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ABSTRACT 

Computer simulation models will ideally be developed 
within an environment where all the necessary input data is 
readily available and all the relevant stakeholders are sup-
portive and co-operative. In practice, many models are de-
veloped for the purpose of evaluating organisational or 
process change. As a result, system performance data may 
often be limited or potentially biased by key parties associ-
ated with the results of the simulation model.  Ensuring 
valid input data is therefore a key aspect of model valida-
tion and an important component in a successful simulation 
study. This paper addresses some examples of data collec-
tion problems that have been encountered by the author 
and presents a number of lessons identified. 

1 INTRODUCTION 

Validation, in a general sense, is the process of assessing 
analytical capability against standards defining a fully 
credible system. For a simulation modeller, validation is 
establishing that the tools, data and models available for a 
study in a particular domain are capable of providing a 
credible simulation of the respective systems. This defini-
tion acknowledges that a set of validation criteria for the 
model alone is of limited value since there is almost always 
a clear linkage between the model and its data, with the lat-
ter very often needing to be tailored to reflect its intended 
use within the model. Therefore, both the raw data and the 
pre-processing needed to tailor the data for use should be 
included within the validation process. As a result, valida-
tion of a simulation model needs to embrace both the proc-
ess represented within the model, and the associated as-
sumptions and data items. 

Data validation is often not considered to be part of the 
model validation process because it is usually difficult, 
time consuming, and costly to obtain sufficient, accurate, 
and appropriate data (Sargent 2003). As a result, the lack 

 

1281-4244-0501-7/06/$20.00 ©2006 IEEE
of data validation is often the reason that attempts to vali-
date a model as a whole fail.  

The Operational Analysis Element (OAE) of the Air 
Warfare Centre provides the scientific support to front line 
units of the Royal Air Force, and consequently is required 
to develop, maintain and use simulation models and tools 
for addressing a range of military problems.  Over a period 
of time the OAE have accumulated a number of ‘lessons 
learnt’ associated with data validation, and have developed 
a number of ‘rules’ to reduce the resultant risks. 

2 TYPICAL SOFTWARE LIFE CYCLE 

Many simulation models and tools operate within a Simu-
lation Life Cycle (SLC) illustrated in Figure 1. The typical 
SLC scenario will occur in the following manner. 
 

 
Figure 1: Simulation Life Cycle 

 
Phase 1 consists of the prototype model. 

 
1. The customer has a problem for which a simple 

simulation modelling has the potential to provide 
insights. 

2. A prototype model is produced, probably a deter-
ministic model in the form of a spreadsheet using 
highly aggregated input data. 

 

Phase 1 – Prototype Model 

Phase 4 – Declining Model 

Phase 3 – Enhanced Model 

Phase 2 – Initial Model 
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3. The model is easy to use, intuitive and produces 
simple outputs. The model can be used success-
fully by either the analyst or the customer. 

4. The model is used to produce illustrative results 
and the customer is persuaded to sponsor the de-
velopment of a more representative model to ad-
dress the actual problem. 

 
Phase 2 consists of the initial model. 

 
1. The problem is researched in more detail to un-

derstand the processes involved and the input and 
output measures. 

2. A representative model is produced, probably a 
stochastic model utilising a simulation modelling 
package. 

3. The model is reasonably easy to use, generally in-
tuitive and produces a range of statistical outputs. 
The model can be used successfully by most ana-
lysts or the customer following basic tuition. 

4. The model is used to produce representative re-
sults for the system. 

 
Phase 3 consists of the model extension phase. 

 
1. The model is modified to either address a slightly 

different problem or different aspects of the origi-
nal problem. 

2. The extended model is produced, possibly intro-
ducing additional simulation modelling features. 

3. The model is quite complex to use, requiring a 
reasonably high level of understanding of the 
simulation model being employed, and produces a 
range of statistical outputs. The model can only be 
used successfully by a small number of dedicated 
analysts. 

4. The model is used to produce representative re-
sults for the system, but the outputs invariable re-
quire post-processing before presentation to the 
customer. 

 
Phase 4 comprises the model decline phase. 

 
1. The model is now very complex and any modifi-

cations to either address a slightly different prob-
lem or different aspects of the original problem 
take significant time and effort. 

2. The model is complex to use, requiring a very 
high level of understanding of the simulation 
model being employed, and produces a range of 
statistical outputs which require considerable 
post-processing . 

3. The model is used to produce results for the sys-
tem, but the outputs are not conveyed directly to 
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the customer due to complexity and non-intuitive 
nature of the results. 

4. The customer has misgivings about the model and 
requests that the potential for a much simpler 
model be investigated, probably a deterministic 
model in the form of a spreadsheet using highly 
aggregated input data. 

3 SIMULATION MODEL VALIDATION 

Many of the issues illustrated in this SLC scenario can be 
related to the validation of the simulation model. The 
Phase 4 decline of the model is often precipitated by the 
customer perception that the simulation is no longer pro-
viding credible results. It is therefore clearly in the simula-
tion modeller’s best interests to have the process and the 
evidence available to pursued the customer that the model 
remains ‘fit for purpose’ (Sadowski 2005). 

There are many books and papers dealing with meth-
odologies for simulation validation (for example Law and 
Kelton 2000). The majority of the methodologies will in-
volve a combination of: 

 
1. Conversations with subject matter experts. 
2. Comparison with existing theory. 
3. Comparison with observations of the current sys-

tem (Lada et al. 2005). 
4. Intuition. 

 
The simulation model will however only ever be a rep-

resentation of the full system, and as such the key decision 
for the modeller and the customer is invariable ‘is the 
model valid enough for the simulation study being under-
taken?’.  Whilst the fidelity of elements within the simula-
tion model can be enhanced as the model matures, high 
quality input data will need to be applied throughout the 
SLC. 

4 INPUT MODEL DANGERS 

A key aspect of model validation is to ensure the accuracy 
of the input data being used within the simulation. The use 
of poor quality input data significantly increases the risk of 
the simulation study providing incorrect information to the 
customer and decision maker. This can be illustrated 
through a simple queuing simulation example. The follow-
ing example has been constructed using SIMUL8. 

Consider a single server queue for which the cus-
tomer arrival rate is reported to be 10 per hour and the ser-
vice time is reported to be 6 minutes (Figure 2). If custom-
ers were to arrive at a constant rate (i.e. one every 6 
minutes) and the server takes exactly 6 minutes to deal 
with the customers request, then the customers would 
never have to wait and the server would have no ‘idle’ 
time. 
1
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Figure 2: Simple Queuing Simulation 
 

Simulation modellers will immediately identify that 
the model does not take into account any random varia-
tions in either the customer arrival times or the time taken 
by the server to meet the customer’s requests.  

The importance of considering randomness in the 
model can be illustrated by considering the effect of chang-
ing the customer arrival time from exactly 6 minutes to a 
value sampled from a Normal Distribution with a Mean of 
6 minutes and a Standard Deviation of 1 minute. Under 
these circumstances, the average waiting time is just over 4 
minutes with a maximum waiting time of just over 10 min-
utes. Similarly, if the server time is modeled as a Normal 
Distribution with a mean of 6 minutes and a Standard De-
viation of 1 minute, then the average waiting time in-
creases to over 5 minutes, with a maximum waiting time of 
over 13 minutes. 

The response from the server’s management to seeing 
this type of result, could be to consider introducing new 
processes or retraining the server to reduce the time taken 
to meet the customer’s request. The model could be used to 
identify that reducing the time taken to meet the cus-
tomer’s requests to a Mean of 5 minutes and a Standard 
Deviation of 1 minute would result in only minimal wait-
ing time for the average customer, and a maximum waiting 
time of around 3.5 minutes. 

This level of analysis may however result in mislead-
ing conclusions. If the variability in customer arrival times 
were also to be considered, for example by obtaining cus-
tomer arrival times by sampled from a Poisson Distribution 
with a mean of 6 minutes, a single server would struggle to 
meet the customer requirements. A server meeting the cus-
tomer’s requests to a Mean of 5 minutes and a Standard 
Deviation of 1 minute could still result in significant wait-
ing time for the customers. The server processing time 
would need to be reduced further to reduce the maximum 
customer waiting time to a minimal level. Under these cir-
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cumstances, introducing an additional server may be a 
more practical proposition. 

Although the customer arrival rate was reported at 10 
per hour, if this arrival rate is not randomly distributed 
throughout the day, but has particular peak times, then 
again the simulation results may lead to misleading conclu-
sions. For example if the hourly arrival rate of Table 1 
were to occur, then 2 servers would result in an average 
time in queue of just over 8 minutes with a maximum of 
around 14 minutes, although both servers would be ‘idle’ 
for over 1/3 of the day. In these circumstances, having 2 
servers for the first and last hour of the day, and three serv-
ers for the midday peak hour would result in minimal aver-
age wait time and a maximum wait of less than 4 minutes. 

 
Table 1: Customer Arrival Rate 

Time period Customers per hour 
9-10 16 

10-11 6 
11-12 6 
12-1 24 
1-2 6 
2-3 6 
3-4 6 
4-5 10 

 

5 INPUT DATA ISSUES 

While the previous queuing example is artificial, it effec-
tively illustrates the importance of obtaining and imple-
menting the correct input data. In practice, obtaining valid 
input data is often difficult and is rarely given the same 
priority as other aspects of the simulation model develop-
ment. 

Input data issues can take several forms, covering the 
full spectrum from too little to too much available data. 

 
1. Data not available. 
2. Data not easily available. 
3. Data incomplete. 
4. Data inaccurate. 
5. Data misleading. 
6. Data deluge. 

5.1 Data Not Available 

Having no data can result from a number of reasons, but 
usually it is because the simulation model is being de-
signed to address a new system or new process and hence 
there is no data available. When there is no data available, 
the modeller can estimate the input parameters by using a 
combination of; 

 
1. Conversations with subject matter experts. 
2
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2. Comparison with existing theory. 
3. Comparison with observations of the current sys-

tem. 
4. Comparison with similar models and studies. 
5. Intuition. 

5.2 Data Not Easily Available 

While data may potentially be available, it may be too ex-
pensive either in time or cost to collect. In a military envi-
ronment this is a common situation, when, for example, 
data from training exercises could be used for model in-
puts, but recording and collating data from all the partici-
pants can be hugely expensive a time consuming. If it is 
impractical to collect the data, then the modeller will need 
to estimate the input parameters as if no data was available. 

5.3 Data Incomplete 

In circumstances when data is available, it will often be in-
complete. Data may for example have only been collected 
over a short period of time, or from a limited sub-set of the 
overall system. Incomplete data can be used to estimate in-
put parameters using appropriate statistical techniques, or 
by using directly within ‘bootstrapping’ methods. While 
statistical techniques can be used to estimate the confi-
dence intervals for the input parameter estimates, for these 
to be valid, the data set must be a representative sample of 
the overall system 

5.4 Data Inaccurate 

When data is available, there is a risk that it is inaccurate. 
This may be because the fidelity of the data is not a high as 
that required by the modeller, or even that the data has 
been corrupted or is in error. Gross inaccuracies are often 
easy to identify, but data recording issues such as using 
‘yards’ rather than ‘metres’ are much harder to identify. 

5.5 Data Misleading 

When accurate data is available, it may be misleading to 
the modeller. Misleading data may result from a number of 
causes; either the data that has been collected is not what 
the modeller was expecting, or the true system is more 
complex that that envisioned by the modeller. Misleading 
data invariably means that additional effort and data analy-
sis will be required by the modeller and will impact the 
study timelines. 

5.6 Data Deluge 

In the electronic age, many automated or semi-automated 
systems keep detailed data logs. While the data may be 
available and easily accessible, extracting the relevant data 
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and processing the data into a usable format may involve 
considerable time and effort.  

6 DATA COLLECTION 

When considering the collection of input data, the analyst 
has got three options. 

 
1. Use pre-collected data. 
2. Get somebody else to collect the data. 
3. Collect the data himself/herself. 
 

6.1 Use Pre-Collected Data 

Using data that has already been collected is always the 
easiest method of obtaining input data for the simulation 
model. If the data is being reproduced from a previous 
study or from the academic literature it will bring with it a 
level of peer review and accreditation, and takes little addi-
tional effort to convert into a form suitable for the model to 
use.  There are however a number of risks associated with 
using pre-collected data: 

 
1. The data may not be representative of the scenario 

to be modeled. 
2. There may be implicit assumptions associated 

with the data. 
3. The accuracy and fidelity of the data may be dif-

ferent to that needed in the model. 
 

6.2 Get Somebody Else to Collect the Data 

Having somebody else collect the data you require as part 
of a wider data management process has a number of at-
tractions. The principal attraction is the small cost in terms 
of time and effort for the modeller, but also the added 
credibility of being part of a wider organisational process. 
The risk with this method is that your data may not be a 
high priority element, and hence may not be collected with 
the quantity, quality and completeness that the modeller 
requires. 

 

6.3 Collect the Data Yourself 

If the modeller collects their own data, this will be time 
consuming and detract from the model development activi-
ties. Collecting your own data however ensures that the 
modeller is assured of the quality, completeness and accu-
racy of the data being used within the model, and probably 
more importantly, the process of collecting the data will 
often provide additional insights into how the current sys-
tem actual performs. 
3
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7 REAL WORLD INPUT EXAMPLES 

Data is defined as a series of observations or measurements 
(Collins 1988). When the data are placed into context they 
become Information. The addition of judgement to the in-
terpretation of the Information constitutes Knowledge. 
Whilst inputs to the simulation model will consist of data, 
knowledge will invariably be required to ensure the data is 
relevant for the analysis task. 

7.1 Weapon Accuracy Example 

The accuracy of free-fall bombs has traditionally been 
modelled in simulations as a bi-variate Normal Distribu-
tion. By examining down-range and across-range miss dis-
tances for different aircraft and weapon combinations ob-
tained from trials, exercises and real military operations 
one would expect that it should be relatively simple to se-
lect the most appropriate mean and standard deviation pa-
rameters for the bi-variate Normal Distribution. 

In practice, examination of raw miss-distance data of-
ten generates a number of problematic issues. Principal 
amongst these is that the raw data rarely looks ‘Normal’. A 
typical plot of down-range miss distance will tend to be 
similar to Figure 3, comprising a large ‘tail’ to the distribu-
tion and with a significant number of ‘zeros’.  The large 
tail is invariably caused by data points where the aircrew 
are aiming the weapon at a target location which is differ-
ent to the aim-point from which the miss distance is being 
measured, and the large number of ‘zero’ misses is in-
variably the result of using a non-point target.  If the target 
is relatively small (say a tank or an artillery piece) then 
target size is probably not a major factor, but some targets, 
for example large buildings, can be of the same order of 
magnitude as the expected miss distances.  The RAF occa-
sionally uses Garvie Island off Cape Wrath in North East-
ern Scotland as a bombing range during exercises. When 
the target is a large granite island, unsurprisingly almost all 
the weapons on these exercises ‘hit’ the target.  

7.2 Aircraft Reliability Example. 

A squadron of aircraft, comprising 12 airframes, deploy to 
an operational theatre. During the tour of duty, the squad-
ron flew 8 missions per day for 10 days. Examination of 
the aircrew Mission Reports showed that 4 missions in-
volved ground aborts (i.e. an aircraft was unable to launch 
due to system faults). A simple examination of the data 
could suggest that with 4 ground aborts in 80 missions 
(5%) a simulation model of the system could assume an 
input value of 95% for aircraft reliability.  

An analyst with knowledge of the system would how-
ever know that 95% is probably a significant overestimate 
of aircraft reliability. This is because the ground abort data 
has been derived from aircrew Mission Reports. Of the 12 
1284
aircraft deployed, the flight engineers will only offer up to 
the aircrew airframes which are believed to be fully ser-
viceable. Consequently the 95% value, is the reliability of 
aircraft believed to be serviceable when handed over to the 
aircrew. To obtain a true value for aircraft reliability the 
analyst would need to have obtained the engineering status 
reports for each of the individual airframes deployed on the 
operation.  
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Figure 3: Typical Miss-Distance Distribution 

7.3 Mission data accuracy example 

Since MISREPs are filled in by the aircrew, the quality of 
the data is totally depended on the accuracy of the data 
provided by the individual filling in the data form. During 
Operation GRANBY (Iraq 1991) the overall quality of 
MISREPs tended to be poor, with a significant number of 
forms either incomplete or inaccurate. Following Opera-
tion GRANBY the OAE undertook a major education 
campaign amongst the RAF aircrew to improve the quality 
of MISREP reporting. This involved liaison with the 
squadrons, providing data collection tools and offering 
feedback and evidence of the value of the data that was be-
ing collected. 

As a result, by Operation ALLIED FORCE the qual-
ity of the RAF MISREP reporting was considerably in-
creased. Data collectors need to remain aware however of 
the circumstances under which the data is being collected. 
For example, during Operation ALLIED FORCE, the qual-
ity of the data collected by the Harrier GR7 crews flying 
from Italy tended to be higher than from the Tornado GR1 
crews flying from Germany. This should not have been a 
surprise however, since the Tornado crews were tending to 
fly missions lasting over 6 hours longer than the Harrier 
crews (due to overland routing issues to reach Kosovo). As 
a result the Tornado crews were filling in the MISREPs 
and data collection forms at the end of a 14 hour day in a 
highly stressed environment, and unsurprisingly attention 
to detail when filling in the forms was not always a high 
priority.  



Cowdale 

 
 
 

 
7.4 Weapon Usage Example 

During Operation ALLIED FORCE (Kosovo in 1999) and 
IRAQI FREEDOM (2003) the OAE were tasked to main-
tain a database on air-weapon expenditure by RAF aircraft. 
During these Operations, the RAF was operating from a 
number of bases, and the OAE had insufficient manpower 
to maintain a data collection team at all of the bases, all of 
the time.  Consequently, the database was compiled princi-
pally from aircrew Mission Reports (MISREPs). Relying 
solely on MISREPs would however had been problematic 
however, since cross-referencing with armourers logs and 
engineer’s authorization sheets occasionally identified mis-
sions that had been flown and weapons released form 
which the OAE had not collected a corresponding 
MISREP.  

7.5 Heisenberg’s Principle Example 

In predominately human based systems, it is quite possible 
that collecting the data will raise the level of awareness of 
the process or system amongst the various stakeholders. In 
these circumstances the data collection may actually alter 
the process or the system itself.  

In the fall of 2002 the Fire Brigade Union within the 
United Kingdom proposed a ballot on strike action in sup-
port of a wage demand. Consequently the Ministry of De-
fence agreed that in the event of strike action, emergency 
assistance to the local authorities would  be provided by 
deploying military staff to man fire-fighting equipment and 
to provide command and control functions. The OAE de-
veloped two simple simulation models to investigate asset 
utilisation and to act as a training aid for the military mis-
sion planners and control centre staff in the Norfolk region 
(Cowdale.2003). The Norfolk Fire Service and the Office 
of the Deputy Prime Minister had kept detailed records on 
the type and location of fires which had historically oc-
curred in the Norfolk region, and hence this data was con-
sidered an excellent source of input data for the simulation 
models. During the days of industrial action although the 
number of malicious false-alarms increased, the overall 
number of reported incidents in the Norfolk region (and 
within the United Kingdom as a whole) were significantly 
less than the historical predictions. Whilst bad weather and 
heavy rain invariably contributed to the number of fire in-
cidents, the build-up to the industrial action received sig-
nificant media coverage and resulted in a major increase in 
public awareness of fire risks and preventative measures.  

8 CONCLUSION 

If you are in a position to define a data collection plan. 
 
1. Think very hard about what you want. 
2. If in doubt collect it 
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3. Make sure you are collecting what you think you 
are collecting 

4. Ensure you document what you collected and 
what you didn’t 

5. If possible confirm via two sources 
 
Data collection and model validation, is nothing new. In a 
letter to Nathaniel Hawes dated 25 May 1694, Sir Issac 
Newton wrote “If instead of sending the observations of 
able seamen to able mathematicians on land, the land 
would send able mathematicians to sea, it would signify 
much more to the improvement of navigation and the 
safety of men’s lives and estates on the element.” .  
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