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ABSTRACT 

Traditional learning curves were pioneered by T.P. Wright 
in 1936, with the idea that improvements in labor-hours to 
manufacture an airplane could be described in a mathe-
matical pattern. This paper will show that this concept of 
learning curve improvements to production metrics can be 
applied based on cumulative time, rather than volume of 
production, for one-of-a-kind applications, such as space 
shuttle flights, where production quantities are very lim-
ited. Policy and process changes can also be observed in 
production data, and the learning curve is useful in the pre-
diction of future trends. Past data from space shuttle proc-
essing is demonstrated to fit this new definition, and pre-
diction of future process metrics is explored. Once the 
learning curve is time-based, simulation can be applied to 
model the system and enhance the prediction effort for fu-
ture process metrics. 

1 INTRODUCTION 

For the purpose of this paper, a Space Shuttle processing 
flow is defined as all the work done to process a Space 
Shuttle Orbiter for each individual mission. The timeframe 
encompasses the work done beginning at Orbiter Landing 
from the prior mission, post-mission de-servicing and pre-
mission processing in the Orbiter Processing Facility 
(OPF). There is additional effort required to mate the Or-
biter to the External Tank and Solid Rocket Boosters in the 
Vehicle Assembly Building (VAB), and integrated vehicle 
and pre-launch processing operations at the launch pad, 
right up to launch time, but these tasks are not part of this 
simulation model. The learning curve application described 
herein deals predominantly with the OPF portion of the 
Space Shuttle processing flow as this portion of effort has 
the highest variability in the total process from landing to 
launch. 

Process performance metrics for one-of-a-kind pro-
duction systems are more complex and variable than the 
more conventional mass production operations. The unique 
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nature of the processes results in some variability that is 
not found in traditional production lines. While working 
with data for the Space Shuttle Program and trying to de-
velop methods to predict future process timelines, analysis 
of past processing was performed for use in future estima-
tions. The process is very dynamic and it was very difficult 
to directly observe trends in the historical data. During the 
completion of a Lean-6-Sigma (L6S) Black Belt project, 
linear regression was applied to the data. The regression 
attempted to predict OPF processing days by using known 
task durations planned; quantities of process paperwork; 
shifts per week, or planning density; and many other post- 
flow measurements. Even after attempting many different 
transformations, there was a large residual variability that 
was yet to be understood in the analysis of ground process-
ing days per space shuttle mission.  

After the Columbia tragedy, management recognized 
there would be a change in the production metrics and 
wanted to understand if an analysis of post-Challenger data 
could provide some insight into a good predictor for post 
Columbia Return-to-Flight (RTF) timelines. Retrieving 
good data for an 18-year old process that was a difficult 
research effort, but good sources of data for the pre-
Challenger processes were eventually identified. A pre-
dominant visualization was that as flows went along, pro-
duction metrics decreased. Figure 1 illustrates this notion-
ally, as processing days, the production metric in this case, 
decrease with time, and subsequently increase with a proc-
essing change, only to begin the learning and decreasing 
process over for the new set of requirements. 

The author also noted that after major business prac-
tice policy changes, such as a new contractor taking over 
the effort or a major program process revision after the 
Challenger incident, a sharp initial increase could be seen 
followed by a return to the gradual reduction of metrics 
with the sequential performance of each mission. This 
trend was not yet quantifiable, but was believed to be re-
lated to the traditional “Learning Curve” theory. Tradi-
tional learning curves were pioneered by T.P. Wright in 
1936, with the idea that improvements in labor-hours to 
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manufacture an airplane could be described in a mathe-
matical pattern that forms a straight line on a log-log 
graph. A more thorough evaluation of this theory was 
needed to confirm the relationship. 
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Figure 1: Shuttle Program Processing Data Timeline to Il-
lustrate Multiple Learning Trends (Notional Data) 

 
Space Shuttle processing from one flow to the next is 

somewhat repetitive, and for the most part similar in level 
of detail from one flow to the next. However, there are ex-
ceptions. For example, when a new space shuttle is first 
flown, the checks are more extensive, and after a major 
modification or an overhaul period (long down time for 
more extensive inspections), the flows are not “nominal”. 
This paper will not get into the details of nominal vs. non-
nominal flows, except to state the fact that in a given set of 
data of approximately 80 flows, there might be 20 that are 
considered non-nominal. When analyzing nominal flows 
for the purposes of learning curves and trend analyses, the 
production values are not sequential. The flows being ana-
lyzed as 1, 2 and 3 might have been flows 1, 4, and 6 if 
several off-nominal flows were intermixed. It was the con-
sideration of this very detail and the notion that even 
though off-nominal flows were not being analyzed in the 
trend data, the time and process was going on for these 
flows and that “Learning” and process improvement might 
still be ongoing during the other flows, that led to the usage 
of elapsed time rather than number of units produced for 
the learning curve methodology. 

2 METHODOLOGY 

Another form of the learning curve methodology was 
needed to fit this data for determination of the Learning 
Rates of Space Shuttle processing efforts; therefore the  
concept of cumulative time working on the process was 
considered. The assumption is that during the continued 
time, the process is being worked even if the non-nominal 
flow is not counted in the final metric. By starting with the 
124
first flow as month 1, since the log-log approach does not 
accept values of zero, the launch date was used to calculate 
accumulated months of learning per flow. 

A traditional Learning Curve uses the following 
model:  
 
 * BY A X=  (1) 
 

Where Y is the value to be estimated, A is the initial 
value for the first unit of production, X is the unit number 
in a sequential series of produced items, and B is a line 
slope constant that is related to the rate of improvement in 
the process with additional levels of production.  

B is literally equal to the following: 
 

 ln( ) ,
ln(2)

LPB =  (2) 

 
where LP is Learning Percentage and RP is Rate of Im-
provement: 

 
 1 .LP RP= −  (3) 
 

The traditional learning curve states that an improve-
ment of the rate indicated above can be expected each time 
the quantity of production doubles (per the ln(2) term).  

NASA has a website explaining this concept for cost 
estimating, and several traditional industrial types are iden-
tified with typical and expected learning curves to their 
specific process (<http://www1.jsc.nasa.gov/ 
bu2/learn.html>). 

In a unique production process, such as space shuttle 
ground processing for each mission, where the nominal 
flows to be estimated are not sequential, the alternative to 
the traditional learning curve proposed is a value of X to be 
the cumulative months of learning from the initial process 
to some defined date in each process. Since launch dates 
are used for future schedule analysis, an arbitrary date for 
each flow in the historical data was taken as the launch 
date. 

The Time-Based Learning Curve utilizes the following 
model: 

 
 * BY A T=  (4) 
 
where T is the Cumulative Months in our case of the learn-
ing process per shuttle flow. This change to the methodol-
ogy of learning curve analysis would revise the statement 
to be that for shuttle processing, a rate of improvement 
would be expected each time the number of months dou-
bles from one flow to the next. This assumes that process-
ing and learning is on-going; a work stoppage or down pe-
riod could not be considered as accumulated time for the 
purposes of a learning curve analysis. 
1
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3 DATA ANALYSIS 

Several sets of data exist. Using the days per flow data, and 
taking into account the period of processing before the 
Challenger accident, we have 19 data points as shown in 
Table 1. 

 
Table 1: Pre-Challenger Data 
OPF Processing Work Days 

Seq  Flt.  STS 
No. 

Launch Date Time 
Mo. 

Work 
Days 

1 2 2 12-Nov-81 1.0 103 
2 3 3 22-Mar-82 5.3 70 
3 4 4 27-Jun-82 8.6 42 
4 5 5 11-Nov-82 13.1 57 
5 7 7 18-Jun-83 20.4 34 
6 8 8 30-Aug-83 22.9 27 
7 10 41-B 03-Feb-84 28.1 67 
8 11 41-C 06-Apr-84 30.2 32 
9 13 41-G 05-Oct-84 36.3 69 

10 14 51-A 08-Nov-84 37.4 37 
11 15 51-C 24-Jan-85 40.0 35 
12 16 51-D 12-Apr-95 42.6 31 
13 17 51-B 29-Apr-85 43.1 33 
14 18 51-G 17-Jun-85 44.8 38 
15 19 51-F 29-Jul-85 46.2 43 
16 20 51-I 27-Aug-85 47.1 30 
17 22 61-A 30-Oct-85 49.3 40 
18 23 61-B 26-Nov-85 50.2 27 
19 25 51-L 28-Jan-86 52.3 35 

 
The curve shown in Figure 2 represents the traditional 

method of presenting learning curve data. It is shown in 
sequential order and each flight is spaced by a value of 1 in 
the X direction. The fact that nominal flows were not 
flown one right after another is not a factor in this version. 
The Values for A and B are shown as 71.665 and -0.3107. 
Using the formulas 1-3 above this equates to a rate of 
learning of 36%. This curve does not properly account for 
the time between missions that are not sequential and that 
the learning and improvements to our process are on-
going.  

The plot shown in Figure 3 accounts for this time dif-
ferential by using the timing months (T) from Table 1.The 
time based curve is a better fit as indicated by the higher R2 
value. It indicates a lower rate of learning, at 32%, and the 
initial value is more closely related to the actual first work-
day value. Also notice in Figure 3, that there appears to be 
two different curves within this data set, based on the noisy 
data and higher points at the 27-35 month flow mark. One 
way to actually explore this is to plot the log values of days 
by the log values of months and look for the straight lines, 
line segments and natural breaks in the data. See Figure 4 
for this visualization. 
1242
 Pre-Challenger OPF Work Days
(Traditional Learning Curve Method)
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Figure 2: Traditional Learning Curve Method (Sequential 
Numbers) to Pre-Challenger Accident Data 

 
 

 Pre-Challenger OPF Work Days
(Time-Based Learning Curve Method)
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Figure 3: Time-Based Learning Curve Method (Cumula-
tive Months) for Pre-Challenger Data 

 
Figure 4 shows an overall trend line, but there appears 

to be two distinct curves (straight line estimates) that do 
not actually follow this full data set trend line. The equa-
tion in this graph is of a slightly different format since the 
curves are log values, but we see the same R2 and the same 
B value. However, if we were to break this line into two 
segments, and plot the individual trends, we get the follow-
ing graph shown in Figure 5. 

This indicates that maybe there was some form of 
processing or business practice change during the period of 
data, from November 1981 to January 1986. If we review 
the Shuttle Program history during the time frame of this 
split between the 2 lines (August 1983 to February 1984), a 
significant business practice change did occur. The proc-
essing before August 1983 was performed by North 
American Rockwell, the contractor who designed and built 
the Space Shuttle. The learning rates for these two different 
curves are calculated to be 42% and 63% respectively.  
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Log-Log Plot Pre-Challenger Data y = -0.2634x + 4.4737
R2 = 0.6383
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Figure 4: “Log-Log” Plot of Time-Based Learning Curve 
Method for Pre-Challenger Accident Data 

 
 

 Log-Log Plot Pre-Challenger Data
( 2 segments for policy evaluation)y = -0.3773x + 4.6174
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Figure 5: Log-Log Plot with 2 Linear Trend Estimates of 
Learning Curves for Pre-Challenger Data 

 
 
During Late 1983 and 1984 a new contract was won 

by Lockheed Space Operations Company to perform Space 
Shuttle processing. During this transition many people 
working at KSC were given the opportunity to move from 
Rockwell to Lockheed under the new contract, therefore, 
the technician and engineering workforce remained largely 
the same. Changes to personnel were mostly seen in the 
higher levels of management, so the learning curve of work 
effort after transition to Lockheed responded more quickly 
to the new environment. The fact that many of the same 
people were performing on both sides of the transition may 
account for the high learning rates after transition.  

After the Challenger accident in early 1986, the 
Rogers’ Commission was convened to review pre-
Challenger processing data for the express purpose of de-
termining the events that led up to and the primary cause of 
the accident. One criticism from the group was that there 
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appeared to have been a great deal of schedule pressure 
and that work was being rushed to meet shorter and shorter 
mission turnaround timelines. (Rogers & et al., 1986) The 
data shown in the log-log plot appears to validate that 
processing times had decreased a great deal, since a learn-
ing rate of 63% is unheard of in most industries. The 42% 
and 32% combined rates are also very high relative to other 
shuttle learning rate data. Although the primary cause of 
the accident was determined to be O-ring failure in the 
Solid Rocket Booster (SRB), the schedule pressure criti-
cism received a great deal of attention, and resulted in sig-
nificant post-Challenger processing requirements changes. 

Given that the Shuttle Program took stock of itself af-
ter the Challenger Accident, revised many business prac-
tices, made processing more rigorous, and increased re-
quirements , an interesting research question follows—
what does the after-accident data show? An initial observa-
tion is that post-Challenger flows are longer, starting in the 
105 day range vs. the 80 day range prior to the Challenger 
accident. The rate of learning is also calculated to be lower 
at 16% for these 23 missions. See Figures 6, 7 and Table 2 
for the data set for this graph. This data may be indicative 
of several different processing business practices shown 
notionally in Figure 1, which may have effected OPF work 
days. So a closer look at the Log-Log plots was performed 
and is shown in Figure 7. 

This process is highly variable, but it still can be seen 
that something changed in the 1990-1991 time frame. 
Again, a review of processing practices was performed and 
it should be noted that there was an effort to go from 70 to 
90 day flows down to 50 and 70 day OPF flows during this 
time frame. The learning rates for the segments are 8% and 
43% respectively. The 43% is after the policy change with 
the same people working but to a different set of rules. 
Again, we see a very high value, which may have been a 
leading indicator of another trend to be monitored in the 
Space Shuttle Program and business practices area. 
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Figure 6: Post-Challenger Time-Based Learning Curve 
Method for 23 Nominal Duration OPF Flows 
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 Log-Log Post Challenger OPF Work Daysy = -0.0562x + 4.5434
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Figure7: Log-Log Plot of Post-Challenger Flows to Iden-
tify Business Practice Changes of OPF Processing Days 

 
Table 2: Post Challenger Data 

OPF Processing Work Days/Calendar Days 
Seq. 

Order 
Flt. 

Order 
STS 
No. 

Launch 
Date 

Time 
Months 

Work 
Days 

1 28 29 13-Mar-89 1.0 100/106 
2 29 30 04-May-89 2.7 79/87 
3 31 34 18-Oct-89 8.3 95/97 
4 33 32 09-Jan-90 11.1 86/87 
5 34 36 28-Feb-90 12.7 69/81 
6 35 31 24-Apr-90 14.6 78/88 
7 37 38 15-Nov-90 21.4 86/87 
8 38 35 02-Dec-90 22.0 79/79 
9 39 37 05-Apr-91 26.1 97/108 
10 41 40 05-Jun-91 28.1 75/75 
11 42 43 02-Aug-91 30.1 60/61 
12 43 48 12-Sep-91 31.4 78/80 
13 44 44 24-Nov-91 33.9 67/68 
14 45 42 22-Jan-92 35.8 75/77 
15 46 45 24-Mar-92 37.9 55/66 
16 49 46 31-Jul-92 42.2 61/63 
17 50 47 12-Sep-92 43.6 77/78 
18 51 52 22-Oct-92 45.0 72/73 
19 53 54 13-Jan-93 47.7 55/63 
20 54 56 08-Apr-93 50.6 63/74 
21 55 55 26-Apr-93 51.2 77/93 
22 56 57 21-Jun-93 53.0 52/63 
23 57 51 12-Sep-93 55.8 57/61 
 
Figure 8 shows over 150 months of nominal flow data, 

and you can see there are several segments where a linear 
estimate will diverge or where the learning was “reset”. 
These resets seem to correspond with changes in the plan-
ning and scheduling of OPF work flow periods. At differ-
ent times over the course of the program, business deci-
sions were made in cooperation with NASA to either slow 
down or increase the pace of flights. It is apparent that after 
a business practice change there is always some amount of 
continued “learning curve” trends to the data. Linear trends 
are better shown by separating each individual “Learning 
time period” into its own dataset and resetting the time pe-
1244
riod start to each group’s “reset point” and recalculating 
the time-based T value to the new first month value. How-
ever, one must look initially at the entire set to find the 
break-points or linear segments. These segments are 
somewhat arbitrary and the author used some subject mat-
ter expertise to identify change times and to split the linear 
trends. 
 
 All Nominal Flows Post Challenger to Columbia
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Figure 8: Long Term (12-plus years) Nominal Flow Data 
Post-Challenger for Evaluating Learning Curve and Policy 
Changes 

 
A different approach for visualizing the same data re-

veals new segments as shown in Figure 9. This graph 
represents the entire period between the Challenger inci-
dent and the Columbia incident as shown notionally in 
Figure 1. One must look very closely to see the five differ-
ent line segments and business practice changes that can be 
seen in the data from the 1988 thru 2002 time frame. 
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Figure 9: Log-Log Plot of 12-plus years of Nominal Flows 
Post-Challenger to Identify Policy and Learning Curve 
Transitions 

4 APPLICATION TO FUTURE PREDICTIONS 

Presently there are less than 20 planned flights left in the 
Shuttle Program. (Cates and Mollaghasemi 2005a) Tradi-
tional planning used deterministic dates for a manifest of 
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future scheduled flights. These Shuttle planning manifests 
have been shown in 6 month, 18 month and 5 year ver-
sions. If the Space Shuttle is to be retired in the end of 
2010 per the vision of President Bush (Bush 2004), then as 
of Dec 2006 there are only about 48 months left in the 
Space Shuttle Program. Management has recently em-
braced a more stochastic approach to the planning. Simula-
tion models have been developed to predict the probability 
of meeting a certain manifest of flights in a certain time pe-
riod (Cates and Mollaghasemi 2005a, Cates and Mol-
laghasemi 2005b). 

The added requirements from the Columbia Report to 
the Space Shuttle process have increased the flow timelines 
(Gehman et al. 2003). It is difficult to predict the degree to 
which the flow timelines will be increased until data is ob-
tained for at least a few flows after the Columbia accident. 
However, with this new time-based learning curve meth-
odology and some simple spreadsheet-based simulation we 
can attempt to determine the effect that the maximum 
number of flights possible before 2010 and changes to the 
processing policy will have on the OPF timelines. 

USA and NASA are evaluating and predicting be-
tween 110 and 140 days currently to complete an OPF 
flow. To evaluate this variable and to understand how 
many missions can be expected to be completed by the 
2010 deadline, an Excel spreadsheet-based simulation 
(Seila 2005) has been created to demonstrate to the Shuttle 
Program management, the effects of 140-day flows and the 
sensitivity of this completion to 120-day  or 170-day flows 
if the initial estimates are do not hold up. The assumption 
is that, regardless of this value, the process will improve 
with time, as have all other OPF Flows once a business 
practice is established and people get into a routine for per-
forming the process.  

Given that the future flight manifest will have un-
evenly distributed flight spacing, a random spacer was de-
veloped for this spreadsheet simulation. The random spacer 
for flights needs the theoretical minimum launch spacing 
given three vehicles, and the timelines associated with the 
major processes and the variability known for these types 
of processes in the Space Shuttle Program. See Table 3 for 
this tabulation and analysis. 

The ranges of launch spacing varies from 2.6 to 3.1 
months per launch and this is consistent with maximum 
flight rates we have achieved in the recent history of the 
shuttle program (between 4-6 flights per year which is 2-3 
months per launch). 

The new limitations of Daylight Launch and Beta An-
gle Window constraints when combined with the 140 day 
OPF flow reduces our theoretical maximum flight rate to 
about 4.3 flights per year at best. Hence, the reduction of 
OPF work days as related to learning curve will actually 
improve the potential maximum flight rate (Cates and Mol-
laghasemi 2005a). 
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Table 3: Flight Rate Analysis for Future Simulation 
Site Process Timelines Min  
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120 
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12
0 5 20 10  155 51.7 1.7 

Var 15 3 10 3 45 231 77.0 2.6 
140 
Day 

14
0 5 20 10  175 58.3 1.9 

Var. 15 3 10 3 45 251 83.7 2.8 
170 
Day 

17
0 5 20 10  205 68.3 2.3 

Var 15 3 10 3 45 281 93.7 3.1 
 
The spreadsheet simulation shown in Table 4 and Fig-

ure 10 shows one set of results from the simulation of the 
effects of learning curves on the post-Columbia OPF Proc-
essing flow timelines. 

In this example, the timeline is formed by randomly 
spaced launches from the spacing analysis, and the predic-
tive formula of equation 4 is used to predict the OPF proc-
essing days. A RP value of 7% learning was used, indica-
tive of production taking 93% of the previous value every 
time the cumulative months double from the start of the 
“Learning Period”. The smooth results of the effect of 
Learning Curves on the future processing predictive simu-
lation are shown in Figure 10. 

 
Table 4: Post Columbia Future Simulation Data 

Flight Time 
(Months) 
(Random) 

OPF 
Work 
Days 

Running 
Average 

OPF Days 
Percentage 

of Flow Du-
ration 

1 1 140 140 56% 
2 3.9 121 131 48% 
3 6.9 114 125 45% 
4 10.2 110 121 40% 
5 13.2 107 119 38% 
6 16.6 104 116 36% 
7 20.0 102 114 35% 
8 23.2 101 112 34% 
9 26.7 99 111 33% 

10 30.3 98 110 32% 
11 33.9 97 109 30% 
12 36.9 96 107 31% 
13 40.2 95 107 32% 
14 43.6 94 106 32% 
15 47.1 94 105 30% 
16 50.6 93 104 30% 
17 54.3 92 103 29% 
18 57.5 92 103 30% 
19 60.9 91 102 30% 
5
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Figure10: Effect of Learning on Future OPF Processing 
Post-Columbia Based on 140 day First Nominal Flow 

 

5 DISCUSSION OF RESULTS 

OPF work days represent one part of a highly variable 
process. Reviewing the data since the Challenger incident, 
the workdays have been 50% on average of the total cycle 
days between successive launches of the same vehicle. Us-
ing the spreadsheet simulation, the 140 day initial OPF 
Work Day estimate, and a 7% Learning Rate based on post 
challenger data, the remaining 16 missions will have an 
OPF work day content of 36% which is lower than the pro-
gram average to date. This indicates that this OPF flow du-
ration and maximum flight rate do not conflict and the 
manifest can feasibly be met.  

The 140-day patterns will require the launch rate to get 
to a value of 2.8 to 3.8 months per launch or 3.2 to 4.3 
flights per year. However, the first two to three missions 
will be a strain in excess of 50% OPF work days per flow, 
due to longer the longer duration OPF flows. All of these 
values seem to be within the previous operational limits of 
the Space Shuttle Program. (Cates and Mollaghasemi 
2005a) 

If the estimate for OPF days is low and it goes to the 
higher value of 170-days initially, the percentage of OPF 
work days increases to 44% on average. However, the first 
few missions of five to six, while the learning rate has not 
greatly reduced the 170 day value, run in the 67 to 50% 
range. This has a lower probability of success in meeting 
the manifest rate needed. 

If the program can meet the lower value of 110 to 120- 
day OPF processing timelines initially, all of the data for 
the remaining Shuttle Program flights would fall well 
within previously demonstrated historical limits. This 
would ensure a high degree of confidence in meeting the 
remaining manifest to complete the International Space 
Station (ISS) build and close out the Space Shuttle Pro-
gram flights. 
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6 CONCLUSIONS 

Traditional learning curves have a few limitations which 
do not lend themselves perfectly to low volume and one-
of-a-kind production scenarios such as Space Shuttle flight 
processing. This paper has demonstrated that a time-based 
adaptation of the learning curve method can be applied to 
this lower volume production with slightly increased accu-
racy. The log-log curves show the linear trends and 
changes in the metric being evaluated. With a time-based 
adaptation of the learning curve, the changes in slopes of 
the regression lines can be tied to historical changes in 
business practices and the subsequent reset and continua-
tion of the learning process. Time-based learning curves 
allow for data outliers to be removed from the dataset 
without having the sequential change affect the resultant 
learning rate estimate. They also allow for the learning that 
occurred during the outlier process to be accounted for in 
the final estimation of the learning rates. 
Recognizing that a given process follows a learning curve 
trend is very useful in making predictions and estimations 
in future production metrics. Using historical improvement 
rates as the basis of the estimate is more effective than an 
anecdotal concept of improvement of the process with 
time. The time-based learning curve method lends itself to 
a mathematical prediction solution for this unique process 
and its production metrics.  

GLOSSARY 

CAIB  Columbia Accident Investigation Board 
CEV  Crew Exploration Vehicle 
ET   External Tank 
ISS   International Space Station 
KSC   Kennedy Space Center 
L6S   Lean Six Sigma 
NASA  National Aeronautical and Space  
   Administration 
OPF  Orbiter Processing Facility 
RTF  Return to Flight  
   (Flight after an accident) 
SME  Subject Matter Expert 
SRB  Solid Rocket Booster 
USA  United Space Alliance  
   (Space Flight Operations Contractor) 
VAB  Vehicle Assembly Building 
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