
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

THE MITRE METEOR ROBOT CONTROL SOFTWARE: SIMULATE AS YOU OPERATE

Richard M. Weatherly
Frederick S. Kuhl
Robert H. Bolling

Robert J. Grabowski

The MITRE Corporation
7515 Colshire Drive

McLean, VA 22102-7508, U.S.A.

ABSTRACT

The Defense Advanced Research Projects Agency
(DARPA) challenged autonomous ground vehicle devel-
opers in the “2005 DARPA Grand Challenge” to build a
vehicle that could complete a 132 mile course through the
American desert southwest. MITRE, a not-for-profit sys-
tems engineering company, responded to this challenge by
creating the MITRE Meteor in just 11 months. This rapid
development relied on software employment transparency
to get the maximum utility out of each line of code. Judi-
cious design of the software framework allowed the same
body of code to animate the robot in the field, support la-
boratory experimentation, and analyze recorded field test-
ing data. This paper describes how software employment
transparency was achieved and how it increased develop-
ment efficiency.

1 INTRODUCTION

The Defense Advanced Research Projects Agency
(DARPA) reissued a challenge to developers of autono-
mous ground vehicles in 2005 to build machines that could
complete a 132 mile, off-road course. Of the 195 initial en-
trants only 23 qualified to compete in the race. Selection
was based on several down selects including 10 days of
rigorous competition at the National Qualifying Event held
at the California Speedway. The final race was a few days
later on October 8th and 9th in the Mojave Desert. The
course included gravel roads, dirt paths, switchbacks, open
desert, dry lakebeds, mountain passes, and two tunnels.
The vehicle needed to navigate GPS waypoints on a pre-
scribed course while staying within defined boundaries and
avoiding obstacles including other robotic vehicles. The
route was given to the teams only two hours before the
race began.

The MITRE Corporation decided to participate in the
Grand Challenge in late September 2004 (see Figure 1).
1291-4244-0501-7/06/$20.00 ©2006 IEEE
MITRE, the primary sponsor for the MITRE Meteor team,
invested discretionary funds in the event believing that
MITRE’s work programs and sponsors would benefit from
an investigation of the technologies that contribute to the
DARPA Grand Challenge.

MITRE’s team had no previous experience with the
Grand Challenge and was operating under a very difficult
time constraint. This led to several team philosophies.
First, employ commercial solutions wherever possible.
Stated another way, apply the main focus to the areas that
need the most innovation and farm out the rest. Second,
use an incremental model-simulate-test approach. Build a
model that is suitable to the current task. Verify and tune
the model using simulation and replay. Test the model and
system in real situations and then use the results of the test-
ing to adjust the model as necessary. This approach pro-
motes increasing sophistication commensurate with the
current capabilities of the robot while respecting the ulti-
mate goal. Third, use employment transparency to get the
maximum utility from our software development invest-
ment. That is, craft the control software and execution en-
vironment so that it can be used for more than one purpose.

Figure 1: MITRE Meteor at the Finals of the 2005 DARPA
Grand Challenge Robot Race
4

Weatherly, Kuhl, Bolling, and Grabowski

2 SOFTWARE EMPLOYMENT PHASES

The Meteor software development team had three jobs:
build real-time code that would drive a 5000 pound truck
down the road without hurting anyone, support robot con-
trol algorithm research, and construct tools to analyze op-
erational data recorded in the field. Given the tight sched-
ule, 11 months, it was clear we could not afford the time
and coordination overhead required to manage these three
jobs as independent efforts. Our goal was, therefore, to
create a single body of code that could be employed in the
operational, developmental, and analytical phases of our
project with minimum modification.

2.1 Operational Employment

The Meteor control software is a group of message passing
agents, as shown in Figure 2. The population of agents
processes sensor input and produces vehicle control com-
mands. Each agent has its own thread of control imple-
mented as a Java thread and mapped to a supporting OS
level thread. There are three types of agents: lookouts,
watch officers, and executives. The type distinction is
based on the control flow pattern of the basic loop within
the agent. Lookouts perform I/O with physical sensors and
send messages containing raw sensor data to the balance of
the agent population. Watch officers receive messages,
perform some value-added processing (typically sensor fu-
sion), and report their results in messages to the rest of the
agents. Executives assess the system state, perform some
value-added computation, report their results through mes-
sages, and then wait for some amount of time to pass.

Array of Onboard Computers

Agent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent
Steering Servo

Propulsion Servos
Lookouts

Watch
Officers

Executives

Laser Scanners

GPS Receivers

Wheel Sensors

Array of Onboard Computers

Agent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent
Steering Servo

Propulsion Servos
Lookouts

Watch
Officers

Executives

Laser Scanners

GPS Receivers

Wheel Sensors

Figure 2: Operational Employment

Another way to view the agent type distinction is by

the event that triggers agent action. Action in lookouts is
triggered by the reception of physical I/O. Watch officers
take action when they receive a message, while executives
act when some amount of time elapses (typically fixed del-
tas resulting in 10Hz to 80Hz loops).

When installed on the robot, the agents are distributed
across an array of 7 processors. The processors are con-
nected by a 1 gigabit Ethernet bus and run Fedora Core 3
1295
and the Sun Java Runtime Environment. The large number
of processors in the array was a decision taken early in the
project as a hedge against unknown processing demand. As
it tuned out, the final compliment of agents could run on as
few as three processors.

2.2 Development Employment

Figure 3 illustrates the software configuration used for the
algorithmic development of the Meteor agents. A simple
vehicle motion model was constructed that transforms
steering and propulsion commands, as they would have
been sent to the servo controller digital inputs, into vehicle
location, orientation, and velocity values. These values are
supplied to three sensor models.

Single Java Virtual Machine

Agent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Laser
Scanner
Models

GPS
Models

Wheel
Rotation
Model

Vehicle
Motion
Model

Obstacle Descriptions

Vehicle location, orientation, and velocity

Single Java Virtual Machine

Agent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Laser
Scanner
Models

GPS
Models

Wheel
Rotation
Model

Vehicle
Motion
Model

Obstacle Descriptions

Vehicle location, orientation, and velocity

Figure 3: Quasi-Real Time Simulation Employment

The laser sensor model takes the changing vehicle lo-

cation and orientation values and generates a stream of la-
ser output frame messages. These frames are identical in
format to those produced by the actual physical laser sen-
sor. The model does this by considering the relative ge-
ometry of the moving vehicle versus a static collection of
obstacle descriptions. The set of obstacle descriptions was
handmade and roughly corresponds to the buildings and
trees surrounding a parking lot near MITRE’s McLean
Virginia office.

The GPS models take the location, orientation, and
speed of the vehicle, as computed by the vehicle motion
model, adds statistical noise to the values, and then report
them in messages. These messages are identical to those
reported by the physical sensors and include fabricated
values for various GPS signal quality metrics.

The wheel rotation model takes the stream of changing
vehicle location values from the vehicle motion model and
transforms them into the displacement, speed, and accel-
eration values that are physically generated by an embed-
ded processor on the robot that measures drive shaft rota-
tion.

The entire software configuration can be run on a sin-
gle workstation. This configuration was used with great

Weatherly, Kuhl, Bolling, and Grabowski

benefit as the soft-ware system design first evolved. The
fact that the system only ran in real time was not a problem
except when trying to evaluate vehicle behavior over long
periods of time. This was particularly taxing when simulat-
ing vehicle performance for the full 10 hours allowed by
DARPA to complete the race.

In addition to the real time limitation, results were of-
ten not reproducible. The primary reason for this is compe-
tition for limited computing power. An assumption of the
agent-based architecture is that all executive agents have
enough computational power available to complete the
processing of one cycle before it is time to begin the next
cycle. This assumption is seldom violated when the agents
run on the robot’s powerful, multi-processor array and is
constantly violated when they run on a single workstation.
When an executive agent does not finish one cycle before
it is time to begin the next, controller frequencies become
random and the simulation ceases to reflect the real system.

To improve reproducibility and support both faster and
slower than real time simulation, the Tortuga discrete event
simulation framework (Weatherly and Page 2004) was in-
corporated, Figure 4. This required three changes. First, the
agent framework was extended to include a mode switch.
In one switch position (operational mode), each agent is a
real OS thread and the population of agents operate as they
would when installed on the vehicle processor array. In the
other position (simulation mode), agents become interact-
ing sequential logical processes in the Tortuga framework.

Agent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Laser
Scanner
Models

GPS
Models

Wheel
Rotation
Model

Vehicle
Motion
Model

Obstacle
Descriptions

Vehicle location, orientation, and velocity

Tortuga Simulation Framework

Agent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Laser
Scanner
Models

GPS
Models

Wheel
Rotation
Model

Vehicle
Motion
Model

Obstacle
Descriptions

Vehicle location, orientation, and velocity

Tortuga Simulation Framework

Figure 4: Discrete Event Simulation Employment

The second change required to introduce Tortuga in-

volves delays. Attempts by an agent to delay its execution
are intercepted. How the delay request is interpreted was
made mode switch dependent. In operational mode, an at-
tempt to pause t milliseconds results in a call to
Thread.sleep(t). In simulation mode, a similar at-
tempt results in the suspension of the agents logical proc-
ess and the scheduling of a resumption event t milliseconds
of simulation time in the future.
1296
The third change for Tortuga involves messages. The
inter-agent communication system was made mode switch
dependent. Specifically, a minor change was made to each
agent’s input message queue. In operational mode, the in-
put queue is a Java LinkedBlockingQueue that blocks
agent threads that attempt to read from an empty queue. In
simulation mode, input messages are simply scheduled
events that resume the agent’s logical process when their
time arrives.

2.3 Analytical Employment

An advantage of the agent-based architecture is access to
the evolving computational state. A good view of how the
agents are working internally and behaving as a group can
be obtained from recording their message exchange. Such
recordings were made each time the robot was operated in
the field and archived for later study. This was important
given the limited opportunity the team had for actual
autonomous vehicle operation before the race. There are
few places in the suburbs of Washington DC where it is
safe to let an autonomous pick-up truck run free.

Figure 5 shows how recorded messages are analyzed.
Typically, the team returned from the field wanting an an-
swer to the recurring question; “Why on earth did it do
that?” To explore field testing events, two things were
done. First, a small special purpose agent called the Re-
player was built that could read messages that were re-
corded in the field and then introduce them into the Tor-
tuga framework as scheduled events. Second, agents that
manage sensors were removed from the population. With
such an arrangement, recorded messages take the place of
real sensors. The balance of the agents behave exactly as
they do in the field. Using controls in Tortuga that set the
ratio of simulation time to real time, the analyst can fast-
forward though the recorded messages until the time of the
curious robot behavior. Then the analyst can slow the re-
play and attempt to determine what the robot was doing.

Agent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Tortuga Simulation Framework

Recorded
Messages

ReplayerAgent

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Tortuga Simulation Framework

Recorded
Messages

Replayer

Figure 5: Replay of Recorded Messages

Weatherly, Kuhl, Bolling, and Grabowski

3 SIMULATION INFRASTRUCTURE

The success of the Meteor depends on the ability to run its
control software either in operational or in simulation
mode. The key to switching easily between these modes of
employment is the infrastructure. As mentioned above, the
control software “sees” the same interface regardless of the
mode. The infrastructure allows the agents to function ei-
ther as threads or as interacting-process simulation entities.
The simulation infrastructure comes from the Tortuga
framework.

3.1 Process Orientation and the Tortuga Framework

There are several views, or organizing principles, for dis-
crete-event simulations. “The simulation structure that has
the greatest intuitive appeal is the process-interaction
method. The notion is that the computer program should
emulate the flow of an object through the system. The en-
tity moves as far as possible in the system until it is de-
layed, enters an activity, or exits from the system. When
the entity's movement is halted, the clock advances to the
time of the next movement of any entity. This flow, or
movement, describes in sequence all the states that the ob-
ject can attain in the system.” (Banks 1998)

The Tortuga framework is a product of MITRE-
sponsored research to facilitate the rapid construction of
analysis and training simulations by small teams. Tortuga
allows interacting-process simulations to be written in Java
using current development tools and incorporating third-
party and open-source software. In addition to the Meteor
application, Tortuga has been applied successfully to novel
simulations in air traffic control and military analysis.

Interacting-process simulation in Java is not new.
There are several implementations (Jacobs et al. 2002,
Gehlsen and Page 2001). These frameworks, owing to op-
erating system limits, support only a few thousand logical
processes. However, Tortuga supports simulations of hun-
dreds of thousands of logical processes. Tortuga achieves
its scalability through modifications to the Jikes Research
Virtual Machine. These modifications enable efficient,
lightweight coroutines. Tortuga also runs atop the Sun
JVM with the same limitations as other frameworks on the
number of logical processes; the Sun JVM underlies the
work reported here.

Tortuga adds several features useful for military simu-
lation, specifically action methods and triggers. An action
method is a distinguished method on a simulation entity.
When invoked by another entity, an action method has the
side-effect of causing the simulation executive to schedule
the invoked entity to resume execution. Thus the entity,
which might have been waiting for simulation time to pass,
is awakened beforehand. Action methods naturally repre-
sent the occurrence of exogenous events or interruptions,
such as being shot at or the arrival of a message.
1297
A trigger is a boolean predicate defined by the simula-
tion writer (as a Java class with a method that evaluates the
predicate). An entity can ask the executive to let it sleep
until one or more triggers are satisfied or some amount of
time passes. The analogy is with database triggers. Trig-
gers allow an entity to wait for the state of the simulation
to reach a certain condition, like other entities being with
range of a sensor.

3.2 What Threads and Simulation Entities Have In
Common

The Meteor control software is organized as agents. The
central problem of supporting the various employment
phases is supporting the agents in those phases. Agents
need three things in each phase:

• A thread of control,
• A way to sleep for a set period of time, and
• A way to await the arrival of a message.

From the agent’s perspective, the infrastructure software
provides these three things to agents the same way in each
phase.

3.2.1 A Thread of Control

In operational mode, each agent is animated by a Java
Thread, that is, the agent’s behavior, encapsulated in a
method, is performed by a Thread. In simulation mode, the
agent’s behavior is performed by a Tortuga Entity, which
runs as a logical process under control of the Tortuga simu-
lation executive.

3.2.2 Sleeping For a Set Period of Time

Agents running in any employment mode sleep or delay
for a set time by calling a method on a TimeManager.
The TimeManager provided to an agent depends on the
mode. In operational mode, the TimeManager provided
merely performs a Thread.sleep(t). In simulation
mode, the TimeManager performs a Tortuga wait-
ForTime(t) call, which suspends the underlying En-
tity’s execution and returns control to the Tortuga execu-
tive.

3.2.3 Awaiting Arrival Of A Message

Agents await the arrival of a message by invoking
read() on an abstract class Comm. In operational mode,
the Comm instance is actually an instance of OpComm,
which performs network communication. In simulation
mode the Comm instance is actually an instance of
SimComm. This class waits for a message to be placed in

Weatherly, Kuhl, Bolling, and Grabowski

the agent’s receive buffer. The agent, which in simulation
mode is a Tortuga Entity, defines a Tortuga trigger that is
satisfied by one or more messages waiting to be read. Thus
the agent is suspended under control of the Tortuga execu-
tive until a message arrives in its buffer.

4 CONCLUSION

The Meteor software team achieved its goal of employ-
ment transparency using a single body of code for robot
operation, code development, and logged data replay
analysis. The software benefited greatly from its agent de-
sign, which allowed cooperative decomposition of its vari-
ous reporting, analysis, and executive functions. Structur-
ing and encapsulating cooperation between agents running
in real time as Java Threads via messages made coordina-
tion straightforward.

The interacting-processes view of simulation affords
another, similarly natural, way to coordinate cooperating
agents or entities controlled by simulation time. This work
demonstrated how the Meteor software capitalized on the
similarities between thread-backed agents and simulation
entities to facilitate its employment in very different
modes.

ACKNOWLEDGMENTS

The authors wish to acknowledge the entire 2005 MITRE
Meteor Team. It was a privilege to work with the energetic
and innovative folks seen in Figure 6. From left to right:
Frank Carr, Bob Bolling, Bob Grabowski, Richard Weath-
erly, Dave Smith, Ann Jones, Tiffani Horne, Mark Heslep,
Keven Ring, Kevin Forbes, Mike Shadid, Laurel Riek,
Alan Christiansen and Sarah O’Donnell (inset).

Figure 6: The 2005 MITRE Meteor Team at the California
Motor Speedway

REFERENCES

Banks, J. 1998. Handbook of Simulation, Wiley.
Jacobs, P., N. Lang, and A. Verbraeck. 2002. DSOL: A

Distributed Java Based Discrete Event Simulation Ar-
chitecture. Proceedings of the 2002 Winter Simulation
1298
Conference. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers.

Gehlsen, B., and B. Page. 2001. A Framework For Distrib-
uted Simulation Optimization. Proceedings of the
2001 Winter Simulation Conference. Piscataway, New
Jersey: Institute of Electrical and Electronics Engi-
neers.

Weatherly, R. M., and E. H. Page. 2004. Efficient Process
Interaction Simulation in Java: Implementing Co-
Routines Within a Single Java Thread. Proceedings of
the 2004 Winter Simulation Conference. Piscataway,
New Jersey: Institute of Electrical and Electronics En-
gineers.

AUTHOR BIOGRAPHIES

RICHARD M. WEATHERLY led the design and con-
struction of the Meteor infrastructure and control software.
He received a Ph.D. in Electrical Engineering from Clem-
son University and is a Consulting Engineer with The
MITRE Corporation. His e-mail address is
<weather@mitre.org>.

FREDERICK S. KUHL designed and implemented the
Tortuga framework with Weatherly. He holds the Ph.D. in
Computer Science from Texas A&M University. He is a
Senior Principal Engineer with The MITRE Corporation.
His e-mail address is <fkuhl@mitre.org>.

ROBERT H. BOLLING leads the robotics department at
the MITRE Corporation in McLean, Virginia, where he
was responsible for the physical and electrical design inte-
gration of the Meteor. He is a retired Air Force Experimen-
tal Test Pilot and has a B.S. and M.E. in Electrical Engi-
neering and M.S. in Aeronautical Science. His e-mail
address is <rbolling@mitre.org>.

ROBERT J. GRABOWSKI is a lead engineer in the ro-
botics department at the MITRE Corporation. He started
his career as a Reactor Operator in the US Navy. He re-
ceived his Ph.D. in Electrical Engineering from Carnegie
Mellon University in 2004 with a focus on small robots.
He now develops sensor and control algorithms for large,
outdoor robots and robot teams with the MITRE team. His
e-mail address is <rgrabowski@mitre.org>.

mailto:weather@mitre.org
mailto:fkuhl@mitre.org
mailto:rbolling@mitre.org
mailto:rgrabowski@mitre.org

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

