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ABSTRACT 

Self-organization offers many potential benefits to 
autonomous multi-UAV systems. This research investi-
gates the use of a self-organization (SO) framework for 
evolving UAV swarm behavior. This SO framework is 
used to design a UAV swarm simulation with evolving be-
havior. The swarm behavior is then evolved using a genetic 
algorithm (GA) to successfully locate and destroy retaliat-
ing stationary targets. This system is tested using both a set 
of strictly homogeneous UAVs and heterogeneous UAVs 
with intriguing results. 

1 INTRODUCTION 

UAVs have significant benefits over traditional aircraft. 
They can have greater persistence and stamina than human 
piloted aircraft. Without risk to a human pilot, UAVs can 
operate in areas exposed to nuclear, chemical, or biological 
agents. These vehicles can also be sent on extremely dan-
gerous missions without risking human pilots. Finally, re-
moval of the cockpit can improve aircraft performance and 
reduce design constraints. For these reasons, much of cur-
rent research examines the ways in which UAVs could best 
perform. However, automated UAV systems require con-
siderable design to address all possibilities. 

One promising answer to UAV automation is self-
organization. Multi-UAV systems could successfully func-
tion autonomously by harnessing the organizational con-
cepts used by colonial insects, wolf packs, and even eco-
nomics. Potential for emergent self-organization can also 
be realized by observing groups of UAVs as a singular 
macro system rather than a set of interacting individuals. 

In Section 2, we introduce a set of features for SO sys-
tems and illustrate previous work in multi-agent UAV 
simulation. Emphasis is placed upon the behavior of those 
approaches. The design of a SO UAV system and simula-
tion program is discussed in Section 3. The designed sys-
tem implements a functional SO template created by Price 
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(2006). Experimental testing of the system is described in 
Section 4. These experiments deal with scenarios where 
either a homogenous set of UAVs or set made up of both 
sensing UAVs and UCAVs must engage targets at un-
known positions. Section 5 lists the results of those ex-
periments followed by concluding remarks in Section 6. 

2 BACKGROUND 

This section contains a summary of self-organized defini-
tions and selected UAV swarm systems. Emphasis is on 
the particular resultant behavior of those systems. 

2.1 Self-Organization (SO) 

SO applies the principles of organization used by biologi-
cal entities (ants, bees, herds, bird flocks, etc) to system 
behavior. According to Camazine et al.. (2003), SO is a 
systemic approach to unifying multi-agent collections or 
systems. Systems can be inorganic, however organic bio-
logical systems can produce more stunning behaviors. 

A set of SO features are distilled and a model is cre-
ated to facilitate intentional SO design. For more detail see 
Price (2006). The model states that SO is an attribute of a 
system with a goal. The system is made up of many lower-
level components that interact to produce system wide be-
havior and performs better than can be achieved by purely 
individual actions. Lower-level components select their 
behavior based upon local observations without global 
knowledge of a pattern, strategy or global direction. 

2.2 Multi-UAV Modeling 

Various investigations address the difficulties associated 
with UAV deployment and autonomous UAV behavior. In 
general, the issue is how UAVs select their next behavior. 
There are two apparent ways in which the this is done: di-
rect control of velocity and rule based directional control. 
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Direct approaches use a decision making process to 
determine the turn rate and thrust. This can range from an 
evolutionary programming mechanism directly encoding 
each UAV’s direction and velocity like that developed by 
Milam (2003) to a neural network with the outputs tied to 
velocity and steering as used by Zaera et al. (1996). 

Direct approaches can be used to evolve behavior as 
done by Zaera (1996). Evolving behavior using the direct 
approach, however, often has limited success. We believe 
that the reason for these failures can be attributed to the 
difficulty in evolving too many attributes and behaviors 
simultaneously. This approach also presumes the designer 
does not know or assumes that the behaviors they believe 
are important should be added to the system.  

Static systems can also use a direct mapping approach. 
In this case, the actual behaviors of UAVs are frequently 
associated with complex mathematical ideas about UAV 
behavior. The particular appeal of these systems is that 
they do explicitly what they are designed to do. However, 
with respect to SO systems, manually created systems are 
very difficult to construct (Collier and Taylor  2003). 

Explicit use of codified behavior rules leads to a dif-
ferent design approach. These rules describe behaviors 
based upon anticipated needs and compute UAV velocity 
and heading. For example, Reynolds (1987) described 
three types of rules for flocking behavior: alignment with 
neighbors, group cohesion, and close neighbor repulsion. 

Behavior rules are not limited to those described by 
Reynolds. Rather, rules can operate upon anything mathe-
matically describable. In a sense, rules add a complexity 
layer and predefined behavior. However, they require a 
suitable combination method like Reynolds’ summation. 

The different rules can be weighted to afford different 
resulting behaviors. For example, relaxing repulsion rules 
can yield better UAV force massing prior to the attack 
whereas stronger repulsion may improve reconnaissance. 
Identifying when different weights are beneficial necessi-
tates a decision mechanism, or behavior matrix, such as a 
neural network like that employed here or state machine as 
used by Schlecht et al. (2003). 

Another improvement can be made by mapping the 
behavior matrix output to static sets of behavior weights 
called behavior archetypes as used by Price (2006). This 
structure has three major effects upon the resulting behav-
ior: behavior matrix complexity can be reduced, rule spe-
cific data difficult to represent can be included, and simula-
tion-wide behavior can be more easily understood. 

Despite these benefits, the behavior archetype archi-
tecture limits rule expression; the rules are not dynamic 
and operate only as limited static states. If only three be-
havior archetypes are allowed in a system then only three 
distinct behavior weighting sets can be defined. 
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2.3 UAV Sensors and Senses 

UAVs rely upon sensor inputs to determine which move-
ments and actions are better than others. The approach 
taken here is that UAVs utilize a series of sensor values 
representative of their observed environment, or senses, as 
input to their movement logic. Senses contain information 
useful in deciding when and what value each behavioral 
rule should be applied.  

Senses are more refined than explicit distances and 
vectors as used by Marocco and Nolfi (2005). Since behav-
ior rules already operate upon specific information like po-
sitions, velocities, and distances; UAV senses can be more 
general and abstract without concern over information loss. 

A density sense and a target spotted pheromone sense 
are developed. The density sense is used to determine 
UAV crowding. This sense has utility by indicating the 
visible UAV population and their relative distances. 

Knowing when targets are spotted is useful for attack 
coordination according to Kleeman (2004). This sense is 
used differently than ant-like pheromones (Camazine et al. 
2003) – the target spotted pheromone is only calculated at 
each UAV since tracking environmental propagation is in-
feasible with real-world airborne UAVs. This sense can 
create cascading attacks amongst UAVs or specific target 
avoidance when coupled with specific rules.  

In addition to abstract senses, sensor visibility attrib-
utes can be explored. When calculating the visible set of 
UAVs, limitations similar to those in biology have been 
explored. Parrish et al. (2002) simulated fish with neighbor 
visibility limited to the closest two or three individuals 
with low quality results. Kadrovich (2003) uses sensor 
shadow to allow close UAVs to block visibility of those 
further away. This approach results in formation stability. 

Communication is often implemented in UAV model-
ing systems. This modeling level is often approached as a 
flat application of communication device strength like that 
used by Lua et al. (2003) and Schlecht et al. (2003). This 
modeling assumes unidirectional broadcast and message 
reception based upon distance between UAVs. Other 
works deal with communication in more fidelity. 
Kadrovich (2003) modeled UAVs as traveling ad-hoc sen-
sor networks with sophisticated communication. 

2.4 Exemplar System Models 

Math models created by Lotspeich (2003), Kadrovich 
(2003), and Milam (2004), have been defined. Other im-
portant models are those constructed by Schlecht et al. 
(2003) and Lua et al. (2003).  

Kadrovich created his model to study communication 
and formation stability aspects of UAVs to support opera-
tion as a flying ad hoc network. In this model, the UAVs 
have two major behavior rules: alignment and attraction. 
These rules encompass those created by Reynolds (1987) 
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with a few implementation differences: Kadrovich relies 
upon four distinct distances between UAVs to effect 
swarm cohesion and separation. For example, if two UAVs 
are within the too close distance the attraction rule causes 
them to separate. 

Lotspeich created his model to investigate UAV con-
trol. It has more pertinent information of UAV behavior 
and implements a simple communication system. 
Lotspeich implemented behavioral rules encompassing co-
hesion, separation, threat avoidance, and goal seeking. 
These behaviors are combined by weighted summation of 
the rules. 

Milam’s model focuses on the control and behavior of 
UAVs in a 3D environment. Milam’s investigation uses a 
genetic programming model and does not implement a so-
phisticated physics model like Lotspeich’s structure. How-
ever, it relies upon a direct approach to UAV control as the 
output from the genetic programming component specifi-
cally states the actions taken to change the UAV velocity. 

The Schlecht model is designed to offer behavior op-
timized for 2D search by intelligent munitions. In this 
work, intelligent munitions perform sweeps of a defined 
area by lining up at a side, and in a parallel formation, 
search the area while traveling towards the opposite side. If 
the intelligent munitions locate a target, they determine 
whether to immediately attack or continue searching. 

The Lua model demonstrates sophisticated attacking 
behaviors. Like the work performed by Schlecht, this 
model assumes UAV attacks are terminal and that UAVs 
function as intelligent munitions. This work demonstrates 
exceptional traits for UAV attack. The UAVs rely upon 
well defined orbital patterns around the located target and 
explicit communication to attack with great success. 

3 DESIGN 

The overall design for the proposed SO system is discussed 
in this section. First, the mathematical structure for SO is 
introduced followed by a UAV design implementing the 
SO features. Finally, operation of the evolutionary algo-
rithm is described. 

3.1 SO Model 

A system definition for self-organization is composed 
in order to enable SO development and modeling. A static 
self-organization definition is reflected in Equation 1. 

 
 SO ≡ ( σs, σ0, g, Δ, τ ) (1) 
 
In this system, σs is the space of all dynamic combinations 
of possible agents, A, and environmental effectors, e. These 
combinations constitute SO system state. σ0 is the initial 
start condition for the SO system. Effectively, σ0 is a state 
existing within σs. The visibility function, g, filters which 
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entities within system state affect each agent. Finally, τ, 
provides a mapping between the agent micro level to the 
system macro level. The mapping provided by τ allows a 
separation between individual agent interactions and the 
resulting emergent system behaviors. 
 Each SO system state is represented by a dynamic tu-
ple. This tuple accounts for all agents in the system at that 
time as well as all non-agent effectors. The dynamic tuple 
representation follows in Equation 2. 
 
 σ ( k ) ≡ ( Ak, ek ) (2) 
 
Each tuple represents the set of existing agents in a SO sys-
tem at a particular state, k, as Ak. In addition, the set of ef-
fectors, ek, exists within the dynamic SO state. The func-
tion Δ computes the next dynamic state from the previous 
state as defined in Equation 3.  
 
 σ ( k + 1 ) ≡ Δ ( σ ( k ) ) ≡ Δ ( Ak, ek ) (3) 
 
 The function Δ can operate both synchronously or 
asynchronously. That is, the update can model changes to 
all agents or only a subset at each stage. 

3.2 UAV Design 

A behavior archetype approach is designed and imple-
mented to reduce system complexity and simplify under-
standing,. The behavior matrix uses a single-layered per-
ceptron to select appropriate behavior archetypes. 

Agent or UAV logic is rule-based with system behav-
ior rules. These rules are evasion, obstacle and border 
avoidance, alignment matching, velocity matching, thresh-
olded cohesion, thresholded separation, weighted target at-
traction, thresholded target attraction, thresholded target 
avoidance, unweighted target avoidance, and target orbit-
ing (Price 2006). 

This system uses two senses: UAV density and the 
target spotted pheromone.  

The UAV physics model facilitates behaviors identi-
fied by the agent logic while maintaining suitable simula-
tion fidelity. UAVs have mass and are subject to decelera-
tion due to drag similar to Lotspeich’s model. UAVs are 
also subject to maximal turn-rates like that in a Dubin's 
Car, maximum and minimum speeds, and realistic affects 
of acceleration based upon drag and thrust. 

For modeling purposes, UAV capabilities are based 
upon Predator UAVs as used by Lotspeich. The turn-radius 
is artificially low since anecdotal experimentation demon-
strated less chaotic motion. 

When calculating how a UAV should move, the de-
sired next direction vector, obtained by summation of the 
behavior rules weighted by the active behavior archetype 
and scaled by the archetype velocity value, is normalized 
within the UAV’s feasible turn rate. This direction vector 
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is then renormalized within UAV physics model and UAV 
capabilities. 

Each UAV has a sensor envelope around its position. 
Everything outside this envelope cannot be seen whereas 
UAVs, targets, and obstacles within the envelope are 
known. Lotspeich suggests that limiting the visible range 
in this manner allows greater scalability than more global 
methods. UAVs can passively detect neighboring UAVs’ 
positions, velocities, and pheromonal signals. These values 
are used by the behavior rules to compute next suggested 
directions. Additionally, UAVs are subject to sensor shad-
owing as defined by Kadrovich (2003). This provides for-
mation stability for interacting UAVs. 

According to Camazine et al. (2003), communication 
for SO systems can be split into implicit cues and explicit 
communication. Implicit cues express information not spe-
cifically intended as a communication. UAVs obtain these 
cues from passive detection of other UAVs as performed 
by the sensors.  

Explicit communications include the implicitly com-
municated information about a communicating UAV and 
the location of all targets it can detect. Explicit communi-
cations basically provide for one-way sensing; UAVs re-
ceiving explicit communication are made aware of com-
municators position, velocity, and pheromonal signals as 
well as the location of targets the communicator detects. 

UAV simulation states contain information necessary 
to determine next behavior. These necessary components 
to agent state include current position, P; direction of 
travel, D; behavior archetype, BA; target spotted phero-
mone value, ρ; remaining UAV hit points, H; known 
UAVs, N’; known targets, T’; and known obstacles, O’. 
These combine to create agent state, si. 

 
 si ≡ ( P, D, BA, ρ, H, N’, T’, O’) 
 
The values of the agent state existing within the SO system 
macro state are the position, P; velocity, D; and the re-
maining UAV hit points, H; of each UAV. 

Individual UAVs, existing as agents within a SO sys-
tem dynamic state, update their individual values with the 
function δ. This update is performed by feeding the sensor 
values from the environment into the behavior matrix. The 
resulting values from the behavior matrix indicate which 
behavior archetype should be used by the UAV. In this 
way, the behavior archetype BA is updated. The position 
and velocity of the agent are then updated by combining 
the weighted behavior rules specified by the selected be-
havior archetype. 

The internal neighborhood representation for each 
agent is generated with the static SO function g and the en-
vironmental state of the dynamic system. In this case, g 
sorts the dynamic environment and places elements within 
UAV sensor range in the UAV’s local environment repre-
sentation composed of N’, T’, and O’. 
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Actual engagement between the UAVs and targets is 
modeled using a hit point based system. Experimentation 
with the system demonstrated that a hit point based model 
generates more stable results than found in more probabil-
istic methods. In essence, each UAV and target has a set 
number of hit points, H. During each attack, a UAV or tar-
get reduces the hit points of the closest opposing target or 
UAV within engagement by a damage capacity. Once a 
UAV or target has zero or less hit points, it is considered 
destroyed. 

3.3 Environment 

The environment is the general space in which the system 
operates. This environment is defined in Equation 4. 

 
 E ≡ R × R × O × A × T (4) 
 
In this definition, the environment is a two dimensional 
space of real numbers, R, with sets of all possible obsta-
cles, O, agents, A, and targets, T. 

3.4 GA Design 

This system evolves the behavior archetypes and the neural 
network perceptrons associated archetype selection. Draw-
ing upon inspiration from Marocco and Nolfi (2005), this 
investigation uses a genetic algorithm (GA) to evolve UAV 
behavior.  

The perceptron, mapping the sensory inputs to behav-
ior archetypes, is fully connected. Connection weights are 
evolved and each value is represented by 5 bits with a 
range of [-16 .. 15]. The five bit gene is mapped to its value 
through a Gray Code in order to facilitate less erratic muta-
tion (Back 2000).  

Each behavior archetype rule weight and range is also 
evolved. These values are also 5 bit numbers. The range 
for rule expression is mapped through a Gray Code onto 
the interval [0.0 .. 1.0].  
When multiple UAV types exist in the same scenario, the 
representation increases in size to allot a perceptron and set 
of behavior archetypes for each UAV type. The genetic 
structure is demonstrated in Figure 1. There is a connection 
weight for each sense for each behavior archetype. These 
are followed by 12 genes which describe the weights and 
radii for the behavior rules for each behavior archetype. 

The GA uses a fixed population size with elitist selec-
tion. Despite early convergence, elitism appears highly 
successful. Premature convergence is not necessarily a 
concern with this system since solution fitness is not exact. 
This fitness evaluation inaccuracy may offer results similar 
to tournament selection method (Back 2000). 

This system uses two forms of mutation. The first acts 
upon the representation as a binary string. This type flips a 
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set number of randomly selected bits within a specified 
mutation neighborhood. 

 

 
 

Figure 1: Genetic Structure 
 
The second mutation type, comprising 25% of all mu-

tations, reinvigorates unused behavior archetypes by com-
pletely randomizing a selected archetype. This function 
acts on both the perceptron and the behavior rule values. 

A modified two-point crossover recombination is util-
ized by the GA. With the Gray code representation, points 
for the crossover are limited to intervals between the 5 bit 
genes. This prevents the crossover operator from altering 
the gene values in inappropriate ways according to the 
Gray code.  

In addition to limiting the crossover points, this opera-
tor performs 2 two-point crossovers: one within the behav-
ior matrix and the other within the behavior archetypes. 
This allows crossover within both the behaviors archetypes 
and the behavior matrix.  

Early experimentation demonstrated a large initial 
learning curve at the beginning of a GA run. Lohn et al. 
(1999) suggests varied scenario difficulty could alleviate 
this difficulty. Adaptive scenario difficulty is achieved by 
changing the specific scenario specifications as the system 
runs. Anecdotal experimentation with this system suggests 
a fixed schedule fitness function outperforms a static fit-
ness function. 

The fitness of an individual simulation is determined 
by the amount of damage caused to the targets. This encap-
sulates the UAV system’s need to search the area, coordi-
nate attacks, and successfully damage and destroy targets. 
The fitness function assigns 10 points for each hit point of 
target damage. 

To prevent overly specific evolution, the scenario ini-
tial states are slightly varied when starting each simulation. 
For this reason, individual simulation scores can vary dra-
matically. This effect is shown in Figure 2. Composite fit-
ness scores are obtained by averaging the results of a series 
of simulations and are used for evolutionary purposes. 
(The vertical line indicates the approximate mean.) 
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4 EXPERIMENTAL DESIGN 

System experiments are meant to develop the best SO be-
haviors for UAVs to search and destroy a number of tar-
gets. In this way, the system should address a set of scenar-
ios and evolve well-performing UAV SO behaviors.  

There are two scenarios gauging this UAV system’s 
performance and capability. The first scenario considers 10 
homogenous UAVs with only implicit communication. 
The second scenario examines heterogeneous UAVs with 
explicit communication. These scenarios were created in 
lieu of existing benchmarks. 

 System performance is measured by the GA solu-
tion fitness improvement across time. This is tracked as an 
average of the mean scores by generation for each run. 
 

 
 
Figure 2: Histogram of Observed Scores for a Particular 
49th Generation Heterogeneous Experiment Solution 

4.1 Homogenous UAV Experiment 

This experiment evolves the best set of behaviors within 
the systems framework for an engagement between 10 
UAVs and 3 targets.  

In order to facilitate the experiment, the selected envi-
ronment is an 80km×80km square with positions described 
in a Cartesian range of [0 .. 800] by [0 .. 800]. Each indi-
vidual simulation is run for 3000 simulation seconds (3000 
synchronous updates) during which UAVs are updated si-
multaneously each second.  

The 10 UAVs have specific limitations to their abili-
ties. The evolved solutions are limited to three different 
behavior archetypes. Maximum Sensor ranges are 5km. 
Explicit communication is not allowed. UAVs can engage 
targets at 1km distance. UAVs are limited to 77.16 meters 
per second velocity. Lastly, UAVs have 10 hit points 
apiece and damage targets at a rate of 1 hit point/second. 

Targets, on the other hand, are limited to a different set 
of characteristics. Only three targets exist in this scenario. 
The targets have a maximum sensor range of 30km and a 
maximum engagement range of 2km. They are unable to 
communicate and are stationary. The targets begin each 
simulation with 10 hit points apiece and damage UAVs at a 
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rate of 1 hit point per second. Two distinctions between the 
targets and UAVs are that the targets have twice the UAV 
engagement range and that targets are stationary.  

The UAVs have a centralized starting location with 
random initial velocities on the north western edge of the 
environment. Additionally, the starting positions place 
UAVs within 4.5km to their nearest neighbors. Initial di-
rections are randomly generated to prevent over specializa-
tion to the scenario. Coupled with the random initial bear-
ing, the UAVs should, at the beginning of the scenario, 
already be in some sort of formation since each UAV can 
sense other UAVs nearby. 

The targets have random starting locations placed 
away from all environment borders. The use of random ini-
tial positions for the targets simulates their unknown loca-
tions within the environment. Additionally, they are dis-
tanced from the borders to force the UAVs to search the 
interior for targets rather follow environment borders. 

The difficulty of the scenario is adapted by varying the 
engagement range of the targets. This should force the 
UAV system to learn cooperative attack as the difficulty 
increases. Table (1) displays the schedule. 

The genetic algorithm is run for 50 generations in ac-
cordance with the scenario schedule in Table 1. The popu-
lation for each generation is 100 and the 20 best solutions 
are carried over between each generation. Both old and 
new solutions are simulated 50 times to derive fitness 
scores. The crossover rate is set at 10% and the mutation 
rate is 90%. The allowed neighborhood for mutation is ap-
proximately 5% the solution representation.  

 
Table 1: Adaptive Scenario Qualities 

Scenario Generations Target Engagement Range 
1 0-9 0.4km 
2 10-19 0.8km 
3 20-29 1.2km 
4 30-39 1.6km 
5 40-49 2.0km 

 
 
With these initial positions and vehicle characteristics 

it seems likely that the UAVs would evolve effective 
searching behavior within the first 30 generations. The 
UAVs should use larger spread out formations to locate 
targets similarly to what is done in the model by Schlecht 
et al. (2003). In the first 30 generations, since it is possible 
for a single UAV to destroy a target, it is unlikely that co-
operative attack behaviors would be evolved. However, the 
UAVs should evolve a more cooperative attack strategy 
bolstering their reconnaissance behaviors in the last 20 
generations of each system run. It is expected that this sys-
tem should evolve behaviors enabling the UAVs to destroy 
at least 2 targets in each simulation 50% of the time (a re-
sultant mean fitness greater than 150). The system is run 
30 times to derive statistically significant results.  
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4.2 Heterogeneous UAV Experiment 

This experiment again uses 10 UAVs against 3 targets. 
Effectively, the environment, target characteristics, adap-
tive scenario schedule, and GA values are identical to the 
first experiment. The differences in this experiment are that 
that the majority of the UAVs have limited sensing capa-
bilities and are able to explicitly communicate. In this vein, 
1 UAV is equipped with a 10km range sensor suite 
whereas the others are only capable of 1.5km sensing. 

Two UAV types with differing populations exist in 
this scenario: 1 sensor UAV and 9 unmanned combat aerial 
vehicles (UCAVs). Many capabilities of these aircraft dif-
fer from the UAV attributes used in the homogenous UAV 
experiment. The sensor UAV has a maximum sensing 
range of 10 km and explicit communication range of 10km. 
The sensing UAV is unable to attack or damage targets. 
Correspondingly, the UCAVs have a maximal sensing 
range of 1.5 km and maximal communication range of 
1.5km. The UCAV attack targets with the same effective-
ness as the homogenous UAVs. In all other regards, the 
heterogeneous UAVs are identical to the simulated ho-
mogenous ones. It is important to note that since there are 
two distinct types of UAVs in this scenario, explicit com-
munication should compensate for these differences. 

The heterogeneous UAVs also have a centralized start-
ing location. The positions of the UAVs were selected to 
place the UAVs at the north western edge of the environ-
ment and within 1km to each nearest neighbor. Coupled 
with the random initial bearing, the UAVs should, at the 
beginning of the scenario, already be in some sort of for-
mation. 

Explicit communication should allow improved UAV 
capability over the first experiment. Since explicit commu-
nication allows a UAV to signal both its own traits and the 
location of other targets, more cooperative behavior should 
arise. It is expected that the sensing UAV operates in a 
purely passive reconnaissance role and signals the location 
of targets to the UCAVs. The UCAVs on the other hand, 
should stay within the communication range of the sensing 
UAV and attack communicated targets.  

5 RESULTS AND ANALYSIS 

For the first experiment, the system displays expected 
performance with respect to fitness score increases. This 
can be seen in examination of the plotted mean and best 
scores for the homogenous experiment (Ho. Mean and Ho. 
Best) in Figure 3. 

Analysis of all individual scores by generation for all 
runs indicates a reasonable level of predictable perform-
ance. This analysis is performed using a Kruskal-Wallis 
analysis of variance on ordinally ranked scores. Best score 
examination indicates that the diverse population fre-
quently finds well performing solutions to each scenario 
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within the schedule rather quickly. In contrast, the gradual 
increases to mean fitness indicate reproduction of better 
performing solutions throughout the population. Kruskal-
Wallis results suggest that the run scores are very similar in 
performance when the scenario difficulty is increased (see 
Figure 4). However, the similarity between simulation 
scores drops when the difficulty increases. 

 
 

 
Figure 3: Mean and Best Score by Generation for Both Ex-
periments 

 
 

 
 

Figure 4: Kruskal-Wallis ANOVA on All Individuals from 
All Generations 

 
 
Contrary to expectations, the typical final behavior did 

not reflect multiple behavior types. Rather, the most fre-
quent solution relied upon a single behavior archetype em-
phasizing extremely close formations and hyper-
aggression. Basically, the UAVs operate in the smallest 
possible safe formation while attacking targets on sight. 
Simply put, while the targets have superior engagement 
range, the UAVs must simultaneous attack a single target 
for any chance to succeed. If the UAVs were in a larger 
formation, they would need to shrink their formation prior 
to attack. In this particular case, it appears that maintaining 
a smaller formation improves behavior performance even 
though it diminishes reconnaissance capability. 

The final evolved behaviors do not reflect all lower 
difficulty solutions. For example, an exemplar solution 
from the 4th difficulty uses two behavior archetypes: one 
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geared towards reconnaissance and the other for attack. 
While in the reconnaissance mode, UAVs maintain a large 
formation suited to search and are moderately attracted to 
UAVs with a high target spotted pheromone. When a UAV 
detects a target, it switches into the attack behavior and en-
ters into closer formations with cooperating allies. 

The performance of the GA with the heterogenous 
scenario is similar to the homogenous scenario. A major 
difference, however, is that the maximal fitness score ap-
pears bounded by around 230 points whereas the homoge-
nous could achieve the maximal score at many low diffi-
cult levels. It is our conjecture that this is cause by 
disparity in overall sensor coverage between the homoge-
nous and heterogeneous UAV sets. The total area that can 
be searched at any one time, based upon the combined sen-
sor areas of all heterogeneous UAVs, is about 377.8km2 
whereas the homogenous have about 785.4km2 out of 
6400km2. It appears reasonable to cite reconnaissance abil-
ity as a causal factor for system performance. The statisti-
cal results of this experiment can be seen in Figure 3. 

When using a heterogeneous combination of UAVs, 
the resultant swarm must operate both cooperatively when 
attacking and cooperatively with respect to reconnaissance. 
For these reasons, the swarm must allow the sensor UAV 
to perform reconnaissance and the UCAVs to coopera-
tively destroy targets. Typical solution behaviors are simi-
lar to those expected but do not perform as well as antici-
pated. The UCAVs prefer being in a tight formation 
centered upon the sensor UAV. The small formations make 
target avoidance by the sensor UAV difficult in most cases. 
However, it seems that many successful solutions include 
the ability for the sensor UAV to remain outside the target 
engagement range while guiding the UCAVs for the attack. 
An example of this phenomena is shown in Figure 5 which 
is a snapshot from one of many animations. 
 

 
 
Figure 5: Demonstration of Target Avoidance by Sensor 
UAV 

 
Overall, the heterogeneous swarm reconnaissance is 

sub-par. When searching for targets, UAVs blaze a wind-
ing path through the environment. The overall best score 
for this scenario appears bounded by the reconnaissance 
3
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capabilities of the sensor UAV. Since there is no possibil-
ity of organized search patterns with this system’s lack of 
reconnaissance rules, the most effective solutions rely upon 
brute sensor coverage. This behavior appears universal to 
all well scoring solutions for this experiment. 

 

6 CONCLUSION 

This work has significance in three ways: it provides a SO 
model, engagement between retaliating targets and UAVs 
is modeled, and it demonstrates an architecture for future 
modeling and SO UAV swarm behavior evolution. 

The self-organized model we created for this system 
demonstrates results similar to other works modeling at-
tacks upon targets like that completed by Lua et al. (2003) 
and by Schlecht et al. (2003). Implicitly, those works ad-
dress the features of self-organization without explicitly 
using a self-organized model. 

Systems modeling directed attacks upon targets from 
aircraft appear quite common. However, investigations 
modeling retaliating stationary targets are not found in the 
literature. The exact engagement model applied here is 
very abstract and assumes a quantifiable amount of hit 
points can be assessed to both UAVs and targets for tacti-
cal engagement. Though abstract, the hit point approach 
incorporates UAV attrition and better models the need for 
behavior flexibility and robustness. 

The behavior archetype model developed provides for 
necessary behavior evolution when considering particular 
scenarios. This system could be used to represent and de-
velop UAV behavior for many potential scenarios. In addi-
tion, the rule-based approach supports future inclusion of 
additional rules governing such behaviors as reconnais-
sance. Though the evolved behaviors were not quite as ef-
fective as expected, they did demonstrate surprising quali-
ties. For example, it was seen that a smaller formations, 
though diminished in reconnaissance capabilities, are often 
favored when the targets have greater engagement range.  

With respect to the design and use of a SO model for 
successful UAV operation, it appears to have been success-
ful through simulation. The SO model allowed for the evo-
lution of a multi-agent system which, in most cases, con-
ferred a cooperative and useful set of UAV behaviors. 
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