
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

SPECIFYING AND SIMULATING MODERN WARFARE SCENARIOS WITH ITSIMBW

 Philipp Hügelmeyer
Timo Steffens
Thomas Zöller

Fraunhofer AIS-ART
Schloss Birlinghoven
53754 Sankt Augustin

GERMANY

ABSTRACT

The aim of this paper is the presentation of the military
multi-agent simulation system ITSimBw. Its decisive fea-
tures include a strictly agent-based approach to modeling,
in which every entity in a simulated environment can po-
tentially become an active element. Technologically, IT-
SimBw is based on the Flip-Tick-Architecture. Moreover,
a focus on IT and communication aspects is one of its im-
portant characteristics. Additionally, the impact of scaling
aspects in the design of scenarios and their support by the
simulation system is addressed.

As the utility of simulation strongly depends upon the
quality of the employed scenarios, ITSimBw also contains
a unique approach to scenario description, termed LAMPS
(Language for Agent-based Modeling of Processes and
Scenarios). LAMPS is based on high-level Petri-Nets and
enables the specification of individual agent behavior as
well as complex scenarios in a uniform way.

1 INTRODUCTION

In this contribution, we present the military multi-agent
simulation environment ITSimBw and its description lan-
guage LAMPS, which is used for the specification of agent
behaviors as well as complete scenarios.

Due to the growing importance of network centric ca-
pabilities in military operations, one of the main focus
points for the development of ITSimBw is the faithful
modeling of IT and communication aspects. Clearly, these
issues cannot be considered in isolation, but have to be
seen in conjunction with the military mission, command,
and report structures, and the influences exerted by the en-
vironment.

Consequently, the simulation system must be flexible
enough to model any conceivable action or effect for all
entities involved. Although military operations generally
follow fixed doctrines and rules of engagement, every item

12731-4244-0501-7/06/$20.00 ©2006 IEEE
in a simulation should be enabled for active participation.
ITSimBw addresses this point by strictly adhering to an
agent-oriented paradigm which allows for the specification
of autonomous, situation-based behavior for all entities.
This extended agent concept includes environment,
weather, bridges, obstacles, and the like as active elements.
This means that all effects and events are handled as ac-
tions of agents.

One of the main challenges of simulations is the opti-
mal choice concerning the degree of model detail. Coarse
models commonly yield very broad and abstract results
with little value for the military practitioner. Overly de-
tailed models on the other hand produce outcomes that are
too dependant on minute situational details thus preventing
their applicability to other scenarios even if they are highly
similar. Therefore, scaling aspects play a major role in the
design of simulation tools.

Another important issue for any simulation system is
the precise and comprehensive description of the scenarios
which are to be examined. To this end, ITSimBw encom-
passes its own LAMPS description language. Being based
on high-level Petri-Nets, it can be represented graphically
and by rule-sets. Moreover, due to its generality, it is
equally well suited for the description of complete scenar-
ios as for the specification of agent behavior.

In our view, the unique combination of features out-
lined in the preceding paragraphs distinguishes ITSimBw
from other commonly used military simulation tools such
as MANA (Stephen, Anderson and Lauren 2002) or Py-
thagoras (Bitinas 2002).

In the next section, the key concepts of ITSimBw,
which have already been touched upon in this introduction,
are explained in more detail. Section 3 then gives an expo-
sition of the underlying Flip-Tick-Architecture, followed
by a presentation of the main concepts of the LAMPS de-
scription language in Section 4. Finally, Section 5 con-
cludes the paper.

Hügelmeyer, Steffens, and Zöller

2 CORE CONCEPTS

2.1 Strict agent-based modeling

As has already been stated in the introduction, ITSimBw is
designed from the ground up with an agent-oriented para-
digm in mind. Consequently, virtually every part of a
simulation can be modeled as an autonomous agent. This
even includes the landscape, weather phenomena like
clouds or rain, and inanimate objects such as bridges and
other buildings. Although many of these agents are usually
passive, they can be activated at any time if required by the
investigated scenario.
 The principle of autonomy of agents forbids direct
manipulation of internal data structures of other agents.
Thus, any influence that one agent exerts on another is me-
diated via messages. Effects like weapon fire, weather in-
fluences, and the like, are communicated via specialized
messages which carry the effect type. The concrete impacts
of effects, however, are stored in a central data structure,
the effect table. Thus, the ITSimBw user has a single refer-
ence point for changing the impact of effects that is acces-
sible even to non-programmers.

The extension of all objects belonging to the simulated
environment is modeled by a voxel-space. This allows the
application of high-performance ray-tracing techniques for
determination of visibility, potential weapon influences,
and communication abilities.

Additionally, the landscape agent carries a semantic
map containing information about terrain types (land, wa-
ter, swamp, etc.) which can be queried by other agents in
order to determine their possibilities for movement. An ex-
ample view of unit agents situated in a simulated environ-
ment is given in Figure 1.

Figure 1: 2D Situation Display
1274
2.2 Communication focus

Although ITSimBw does not force its users to model IT
and communication equipment as individual agents, this
procedure is highly encouraged by the pervasive agent-
based modeling paradigm.

The simulation system supports communication mod-
eling essentially by two means:

• A message format for simulated communication

acts between agents is provided which allows the
detailed specification of communication channel,
medium, and range.

• The voxel-space mentioned in the previous sub-
section is used to determine environmental effects
on communication, e.g. mountains causing radio
pockets, as well as jamming by opposing forces.

These two features in conjunction allow for a detailed

and realistic modeling of communication chains both in-
side and across different echelons.

2.3 Scalability

A multi-agent system for military simulation tasks is typi-
cally confronted with three interdependent notions of scale.
One concerns the appropriate time resolution at which the
simulated events occur. Here, very small time intervals
(e.g. for fast moving objects such as fighter jets) as well as
time spans of considerable length (e.g. in the unfolding of
large scale military operations) have to be addressed.

Moreover, the granularity of the environment model,
containing terrain, roads, buildings, and the like, is of ma-
jor importance. It should, therefore, be adjustable accord-
ing to the character of the mission. Facilities for the import
of spatial data at the required resolution from external
sources are also indispensable parts of a useful simulation
environment.

Furthermore, scale is also relevant for the simulated
units as well as technical systems. Depending on the given
scenario, representation at the level of large scale organiza-
tional units as divisions or brigades may suffice, whereas
other situations might require to model mission critical
groups down to the level of the individual soldier. Corre-
spondingly, the technical infrastructure, e.g. IT, communi-
cation, and weapon systems, underlie the same considera-
tions concerning the proper level of detail. Clearly, the
same holds true for physical effects like weather, contami-
nation by nuclear, biological or chemical agents, or similar
events.

Finding the right level of simulation detail is a difficult
task due to its strong dependence on the scenario under
consideration as well as on the concrete question which is
to be examined. Thus, automatic procedures addressing
this issue are hardly conceivable. Consequently, our simu-

Hügelmeyer, Steffens, and Zöller

lation system is based on a few generic principles outlined
above, ensuring consistent modelling and operation on all
scales, thereby actively supporting the model designer. In
particular, ITSimBw imposes no artificial restriction con-
cerning the model granularity. The modeller is thus free to
decide upon an appropriate level of detail concerning the
participating agents and their behavior as well as the tem-
poral resolution. Moreover, scalability was one of the ma-
jor design objectives in the development of our scenario
description language, which is presented in Section 4.

3 THE FLIP-TICK ARCHITECTURE

The ITSimBw simulation environment is based on the
Flip-Tick Architecture (FTA) (Richter 1999), which has its
roots in the JANUS project developed at the Gesellschaft
für Mathematik und Datenverarbeitung (GMD) (Beyer and
Smieja 1994). At its core, FTA is a design paradigm for
scalable distributed systems that exhibit a priorily un-
known dynamic characteristics as well as disturbances and
inaccuracies which are difficult, if not impossible, to model
in a closed-form mathematical approach. As every multi-
agent system, FTA is based on the concept of a society of
agents (Weiss 1999). It comprises four classes of entities:
actors (i.e. agents), assemblies, tags, and tag-boards.

The aforementioned society of agents A is formed by a
set of individual agents aj, which are called actors in FTA
terminology:

 }.,...,...,{ 1 kj aaaA = (1)

Each actor aj is composed of a set of typed attributes Uj,
whose value assignment determines the agent’s state, to-
gether with an action function, which entails all operations
that can be performed by the actor.

).),,...,((,,1 jjmjjj fuuUa == (2)

Structural information concerning agents, i.e. names and
types of attributes, is described via agent types. Formally,
we have type(aj) = t, if and only if agent aj is of type t. The
system supports agent templates that can be used to store
prototypical value assignments. Thus, an individual agent
can be created either by instantiation of its type, or by
copying from a pre-defined template.

The principle of autonomy of agents forbids the direct
manipulation of internal data structures and behaviors of
other agents. Consequently, all interactions between agents
are handled via messages. Formally, a message Nν is com-
prised of a number of attributes:

 ()vlvv uuN ,,...,,1= . (3)

1275
As agents, messages are typed entities. The set of all mes-
sage types is given by

 { }hNNN ,...,1= . (4)

Upon receiving a request, the agent is able to analyze
its content and to decide whether it wants to comply. The
basic unit of execution is called a cycle. During one cycle,
the agent reads its messages and triggers the appropriate
actions, which might consist of writing messages to other
actors.

An assembly is a set of agents sharing a common pace,
i.e. all elements of an assembly have the same time resolu-
tion dt. This in turn implies that their cycles are synchro-
nized and that the assembly switches from cycle to cycle as
regularly as the tick of a clock. Hence the term Tick in
FTA. It is important to note, that different agents do not
necessarily share the same time resolution. Instead, the ar-
chitecture supports individual running speeds for every ac-
tor. Moreover, time steps can vary from cycle to cycle.
Thus, adaptive control of time increments can be realized
(see below). This is particularly valuable for increasing the
time resolution in the computation of dynamics equations
for fast moving objects.

The messages used for inter-agent communication are
called tags in FTA. We distinguish between three different
categories of tags:

• Message tags are the carriers of communication

between agents. Orders are embedded in message
tags using XML syntax.

• Position tags contain the current position of
agents. They are sent when actors change their
position.

• Effect tags are used to mediate effects like
weather influences, weapon impact, and the like.

Instead of setting up a direct communication with other ac-
tors, agents register with one ore more tag-boards, to
which they send their messages. Thus, tag-boards serve as
the functional units for handling messages in the FTA sys-
tem. In formal terms, a tag-board forms a medium Mn for
message exchange, while a FTA system is capable of sup-
porting multiple media:

 { }.,...,1 mMMM = (5)

A tag-board consists of two sides. One is write-only and
contains all tags sent to the board in time step t, whereas
the other side is read-only and encompasses all tags written
in time-step t-1. Analogously to agents, each tag-board has
its own time resolution and thus its own cycle time. During
a board cycle, the write-only side is flipped over. Thereby,
the read-only part mirrors the tag content of the write part
from the previous time-step. The write-only side is deleted

Hügelmeyer, Steffens, and Zöller

after flipping. In this way, the lifetime of tags is effectively
controlled by the time-scale of the pertaining board. These
interrelations are depicted graphically in Figure 2.

With this approach, fully synchronized (all agents and
tag-boards share the same time resolution) as well as com-
pletely asynchronous systems (every agent and every board
has its own time-scale) can be modeled in terms of the
FTA.

Figure 2: Inter-Agent Communication via Tag-Board

The mathematical model of this agent architecture is a
system of flexibly coupled inhomogeneous difference
equations

),,...,(1 kDDD = (6)

where each agent computes an equation from D. In this set-
ting, the attribute list of an actor corresponds to the vari-
able vector of the pertaining difference equation. Thus,
equation Di of agent ai computes

),(t

ii
dtt

i UfU i =+ (7)

where dti denotes the time step size of agent ai. During the
iteration of D, the society of agents runs through a set of
states Z = {Zt}, where each of these system states is the un-
ion of attribute sets from all participating agents:

).,...,,...,(1

t
k

t
i

tt UUUZ = (8)

 Since the Di are computed using potentially different dti ,
the involved agent attribute sets Ut

i might be undefined for

...

2

,

,

,1
1

,

,

,1

,

,

,1

→→

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→→

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→→

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
++

i

t

ik

il

i

i

t

ik

il

i

i

t

ik

il

i

f

u
u

u

f

u
u

u

f

u
u

u

...

2

,

,

,1
1

,

,

,1

,

,

,1

→→

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→→

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→→

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
++

j

t

jk

jl

j

j

t

jk

jl

j

j

t

jk

jl

j

f

u
u

u

f

u
u

u

f

u
u

u

t
ilu ,

t
ilu ,

1
,
+t
ilu

1
,
+t
ilu

2
,
+t
ilu

2
,
+t
ilu

Agent

Agent

Write

Read

Me-

t t+ t+Time
Step
1276
certain t. In this case, either the Ui from the last time step
of Di is used, or Ui is explicitly recomputed. We thus have

 ett ZZZZZ ji ,...,,,...,0=

 where .
1

k
k

h
ij dtMintt

=
=− (9)

A graphical visualization of FTA (omitting the discrimina-
tion of different tag-board sides) is shown in Figure 3 Ar-
rows denote read() and write() operations. The colors spec-
ify types of agents and tags. It is depicted that agents can
subscribe to more than one tag-board.

Figure 3: The Flip-Tick Architecture

4 LANGUAGE FOR AGENT-BASED MODELING
OF PROCESSES AND SCENARIOS (LAMPS)

The utility of modeling and simulation tools for military
applications highly depends on the quality of the utilized
scenarios. Therefore, the careful design and precise de-
scription of scenarios as well as the ability to reliably
communicate these assets is of prime importance. More-
over, considering non-deterministic wargaming, one must
be able to specify and document alternative courses of ac-
tion in order to enable a comprehensive analysis as well as
comparisons with the optimal procedure.

Therefore, a precise formal specification of complete
scenarios constitutes an essential part of modern simulation
environments. A complete description of a scenario has to
include the environment (landscape, terrain, weather),
forces, enemies, and non-combatants. To address this
point, we are currently developing a graph based scenario
description language. While languages for the specification
of simulation models abound, LAMPS is to our knowledge
the only one that supports both the description of scenarios
and the executable specification of agent behavior for
compound agent groups down to individual agents. Exist-
ing simulation models are usually extensions of program-
ming languages such as C/C++, e.g. Maisie (Bagrodia and
Liao 1994) and the SPaDES environment (Teo, Tay and

Hügelmeyer, Steffens, and Zöller

Kong 1998), or Java, e.g. SILK (Healy and Kilgore 1997),
and the SSJ package (L'Ecuyer and Buist 2005). In con-
trast, LAMPS is based on high-level Petri nets (Jensen
1992). Thus, LAMPS inherently supports parallel simula-
tion, and is not just an extension of sequential simulation
languages like Maisie, Modsim II (Bryan 1989) or
SIMSCRIPT III (Rice, Marjanski, Markowitz, and Bailey
2005). Like other modern simulation languages (L'Ecuyer
and Buist 2005), LAMPS can be displayed both graphi-
cally and as a rule-set.

4.1 Basic concepts of LAMPS

According to its underlying formal model of high-
level Petri nets, LAMPS consists of the following four ba-
sic concepts:

• Places hold states, i.e. they contain subsets of the

agent attributes. The contents of a place is called
token and can be of an arbitrarily complex struc-
tured type. Places can contain several tokens of
different or identical types. Since the whole simu-
lation (incl. troops, environment, and equipment)
is modelled as agents, the state of the simulation
is described by the contents of all places.

• Actions describe the effects that agents apply to
themselves or to other agents.

• Relations denote the links between places, ac-
tions, and agents. Relations correspond to the arcs
in the Petri net model.

• Agents correspond to the conditions of Petri nets.
An agent in LAMPS observes the set of places
that have relations to the agent’s actions. Based on
these places the agent decides which actions are
executed and which parameters should be used.

Figure 4 depicts a simple example using the four basic

concepts. The agent Inf A observes the place Enemy spot-
ted. If the place contains a token, the agent executes action
Combat, which sends a token into the place Resistance
broken.

Figure 4: LAMPS Fragment Using the Four Basic Con-
cepts

4.2 Generality and scalability

Due to these generic concepts, LAMPS can handle en-
vironmental effects like weather, human actions, and
1277
physical effects (such as the malfunction of equipment) in
the same way. Every action and event is managed by an
agent which decides whether and how to execute the action
based on its own attributes and other observable attributes.
For example, an agent can represent a bridge and decide
based on its own status attributes and the locations of other
agents whether the bridge should collapse. Note that an
agent is usually associated with several actions.

The main difference to flowcharts is that LAMPS is
parallel in nature. At any given time more than one place can
be filled with tokens and in any place there can be several
tokens. This way, actions can be executed concurrently.

LAMPS does not explicitly model time, as it assumes
a cycle-based simulation-model. Actions have no duration
but are a sequence of short actions that are executed each
cycle. Furthermore, LAMPS does not need explicit syn-
chronisation constructs, because ITSimBw uses a cycle-
based simulation with global time and synchronisation is
achieved via places and conditions. The next cycle is
started after all agents have sent their actions.

Furthermore, LAMPS is inherently scalable to different
abstraction levels since it is based on high-level Petri nets.
Places can be aggregated to form more abstract places. The
same holds true for actions. Figure 5 illustrates encapsulat-
ing actions. The action is defined as two parallel actions A1
and A2 on a more fine-grained level. The abstract action A
has the same interface as the two combined interfaces of A1
and A2. Note that Action A includes on the more fine-
grained level an order for Agent Inf B to execute Action A2.

Figure 5: Example for Different Abstraction Levels for an
Action A

Hügelmeyer, Steffens, and Zöller

Actions can be executed locally or remotely. This
means for example, that an agent can give orders to subor-
dinate agents by sending LAMPS fragments. In the exam-
ple given in Figure 5, the superior agent Sup A orders its
subordinate Inf B the command to execute action A2. This
is denoted by the fact that in the LAMPS specification for
agent Sup A, another agent (Inf B) is associated with action
A2. Inf B then sends a result token into place Y (where in
this example another token is sent by Sup A as result of ac-
tion A1). Sup A can then access both tokens in place Y.
Note that this order is not simply a name that references an
action that Inf B already has to know. Instead, new behav-
iors can be sent to agents by specifying the action as a LA
Modeling of Processes and MPS fragment. The only ele-
ments that the agent has to know are the basic action primi-
tives which are coded in C++. The logic of combining
these basic actions to complex behaviors is contained in
the LAMPS fragment.
 LAMPS can be used to express non-deterministic ef-
fects. The places resulting from an action are alternative
results which can be weighted by adding attributes to the
relation. For example, the action shoot may result in a
place success with a probability of 90% and in a place
failed with a probability of 10%. This can be useful if
LAMPS is used for planning. But LAMPS can also be used
for documentation of past scenario courses. The result of a
non-deterministic action is then used as the only place re-
sulting from the action. In this way, the description of a
complete scenario course results in a graph which can be
compared to an optimal course of actions via graph-based
distance-metrics.

5 CONCLUSION

In this paper, we gave an introduction to the ITSimBw
simulation environment. Its main design paradigms like
strict agent orientation, communication focus, and scalabil-
ity were illustrated and the underlying technical architec-
ture FTA was explained. Moreover, ITSimBw supports
modern XML-based interfaces for cooperation with other
systems. Due to the fact that all system components are
modeled as autonomous concurrently running agents, the
whole paradigm is inherently parallel and thus allows high
performance execution on modern PC cluster architectures.
 Furthermore, the consequential employment of agent-
based thinking lead to the development of LAMPS, a uni-
form graphical way of describing behavioral programs for
individual agents as well as complex scenarios involving a
possibly large number of participating entities.
 An important area for further research and develop-
ment is the capability of LAMPS to record events. This
feature enables the creation of a scenario data-base con-
taining mission graphs from simulation runs as well as
real-world maneuvers or even actual military missions.
This data-base can then form the core component of a deci-
1278
sion support system for the military commander. Like a
chess player comparing a current board position with
memorized games to determine the next move, a graph-
metric can be used to liken the LAMPS graph of an ongo-
ing mission with those in the data-base. We thus envisage
LAMPS to be a core factor for the application of data-
mining techniques in mission evaluation.

ACKNOWLEDGEMENTS

The work on ITSimBw is done under contract for the de-
partment A5 of the IT-office of the German armed forces
(IT-AmtBw). At this institution, the project is overseen by
Captain T. Doll, whose valuable contributions are grate-
fully acknowledged.

REFERENCES

Bagrodia, R. L. and W.-T. Liao. 1994. Maisie: A Language
for the Design of Efficient Discrete-Event Simula-
tions. IEEE Transactions on Software Engineering 20
(4):225--238

Beyer, U. and Smieja, F. 1994. Janus: A society of agents.
In GMD Report # 840. GMD.

Bitinas, E. 2002. Pythagoras: The newest member of the
Project Albert family. Computing Advances in Mili-
tary OR – WG 31. 70th Military Operations Research
Society Symposium, Ft. Levenworth, June 18–20.

Bryan, O. F. Jr. 1989. Modsim II - an object-oriented simu-
lation language for sequential and parallel processors.
In Proceedings of the 1989 Winter Simulation Confer-
ence, eds. E. A. MacNair, K. J. Musselman, and P.
Heidelberger, pages 122—127. Piscataway, New
Jersey: Institute of Electrical and Electronics
Engineers.

Healy, K. J. and R. A. Kilgore. 1997. Silk : A Java-based
Process Simulation Language. In Proceedings of the
1997 Winter Simulation Conference, eds. S. Andradot-
tir, K. J. Healy, D. H. Withers, and B. L. Nelson,
pages 475—482. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Jensen, K. 1992. Coloured Petri Nets: Basic concepts,
analysis methods and practical use. Volume 1: Basic
Concepts. Monographs in Theoretical Computer Sci-
ence. Berlin: Springer.

 L'Ecuyer, P. and E. Buist. 2005. Simulation in Java with
SSJ. In Proceedings of the 2005 Winter Simulation
Conference, eds. M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines, pages 611-620.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Rice, S.V., A. Marjanski, H. M. Markowitz, and S. M. Bai-
ley. 2005. The Simscript III Programming Language
for Modular Object-Oriented Simulation. In Proceed-
ings of the 2005 Winter Simulation Conference, eds.

Hügelmeyer, Steffens, and Zöller

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.
Joines, pp.621-630. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers.

Richter, G. 1999. Flip-tick architecture: A cycle-oriented
architecture for distributed problem solving. In GMD
Resport # 19. GMD.

Stephen, R. T. , Anderson, M. A., and Lauren, M. K. 2002.
MANA Map Aware Non-uniform Automata Version
2.0 User’s Manual.

Teo, Y., S. Tay, and K. Kong. 1998. Structured Parallel
Simulation Modeling and Programming. In Proceed-
ings of the 31st Annual Simulation Symposium, pp.
135—142. Boston: IEEE Computer Society Press

Weiss, G., ed. 1999. Multiagent Systems – A Modern Ap-
proach to Distributed Artificial Intelligence. MIT
Press, Cambridge MA.

AUTHOR BIOGRAPHIES

PHILIPP HÜGELMEYER received his Master Degree
in Computational Linguistics and Artificial Intelligence
from the University of Osnabrück, Germany, in 2002. Af-
ter graduation, he worked as a research associate at the
University of Osnabrück. In 2005, he joined the depart-
ment ART at the Fraunhofer Institute for Autonomous In-
telligent Systems in Sankt Augustin. He is also a member
of the Cognitive Science Doctorate Programme at the Uni-
versity of Osnabrück, where he is working on his PhD the-
sis about collective choice in multi-agent systems. His re-
search interests include Decision Theory, Multi-Agent
Systems, Game Theory and Simulation. His e-mail address
is <philipp.huegelmeyer@ais.fraunhofer.
de>

TIMO STEFFENS graduated from the University of Os-
nabrück, Germany in Computational Linguistics and Arti-
ficial Intelligence in 2002. He is a research assistant at the
Fraunhofer Institute Autonomous Intelligent Systems and
is currently working towards his PhD in the areas of case-
based reasoning and multi-agent systems which are also his
main research interests. His e-mail address is
<tsteffens@ais.fraunhofer.de> and his web
address is <http://www.ais.fraunhofer.de/
~tsteffens>.

THOMAS ZÖLLER currently works as a research asso-
ciate at the department ART of the Fraunhofer Institute for
Autonomous Intelligent Systems (AIS) in Sankt-Augustin,
Germany. He has studied Computer Science together with
mathematics as subsidiary subject at the University of
Bonn, from which he received Diploma and doctoral
grades in Computer Science (MS / PhD equivalents) in
1999 and 2005 respectively. His research interests include
Pattern Recognition, Data Analysis, and Multi-Agent
127
Simulation. His e-mail address is <thomas.zoeller
@ais.fraunhofer.de>.
9

mailto:philipp.huegelmeyer@ais.fraunhofer.de
mailto:philipp.huegelmeyer@ais.fraunhofer.de
mailto:tsteffens@ais.fraunhofer.de
mailto:thomas.zoeller@ais.fraunhofer.de
mailto:thomas.zoeller@ais.fraunhofer.de

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

