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ABSTRACT 

The aim of this paper is the presentation of the military 
multi-agent simulation system ITSimBw. Its decisive fea-
tures include a strictly agent-based approach to modeling, 
in which every entity in a simulated environment can po-
tentially become an active element. Technologically, IT-
SimBw is based on the Flip-Tick-Architecture. Moreover, 
a focus on IT and communication aspects is one of its im-
portant characteristics. Additionally, the impact of scaling 
aspects in the design of scenarios and their support by the 
simulation system is addressed.  

As the utility of simulation strongly depends upon the 
quality of the employed scenarios, ITSimBw also contains 
a unique approach to scenario description, termed LAMPS 
(Language for Agent-based Modeling of Processes and 
Scenarios). LAMPS is based on high-level Petri-Nets and 
enables the specification of individual agent behavior as 
well as complex scenarios in a uniform way.  

1 INTRODUCTION 

In this contribution, we present the military multi-agent 
simulation environment ITSimBw and its description lan-
guage LAMPS, which is used for the specification of agent 
behaviors as well as complete scenarios. 

Due to the growing importance of network centric ca-
pabilities in military operations, one of the main focus 
points for the development of ITSimBw is the faithful 
modeling of IT and communication aspects. Clearly, these 
issues cannot be considered in isolation, but have to be 
seen in conjunction with the military mission, command, 
and report structures, and the influences exerted by the en-
vironment.  

Consequently, the simulation system must be flexible 
enough to model any conceivable action or effect for all 
entities involved. Although military operations generally 
follow fixed doctrines and rules of engagement, every item 
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in a simulation should be enabled for active participation. 
ITSimBw addresses this point by strictly adhering to an 
agent-oriented paradigm which allows for the specification 
of autonomous, situation-based behavior for all entities. 
This extended agent concept includes environment, 
weather, bridges, obstacles, and the like as active elements. 
This means that all effects and events are handled as ac-
tions of agents. 

One of the main challenges of simulations is the opti-
mal choice concerning the degree of model detail. Coarse 
models commonly yield very broad and abstract results 
with little value for the military practitioner. Overly de-
tailed models on the other hand produce outcomes that are 
too dependant on minute situational details thus preventing 
their applicability to other scenarios even if they are highly 
similar. Therefore, scaling aspects play a major role in the 
design of simulation tools.  

Another important issue for any simulation system is 
the precise and comprehensive description of the scenarios 
which are to be examined. To this end, ITSimBw encom-
passes its own LAMPS description language. Being based 
on high-level Petri-Nets, it can be represented graphically 
and by rule-sets. Moreover, due to its generality, it is 
equally well suited for the description of complete scenar-
ios as for the specification of agent behavior.  

In our view, the unique combination of features out-
lined in the preceding paragraphs distinguishes ITSimBw 
from other commonly used military simulation tools such 
as MANA (Stephen, Anderson and Lauren 2002) or Py-
thagoras (Bitinas 2002). 

In the next section, the key concepts of ITSimBw, 
which have already been touched upon in this introduction, 
are explained in more detail. Section 3 then gives an expo-
sition of the underlying Flip-Tick-Architecture, followed 
by a presentation of the main concepts of the LAMPS de-
scription language in Section 4. Finally, Section 5 con-
cludes the paper. 
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2 CORE CONCEPTS 

2.1 Strict agent-based modeling 

As has already been stated in the introduction, ITSimBw is 
designed from the ground up with an agent-oriented para-
digm in mind. Consequently, virtually every part of a 
simulation can be modeled as an autonomous agent. This 
even includes the landscape, weather phenomena like 
clouds or rain, and inanimate objects such as bridges and 
other buildings. Although many of these agents are usually 
passive, they can be activated at any time if required by the 
investigated scenario.  
 The principle of autonomy of agents forbids direct 
manipulation of internal data structures of other agents. 
Thus, any influence that one agent exerts on another is me-
diated via messages. Effects like weapon fire, weather in-
fluences, and the like, are communicated via specialized 
messages which carry the effect type. The concrete impacts 
of effects, however, are stored in a central data structure, 
the effect table. Thus, the ITSimBw user has a single refer-
ence point for changing the impact of effects that is acces-
sible even to non-programmers.    

The extension of all objects belonging to the simulated 
environment is modeled by a voxel-space. This allows the 
application of high-performance ray-tracing techniques for 
determination of visibility, potential weapon influences, 
and communication abilities. 

Additionally, the landscape agent carries a semantic 
map containing information about terrain types (land, wa-
ter, swamp, etc.) which can be queried by other agents in 
order to determine their possibilities for movement. An ex-
ample view of unit agents situated in a simulated environ-
ment is given in Figure 1. 

 

 
 

Figure 1: 2D Situation Display 
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2.2 Communication focus 

Although ITSimBw does not force its users to model IT 
and communication equipment as individual agents, this 
procedure is highly encouraged by the pervasive agent-
based modeling paradigm. 

The simulation system supports communication mod-
eling essentially by two means: 

 
• A message format for simulated communication 

acts between agents is provided which allows the 
detailed specification of communication channel, 
medium, and range.  

• The voxel-space mentioned in the previous sub-
section is used to determine environmental effects 
on communication, e.g. mountains causing radio 
pockets, as well as jamming by opposing forces. 

 
These two features in conjunction allow for a detailed 

and realistic modeling of communication chains both in-
side and across different echelons.  

2.3 Scalability 

A multi-agent system for military simulation tasks is typi-
cally confronted with three interdependent notions of scale. 
One concerns the appropriate time resolution at which the 
simulated events occur. Here, very small time intervals 
(e.g. for fast moving objects such as fighter jets) as well as 
time spans of considerable length (e.g. in the unfolding of 
large scale military operations) have to be addressed. 

Moreover, the granularity of the environment model, 
containing terrain, roads, buildings, and the like, is of ma-
jor importance. It should, therefore, be adjustable accord-
ing to the character of the mission. Facilities for the import 
of spatial data at the required resolution from external 
sources are also indispensable parts of a useful simulation 
environment. 

Furthermore, scale is also relevant for the simulated 
units as well as technical systems. Depending on the given 
scenario, representation at the level of large scale organiza-
tional units as divisions or brigades may suffice, whereas 
other situations might require to model mission critical 
groups down to the level of the individual soldier. Corre-
spondingly, the technical infrastructure, e.g. IT, communi-
cation, and weapon systems, underlie the same considera-
tions concerning the proper level of detail. Clearly, the 
same holds true for physical effects like weather, contami-
nation by nuclear, biological or chemical agents, or similar 
events. 

Finding the right level of simulation detail is a difficult 
task due to its strong dependence on the scenario under 
consideration as well as on the concrete question which is 
to be examined. Thus, automatic procedures addressing 
this issue are hardly conceivable. Consequently, our simu-
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lation system is based on a few generic principles outlined 
above, ensuring consistent modelling and operation on all 
scales, thereby actively supporting the model designer. In 
particular, ITSimBw imposes no artificial restriction con-
cerning the model granularity. The modeller is thus free to 
decide upon an appropriate level of detail concerning the 
participating agents and their behavior as well as the tem-
poral resolution. Moreover, scalability was one of the ma-
jor design objectives in the development of our scenario 
description language, which is presented in Section 4. 

3 THE FLIP-TICK ARCHITECTURE 

The ITSimBw simulation environment is based on the 
Flip-Tick Architecture (FTA) (Richter 1999), which has its 
roots in the JANUS project developed at the Gesellschaft 
für Mathematik und Datenverarbeitung (GMD) (Beyer and 
Smieja 1994). At its core, FTA is a design paradigm for 
scalable distributed systems that exhibit a priorily un-
known dynamic characteristics as well as disturbances and 
inaccuracies which are difficult, if not impossible, to model 
in a closed-form mathematical approach. As every multi-
agent system, FTA is based on the concept of a society of 
agents (Weiss 1999). It comprises four classes of entities: 
actors (i.e. agents), assemblies, tags, and tag-boards. 

The aforementioned society of agents A is formed by a 
set of individual agents aj, which are called actors in FTA 
terminology: 

 
 }.,...,...,{ 1 kj aaaA =  (1) 
 
Each actor aj is composed of a set of typed attributes Uj, 
whose value assignment determines the agent’s state, to-
gether with an action function, which entails all operations 
that can be performed by the actor.  
 
 ).),,...,(( ,,1 jjmjjj fuuUa ==  (2) 
 
Structural information concerning agents, i.e. names and 
types of attributes, is described via agent types. Formally, 
we have type(aj) = t, if and only if agent aj is of type t. The 
system supports agent templates that can be used to store 
prototypical value assignments. Thus, an individual agent 
can be created either by instantiation of its type, or by 
copying from a pre-defined template.  

The principle of autonomy of agents forbids the direct 
manipulation of internal data structures and behaviors of 
other agents. Consequently, all interactions between agents 
are handled via messages. Formally, a message Nν is com-
prised of a number of attributes: 

 
 ( )vlvv uuN ,,...,,1= . (3) 
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As agents, messages are typed entities. The set of all mes-
sage types is given by  
 
 { }hNNN ,...,1= . (4) 
 

Upon receiving a request, the agent is able to analyze 
its content and to decide whether it wants to comply. The 
basic unit of execution is called a cycle. During one cycle, 
the agent reads its messages and triggers the appropriate 
actions, which might consist of writing messages to other 
actors.  

An assembly is a set of agents sharing a common pace, 
i.e. all elements of an assembly have the same time resolu-
tion dt. This in turn implies that their cycles are synchro-
nized and that the assembly switches from cycle to cycle as 
regularly as the tick of a clock. Hence the term Tick in 
FTA. It is important to note, that different agents do not 
necessarily share the same time resolution. Instead, the ar-
chitecture supports individual running speeds for every ac-
tor. Moreover, time steps can vary from cycle to cycle. 
Thus, adaptive control of time increments can be realized 
(see below). This is particularly valuable for increasing the 
time resolution in the computation of dynamics equations 
for fast moving objects.  

The messages used for inter-agent communication are 
called tags in FTA. We distinguish between three different 
categories of tags:  

 
• Message tags are the carriers of communication 

between agents. Orders are embedded in message 
tags using XML syntax. 

• Position tags contain the current position of 
agents. They are sent when actors change their 
position. 

• Effect tags are used to mediate effects like 
weather influences, weapon impact, and the like. 

 
Instead of setting up a direct communication with other ac-
tors, agents register with one ore more tag-boards, to 
which they send their messages. Thus, tag-boards serve as 
the functional units for handling messages in the FTA sys-
tem. In formal terms, a tag-board forms a medium Mn for 
message exchange, while a FTA system is capable of sup-
porting multiple media: 
 
 { }.,...,1 mMMM =  (5) 
 
A tag-board consists of two sides. One is write-only and 
contains all tags sent to the board in time step t, whereas 
the other side is read-only and encompasses all tags written 
in time-step t-1. Analogously to agents, each tag-board has 
its own time resolution and thus its own cycle time. During 
a board cycle, the write-only side is flipped over. Thereby, 
the read-only part mirrors the tag content of the write part 
from the previous time-step. The write-only side is deleted 
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after flipping. In this way, the lifetime of tags is effectively 
controlled by the time-scale of the pertaining board. These 
interrelations are depicted graphically in Figure 2. 

With this approach, fully synchronized (all agents and 
tag-boards share the same time resolution) as well as com-
pletely asynchronous systems (every agent and every board 
has its own time-scale) can be modeled in terms of the 
FTA.  

 

 
 

Figure 2: Inter-Agent Communication via Tag-Board 
 

The mathematical model of this agent architecture is a 
system of flexibly coupled inhomogeneous difference 
equations 

 
 ),,...,( 1 kDDD =     (6) 
 
where each agent computes an equation from D. In this set-
ting, the attribute list of an actor corresponds to the vari-
able vector of the pertaining difference equation. Thus, 
equation Di of agent ai computes  

 
 ),( t

ii
dtt

i UfU i =+   (7) 
 
where dti denotes the time step size of agent ai. During the 
iteration of D, the society of agents runs through a set of 
states Z = {Zt}, where each of these system states is the un-
ion of attribute sets from all participating agents: 
 
 ).,...,,...,( 1

t
k

t
i

tt UUUZ =  (8) 
 

 Since the Di are computed using potentially different dti , 
the involved agent attribute sets Ut

i might be undefined for 
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certain t. In this case, either the Ui from the last time step 
of Di is used, or Ui is explicitly recomputed. We thus have 

 
 ett ZZZZZ ji ,...,,,...,0=  
 

 where .
1

k
k

h
ij dtMintt

=
=−  (9) 

 
A graphical visualization of FTA (omitting the discrimina-
tion of different tag-board sides) is shown in Figure 3 Ar-
rows denote read() and write() operations. The colors spec-
ify types of agents and tags. It is depicted that agents can 
subscribe to more than one tag-board. 
 

 
 

Figure 3: The Flip-Tick Architecture 

4 LANGUAGE FOR AGENT-BASED MODELING 
OF PROCESSES AND SCENARIOS (LAMPS) 

The utility of modeling and simulation tools for military 
applications highly depends on the quality of the utilized 
scenarios. Therefore, the careful design and precise de-
scription of scenarios as well as the ability to reliably 
communicate these assets is of prime importance. More-
over, considering non-deterministic wargaming, one must 
be able to specify and document alternative courses of ac-
tion in order to enable a comprehensive analysis as well as 
comparisons with the optimal procedure. 

Therefore, a precise formal specification of complete 
scenarios constitutes an essential part of modern simulation 
environments. A complete description of a scenario has to 
include the environment (landscape, terrain, weather), 
forces, enemies, and non-combatants. To address this 
point, we are currently developing a graph based scenario 
description language. While languages for the specification 
of simulation models abound, LAMPS is to our knowledge 
the only one that supports both the description of scenarios 
and the executable specification of agent behavior for 
compound agent groups down to individual agents. Exist-
ing simulation models are usually extensions of program-
ming languages such as C/C++, e.g. Maisie (Bagrodia and 
Liao 1994) and the SPaDES environment (Teo, Tay and 
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Kong 1998), or Java, e.g. SILK (Healy and Kilgore 1997), 
and the SSJ package (L'Ecuyer and Buist 2005). In con-
trast, LAMPS is based on high-level Petri nets (Jensen 
1992). Thus, LAMPS inherently supports parallel simula-
tion, and is not just an extension of sequential simulation 
languages like Maisie, Modsim II (Bryan 1989) or 
SIMSCRIPT III (Rice, Marjanski, Markowitz, and Bailey 
2005). Like other modern simulation languages (L'Ecuyer 
and Buist 2005), LAMPS can be displayed both graphi-
cally and as a rule-set. 

4.1 Basic concepts of LAMPS 

According to its underlying formal model of high-
level Petri nets, LAMPS consists of the following four ba-
sic concepts: 

 
• Places hold states, i.e. they contain subsets of the 

agent attributes. The contents of a place is called 
token and can be of an arbitrarily complex struc-
tured type. Places can contain several tokens of 
different or identical types. Since the whole simu-
lation (incl. troops, environment, and equipment) 
is modelled as agents, the state of the simulation 
is described by the contents of all places. 

• Actions describe the effects that agents apply to 
themselves or to other agents. 

• Relations denote the links between places, ac-
tions, and agents. Relations correspond to the arcs 
in the Petri net model.  

• Agents correspond to the conditions of Petri nets. 
An agent in LAMPS observes the set of places 
that have relations to the agent’s actions. Based on 
these places the agent decides which actions are 
executed and which parameters should be used. 

 
Figure 4 depicts a simple example using the four basic 

concepts. The agent Inf A observes the place Enemy spot-
ted. If the place contains a token, the agent executes action 
Combat, which sends a token into the place Resistance 
broken. 

 

 
 
Figure 4: LAMPS Fragment Using the Four Basic Con-
cepts 

4.2 Generality and scalability 

Due to these generic concepts, LAMPS can handle en-
vironmental effects like weather, human actions, and 
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physical effects (such as the malfunction of equipment) in 
the same way. Every action and event is managed by an 
agent which decides whether and how to execute the action 
based on its own attributes and other observable attributes. 
For example, an agent can represent a bridge and decide 
based on its own status attributes and the locations of other 
agents whether the bridge should collapse. Note that an 
agent is usually associated with several actions. 

The main difference to flowcharts is that LAMPS is 
parallel in nature. At any given time more than one place can 
be filled with tokens and in any place there can be several 
tokens. This way, actions can be executed concurrently. 

LAMPS does not explicitly model time, as it assumes 
a cycle-based simulation-model. Actions have no duration 
but are a sequence of short actions that are executed each 
cycle. Furthermore, LAMPS does not need explicit syn-
chronisation constructs, because ITSimBw uses a cycle-
based simulation with global time and synchronisation is 
achieved via places and conditions. The next cycle is 
started after all agents have sent their actions. 

Furthermore, LAMPS is inherently scalable to different 
abstraction levels since it is based on high-level Petri nets. 
Places can be aggregated to form more abstract places. The 
same holds true for actions. Figure 5 illustrates encapsulat-
ing actions. The action is defined as two parallel actions A1 
and A2 on a more fine-grained level. The abstract action A 
has the same interface as the two combined interfaces of A1 
and A2. Note that Action A includes on the more fine-
grained level an order for Agent Inf B to execute Action A2. 

 

 
Figure 5: Example for Different Abstraction Levels for an 
Action A 
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Actions can be executed locally or remotely. This 
means for example, that an agent can give orders to subor-
dinate agents by sending LAMPS fragments. In the exam-
ple given in Figure 5, the superior agent Sup A orders its 
subordinate Inf B the command to execute action A2. This 
is denoted by the fact that in the LAMPS specification for 
agent Sup A, another agent (Inf B) is associated with action 
A2. Inf B then sends a result token into place Y (where in 
this example another token is sent by Sup A as result of ac-
tion A1). Sup A can then access both tokens in place Y. 
Note that this order is not simply a name that references an 
action that Inf B already has to know. Instead, new behav-
iors can be sent to agents by specifying the action as a LA 
Modeling of Processes and MPS fragment. The only ele-
ments that the agent has to know are the basic action primi-
tives which are coded in C++. The logic of combining 
these basic actions to complex behaviors is contained in 
the LAMPS fragment. 
 LAMPS can be used to express non-deterministic ef-
fects. The places resulting from an action are alternative 
results which can be weighted by adding attributes to the 
relation. For example, the action shoot may result in a 
place success with a probability of 90% and in a place 
failed with a probability of 10%. This can be useful if 
LAMPS is used for planning. But LAMPS can also be used 
for documentation of past scenario courses. The result of a 
non-deterministic action is then used as the only place re-
sulting from the action. In this way, the description of a 
complete scenario course results in a graph which can be 
compared to an optimal course of actions via graph-based 
distance-metrics. 

5 CONCLUSION 

In this paper, we gave an introduction to the ITSimBw 
simulation environment. Its main design paradigms like 
strict agent orientation, communication focus, and scalabil-
ity were illustrated and the underlying technical architec-
ture FTA was explained. Moreover, ITSimBw supports 
modern XML-based interfaces for cooperation with other 
systems. Due to the fact that all system components are 
modeled as autonomous concurrently running agents, the 
whole paradigm is inherently parallel and thus allows high 
performance execution on modern PC cluster architectures.  
 Furthermore, the consequential employment of agent-
based thinking lead to the development of LAMPS, a uni-
form graphical way of describing behavioral programs for 
individual agents as well as complex scenarios involving a 
possibly large number of participating entities. 
 An important area for further research and develop-
ment is the capability of LAMPS to record events. This 
feature enables the creation of a scenario data-base con-
taining mission graphs from simulation runs as well as 
real-world maneuvers or even actual military missions. 
This data-base can then form the core component of a deci-
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sion support system for the military commander. Like a 
chess player comparing a current board position with 
memorized games to determine the next move, a graph-
metric can be used to liken the LAMPS graph of an ongo-
ing mission with those in the data-base. We thus envisage 
LAMPS to be a core factor for the application of data-
mining techniques in mission evaluation. 
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