the 
results.  

Fortunately, efficient experimental designs can be 
used to specify a small number of suitable scenarios. The 
following characteristics are desirable (Cioppa, Lucas and 
Sanchez 2004; Kleijnen et al. 2005): 

 
• The ability to examine many variables (ten or 

more) efficiently; 
• Approximate orthogonality between inputs, to fa-

cilitate response surface metamodeling; 
• Minimal a priori assumptions about the response 

surface;  
• Flexibility to allow for the estimation of many ef-

fects, interactions, thresholds, and other features 
of the response surface; and 

• An easy method for generating the design. 
 
Kleijnen et al. (2005) discuss situations where various 
classes of designs are appropriate, but there is no one-fits-
all design. In our explorations of readiness risk we want to 
screen many variables for importance, while simultane-
ously maintaining the ability to fit complex meta-models to 
a handful of input variables that are found to have the most 
impact on the responses. Given this, and the above design 
goals, the nearly orthogonal Latin hypercubes constructed 
by Cioppa and Lucas (2006) are particularly useful.  

Designed experiments for simulation models involving 
many factors have been successfully applied to a host of 
other military applications. Links to over 40 M.S. theses by 
students at the Naval Postgraduate School are available 
online at the SEED Center for Data Farming website at 
<http://diana.cs.nps.navy.mil/seedlab>, 
along with links to papers, software, spreadsheets, and 
other tools to facilitate experimental design. Summaries of 
successful studies conducted in the U. S. or in several al-
lied countries are available at the Project Albert web site at 
<http://www.projectalbert.org>.  

3 CASE STUDY 

We use the decision environment of Kang et al. (2005) in 
this paper, but we develop an integrative model to investi-
gate potential alternatives for development. We are inter-
ested in readiness analyses of an unmanned aerial vehicle 
(UAV) squadron that has 40 aerial vehicles (AV). When a 
critical component in an AV fails, the faulty component is 
removed from the AV, an RFI (ready-for-issue) spare is 
installed, and the faulty component is sent to the repair fa-
cility. After the repair is complete, the component becomes 
an RFI spare and is sent to the spare pool. When a critical 
component fails, and an RFI spare is not available, the AV 
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will be grounded (and will become not mission capable) 
until an RFI component is available. A failure of a non-
critical component may degrade readiness, but the system 
is assumed to be operable (that is, mission capable or par-
tially mission capable). In this case study, we do not con-
sider “cannibalization,” the swapping of a working compo-
nent from one downed AV to another.  

Our simulation model estimates the average opera-
tional availability and the readiness risk at various thresh-
olds of interest. Our goal is to better understand how 
changes in reliabilities, number of spare parts and other lo-
gistics factors (e.g., repair times and transportation delays) 
affect the average operational availability and the readiness 
risk of the squadron.  

We consider three critical components in this case 
study: engines, propellers, and avionic computers. We as-
sume that the time between failures for each component 
follows an exponential distribution. The ranges of MTBF 
(mean time between failures) of the individual components 
are provided in Table 1, along with the ranges of the num-
ber of spare components, component repair times (in 
hours), and the transportation/logistics delay (in days).  

Several designs are possible, but we use an NOLH 
with 257 runs (Cioppa and Lucas 2006). This design is ca-
pable of handling up to 29 factors without increasing the 
number of scenarios. It can be easily constructed by enter-
ing the low and high values in Table 1 into a spreadsheet 
(Sanchez 2006). (We remark that that ten input factors 
could be examined using a NOLH with as few as 33 sce-
narios if the time required for 257 runs was prohibitively 
long.) Because our model runs quickly, we opt for a larger 
design to allow a more detailed investigation of our 
model’s behavior. The input parameters for the first ten 
scenarios are shown in Table 2. In all, there are ten differ-
ent simulation inputs used as factors for our designed ex-
periment. In addition, there is a stochastic element that oc-
curs due to the pseudo-random numbers generated for 
stochastic failure times, repair times, and transporta-
tion/administrative delay times. 

For each scenario, the simulation model reads a row of 
data from the spreadsheet excerpt in Table 2. The MTBFs 
of three components are first read, followed by the number 
of spares for each component, the means of the component 
repair times, and the mean for the transporta-
tion/administrative delay. The repair times are assumed to 
follow symmetric triangular distributions with lower and 
upper bounds of 0.5 (mean) and 1.5 (mean), respectively. 
The same approach is used for the repair time distributions. 
The transportation and administrative delay (in days) fol-
lows a symmetric triangular with lower and upper bounds 
of 0.75 (mean) and 1.25 (mean), respectively. Flight opera-
tions are conducted 24 hours per day, seven days per week. 
Each air vehicle operates an average of four hours per day. 
The repair shop operates eight hours per day, seven days 
per week.  

http://diana.cs.nps.navy.mil/seedlab
http://www.projectalbert.org/
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Table 1. Ranges of Input Parameters 
Input Parameter Range 
MTBF of Engine 200 - 400 hrs 
MTBF of Propeller 150 – 300 hrs 
MTBF of Avionic Computer 300 – 600 hrs 
Spare engines 1 – 20 units 
Spare propellers 1 – 20 units 
Spare avionic computers 1 – 20 units 
Repair time for engines 1 – 30 hrs 
Repair time for propellers 1 – 30 hrs 
Repair time for avionic computers 1 – 30 hrs 
Transportation/administrative delay 
for each failure 1 – 15 days 

4 RESULTS 

We run a total of 257 scenarios, each of which is simulated 
over a period of 1,000,000 hours—sufficiently long that we 
need not be concerned about initial bias. The results of the 
simulation are the average Ao (operational availability) 
and the quantiles (10%, 20%, … , 80%, and 90%) of Ao; 
these are automatically written onto an EXCEL spread-
sheet worksheet and then imported into the JMP® (SAS 
2002) for further analysis. We remark that the outputs must 
be matched to the scenarios (specifically, the levels of each 
input factor must be available) in order to analyze the data. 
Also, for large experiments it can be very helpful to auto-
mate the process of running the simulation for different 
scenarios; see (Kleijnen et al. 2005) or (Sanchez 2006) for 
further discussion. 

For demonstration purposes, we present only the re-
sults for the average Ao and its 80% quantile (i.e., the 
probability that the Ao goes below 80%). Our intent is to 
illustrate the types of insights that can be gained from a de-
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signed experiment approach, rather than to make infer-
ences regarding readiness risk for a real weapons system. 

4.1 Average Operational Availability 

We begin assessing the output by looking at histograms of 
the simulation responses. This can be a way of “acciden-
tally” performing verification and validation of a simula-
tion model. It may reveal combinations of input factor set-
tings for which the model does not work properly; present 
results that may, at first glance, challenge the analyst’s in-
tuition; or suggest additional features that should be in-
cluded in the simulation model (Kleijnen et al. 2005). Our 
results indicate that the average operational availability dif-
fers widely across the different scenarios, ranging from 
0.599 to 0.976. The average Ao across the 257 scenarios is 
0.795 with a standard deviation of 0.085. It appears that at 
least one of the input factors does, indeed, have a substan-
tial influence on the system’s performance. 

After confirming that the results appear reasonable, we 
turn to our main goals—identifying those factors and com-
ponents that have the greatest impact on performance. A 
useful non-parametric tool is a regression tree, as shown in 
Figure 1. These graphics are effective for understanding 
and communicating the results of thousands of runs over 
many factors. Regression trees are more human-readable 
and can be easier to describe than multiple regression 
models because they reveal the structure in the data in a 
simple way. Initially, the data are grouped in a single clus-
ter. All potential input factors are examined to identify how 
best to split them to yield two leaves so that the variability 
in the response within each leaf decreases and the variabil-
ity in the response between the leaves increases. 
 
Table 2. Input Parameter Settings for First Ten of 257 Scenarios

 
 
 

Scenario 
MTBF 

Engines 
MTBF 
Props 

MTBF 
AvComp 

Spare 
Engines 

Spare 
Props 

Spare 
AvComps 

Mean 
Engine 
Repair 

(hrs) 

Mean 
Prop 

Repair 
(hrs) 

Mean 
AvComp 

Repair 
(hrs) 

Mean 
Trans/Admin 

Delay 
(days) 

1 280 282 478 13 13 18 30 26 6 2 
2 223 210 552 19 15 11 29 25 17 10 
3 232 239 335 12 19 16 28 27 20 6 
4 281 174 420 13 15 15 26 29 5 9 
5 273 234 484 9 19 16 23 21 3 12 
6 288 205 587 4 17 18 22 29 22 7 
7 209 242 432 3 11 11 23 18 20 9 
8 277 156 410 9 19 15 21 21 15 2 
9 215 227 579 13 8 16 22 29 6 6 

10 297 161 559 15 2 13 17 17 29 12 
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Figure 1 shows the regression tree for predicting the 
average Ao from the 257 simulation scenarios. The domi-
nant factor is clearly the average transporta-
tion/administrative delay. For example, the first split at the 
top indicates that the average Ao is 0.737 across the 138 
scenarios that have a mean transportation/ administrative 
delay of eight or more days. In contrast, the average Ao is 
0.862 (17% higher) among the 119 scenarios that had a 
mean transportation/administrative delay of less than eight 
days. Even with only four splits, the regression tree 
achieves an R2 value of 0.74. For larger trees with many 
leaves, it may be helpful if the leaves corresponding to fa-
vorable, intermediate, and unfavorable outcomes are col-
ored green, yellow, and red, respectively (Cioppa, Lucas 
and Sanchez 2004).  

Regression trees are non-parametric approaches for fit-
ting a statistical model to the simulation output. They can 
be good at identifying subsets of the output that behave 
much differently than the rest. Regression metamodels can 
also be valuable. They may confirm the regression tree re-
sults concerning which factor or factors have the greatest 
influence on the results, or they may allow more succinct 
descriptions of the simulation model’s performance if it 
can be well-described by simple polynomial metamodels. 

Accordingly, we also fit regression metamodels of the 
Ao as a function of main effects, quadratic effects, and 
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two-way interactions of the ten input factors. There are a 
total of 65 potential terms in the model (ten main effects, 
ten quadratic effects, and 45 two-way interactions). We use 
stepwise regression to identify the most important factors, 
then simplify the model even further by eliminating a few 
terms with p-values an order of magnitude higher than the 
others. Our final metamodel is shown in Figure 2. The ad-
justed R2 is 0.97, showing that the regression metamodel 
does an excellent job of explaining the variability in the 
simulation output. We tried other models as well. For ex-
ample, a simpler model with only six significant main ef-
fects (three MTBFs, the transportation/ administrative de-
lay, and mean repair times for the two least reliable 
components: propellers and engines) yields an R2 of 0.92. 
This might also be used to make inferences. 

The large |t_ratio| for the mean transportation/ adminis-
trative delay (Figure 2) shows it to be the dominant factor, 
and agrees with our regression tree results. Note that the 
numbers of spare parts do not appear in the model. This 
means that raising them from their lowest levels to the 
highest levels in Table 1 does not lead to any appreciable 
improvement in the average operational availability. This 
suggests that it might be possible to entirely eliminate the 
spare parts without adversely affecting operational avail-
ability. Of course, such a possibility would need to be con-
firmed by running new scenarios and observing the output.
 
Figure 1. Regression Tree for Average Ao (First Experiment) 
6
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Figure 2. Regression Metamodel for Average Ao (First Experiment) 

 

 

A plot of the residuals vs. the predicted values (not 
shown) indicates that there are a few outliers in this meta-
model. Three points result in substantially lower opera-
tional availability than predicted. Depending on the vendor 
PBL contract, these could be worth a closer look. 

As it can be difficult to look at a regression equation 
and get a good sense of how the factors and interactions 
affect the response, interaction plots are often useful. The 
interaction plot for our regression metamodel appears in 
Figure 3. This interaction plot consists of several small 
subplots that indicate how the predicted performance (Ao) 
varies as a function of pairs of input factors. For example, 
the subplot that appears at the center of the top row shows 
the joint effect of the MTBF for aircraft engines and the 
(mean) engine repair hours. The flat upper line (in blue) 
shows that when the MTBF is 400 hours, changing the en-
gine repair time between its low and high values (1-30 
hours) has little impact on Ao. But if the MTBF for en-
gines is only 200 hours (lower line, in red) then longer en-
gine repair times decrease Ao. The difference in slopes in-
dicates an interaction between engine MTBF and repair 
times: the impact of high repair times is mitigated by large 
MTBF. An even stronger interaction is observed between 
MTBF and repair times for the propellers. 

Transportation/administrative delays are so dominant 
that we rerun the experiment after fixing the average de-
lays to five days for all scenarios. (Note that individual de-
lays still follow a random distribution.) These results let us 
focus on the other factor effects and interactions. A portion 
of the regression tree, corresponding to the better out-
comes, is provided in Figure 4. Here, we see the impact of 
the MTBF and repair times for the least reliable component 
(propellers); the next component to show up in the tree is 
the engine, via its MTBF. The left-hand portion of this re-
gression tree (not shown) has the same variables at each 
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branch, although the “splits” at the branches occur at dif-
ferent factor levels. 

4.2 Readiness Risk: 80th Percentile 

The analyses for the 80th percentile of readiness risk are 
similar. The same set of factors appear as the most impor-
tant determinants of performance as they did for the aver-
age operational availability, although the specific coeffi-
cients vary. When the mean transportation / administrative 
delay varies between one day and 15 days, it is the domi-
nant factor in both the regression tree and the regression 
metamodel. The “splits” which the regression tree uses to 
break this delay into different components differ slightly 
from those for the average Ao. For example, the best leaf 
for readiness risk of 80% or better corresponds to an aver-
age transportation/administrative delay of less than six 
days and a MTBF for propellers of at least 201 hours. The 
best leaf in the regression tree for average operational 
availability corresponds to an average transporta-
tion/administrative delay of less than three days and a 
MTBF for propellers of at least 186 hours. These differ-
ences confirm that both measures should be considered—
they are not substitutes for one another. Our regression tree 
with four splits and five leaves yields an R2 of 0.78, and 
our regression model with seven terms (five main effects 
and two interactions) yields an R2 of 0.92. 

For the second experiment with the transportation/ 
administrative delay fixed to five days, we once again find 
that the least reliable components are the major determi-
nants of performance. The results are similar to those for 
average Ao, although the levels at which splits occur in the 
regression tree, and individual regression coefficients, dif-
fer. 
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Figure 3. Interaction Profile Plot (First Experiment) 
 
 

 
 

Figure 4: Partial Results for Ao (Second Experiment) 

5 REMARKS 

As we discussed earlier, the simulation model used in this 
paper is not intended to provide detailed insights regarding 
a particular real-world situation. For example, the use of 
exponential times between failures may not be appropriate, 
and the triangular service time distributions are unlikely to 
be accurate representations of real-world data. However, 
the same approach can easily be applied to simulations that 
are more realistic. 

For our model, we chose to make one extremely long 
run for each scenario and report the aggregated results. 
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Other alternatives are possible. The basic design (i.e., set 
of scenarios) could be replicated several times, or a batch 
means approach could be used. Shorter runs would neces-
sitate deleting the initial transient period before computing 
the performance statistics, unless the performance meas-
ures of interest are the average operational availability or 
readiness risk for a particular fleet over a fixed period of 
time, rather than the steady-state results. 
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