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ABSTRACT 

This paper describes a novel framework used to character-
ize a J2EE (Java Enterprise Edition) application and de-
velop models of the application by using Java method trac-
ing in a Java-technology based application server. Applica-
tion servers are critical to large-scale, online servers and 
serve as middleware to provide secure access to transac-
tional, legacy and web services. The tracing tool in this 
framework gives a detailed and comprehensive view of the 
sequences of methods invoked as the application server 
processes requests. The output of this tool is processed and 
automatically summarized into a set of transaction profiles 
which form the input for a simulation model of the applica-
tion server and its related components. These profiles have 
proven to be a useful abstraction of the behavior of the 
transactions processed by the system. After describing the 
tool and the model, the paper provides results of validation 
runs and discusses the usefulness of quantitative measure-
ment, analysis and modeling in some areas of system de-
sign and system deployment. The models help architects, 
designers, developers and deployers explore the different 
facets of performance during all stages of an application's 
life-cycle, especially during concept development and pro-
totyping. 

1 INTRODUCTION 

Studies of system performance require accurate descrip-
tions of the system workload. Typically, the goal of a per-
formance study is to gain an understanding of how the sys-
tem is behaving currently and to make recommendations 
about corrective steps which can result in improved per-
formance in the future. Each of these steps depend on sev-
eral ingredients, including an accurate description of the 
system components and how they interoperate and on an 
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accurate description of the demands being made by the 
elements of the workload for use of these components. 

This paper describes an approach to workload charac-
terization that is based on a trace of Java method invoca-
tions created by a special tool, the ByteCode Instrumenta-
tion (BCI) tool, developed at Sun Microsystems, Inc. A 
Java application that is instrumented using BCI can be 
studied in great detail, and a summary of this trace can be 
processed to give a detailed and accurate characterization 
of the activities of the application. 

The paper gives a description of a model which uses 
this characterization to enable the user to make accurate 
predictions of performance of the system operating in new 
environments. 

2 BACKGROUND 

Many modern on-line services are implemented using a 
multi-tiered approach, placing different services on differ-
ent tiers of the total system. A typical configuration is 
shown in Figure 1. In Figure 1, the system is made up of 
three tiers, as follows: 

 
• The web server tier, 
• The application server tier, and 
• The database tier. 

 
In more detail, a user of this system is connected to the 
Internet and is accessing the system using a web browser. 
The browser sends a request for service to a node in the 
web server tier. In some cases, the requested information is 
in the form of a static page stored on the web server nodes; 
in these cases, the page is returned immediately to the re-
questing browser. In other cases, the requested information 
must be developed dynamically for the specific request. 
7
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These requests are forwarded to a node in the application 
server tier. A forwarded request invokes a particular appli-
cation Java Servlet or program which determines the con-
tent for the request and delivers this back to the web server, 
which in turn delivers this back to the requesting browser. 
Some of the requests require that the application find 
and/or update data on a node in the database tier. 

 

 
 

Figure 1: Multi-tiered Online System 
 
The focus of this paper is the performance of the nodes 

in the J2EE application server tier. In many instances, the 
J2EE services such as Web services, enterprise beans, mes-
sage beans, etc. in this tier are implemented using a “con-
tainer” environment. This container environment provides 
a multitude of services (e.g. security, transaction, life-cycle 
management) which are used by the server applications 
written in Java for the J2EE platform. One such environ-
ment is the Sun Java Enterprise System (JES) Application 
Server (called AppServer) from Sun Microsystems, Inc. 
With AppServer, application developers can create their 
applications that are accessed through Web services 
(HTTP, XML/SOAP, JMS, etc.) or rich-client paths such 
as RMI/IIOP. An example of a J2EE application is an 
online retail E-commerce web-site that has serves a prod-
uct catalog, has a shopping cart, and a check-out module. 

The performance of the J2EE applications operating in 
the application server tier can have a large impact on the 
performance of the total system (across tiers). Furthermore, 
the performance of the system can be a major factor in the 
user's perception of the service delivered by the system, 
namely response time. Systems maintaining service-level 
agreements (e.g. 90-th percentile response time < 1.2 sec) 
can attract and retain customers for the site, while systems 
exhibiting “poor levels” of performance can discourage 
customers from visiting the site. From the website adminis-
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trator and deployer's perspective, throughput is an impor-
tant metric, in addition to response time. Throughput pro-
vides the ability to gage the system's ability to handle mul-
tiple user requests concurrently. 

The paper begins with a description of a tool (called 
BCI) that has been developed to give detailed views of 
Java applications operating on AppServer. The use of BCI 
is illustrated by using it to study the operation of the 
Trade2 benchmark suite (An et al. 2002 and Trade2) of 
transactions. The BCI outputs are used to create a statisti-
cal characterization or profile of the Trade2 transactions. 
Finally, a simulation model that uses these profiles is de-
scribed. Some outputs from this model are compared to the 
originally collected summary data, to gage the accuracy of 
the model. In addition, some “what if” studies show how 
the model can be used to predict system performance in 
altered operating environments. 

3 THE BCI TOOL 

A Java program is compiled into its machine independent 
representation called Java byte-code that is interpreted and 
executed by the Java Virtual-Machine (JVM) available on 
different platforms. Java supports automatic garbage col-
lection (GC), so that the user program does not have to 
explicitly free objects on the heap. A JVM such as the Java 
HotSpotT virtual machine maintains different regions in the 
heap for segregating objects in the heap according to their 
life span (young and old generations) and runs garbage 
collector thread(s) to free un-referenced objects when a 
heap partition is full. Although automatic garbage collec-
tion is a boon to programmers, the feature trades off ease-
of-use for performance. Another feature of a JVM, called 
Just-in-time (JIT) compilation, is the ability to compile 
frequently executed streams of byte-codes to machine rep-
resentation that result in faster execution. To summarize, 
features of the JVM can impact the performance of a Java 
program both positively and negatively. 

As indicated above, Java has been widely used to im-
plement server programs operating in the application 
server tier, and the performance of these programs (as re-
flected in speed of execution) can be critical to perceived 
performance of the total system. 

Several Java performance tools provide the ability to 
identify “hot” methods or lines of code. When compared to 
other methods, the “hot” methods could be using more 
resources such as processor (CPU), memory (heap), lock 
(latency), disk and network IO, etc. affecting the response 
time of a service. Many Java performance tools use the 
Java virtual machine profiler interface (JVMPI) and also 
the Java virtual machine tool interface (JVMTI); JVMTI is 
now included in the Java Developer Kit (JDK) 1.5 release 
and provides the ability to instrument Java classes stati-
cally, at load-time or dynamically. Several profilers, such 
8
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as JFluid (Dmitriev 2004) provide developers an intuitive 
graphical user interface to display “hot” methods. 

Many techniques for creating profiles (Harkema et al. 
2002 and Putrycz 2004) have evolved; these techniques 
include profilers and trace routines. Typically profilers use 
a sampling technique to estimate the time spent in each 
method, while trace routines actually record each invoca-
tion of the specified methods. One advantage of using trac-
ing routines is that counts of the number of method invoca-
tions are obtainable; another advantage is that by using the 
order of invocation, an accurate depiction of the method 
call-tree is also obtainable. It can be important to determine 
that one method can appear at multiple points in the execu-
tion paths (equivalently in different branches of the call 
tree) of the application. 

The Byte Code Instrumentation (BCI) framework, de-
veloped at Sun, contains an instrumentation tool that stati-
cally instruments Java classes. The process of instrumenta-
tion consists of adding pre-compiled byte-codes (represent-
ing measurement calls) to the target Java application. The 
instrumentation collects a trace of entry and exit points of 
Java methods and logs this trace to a file at run-time. The 
objective of the BCI collection framework is to provide a 
trace representing the user's application executing in the 
J2EE containers. In order to achieve this objective, the BCI 
framework intercepts and captures the first points of re-
quest processing per unique request, per thread for con-
tainers such as: 

 
• Java Server Pages (JSP)/Servlet Web container,  
• Enterprise Java Beans (EJB) container,  
• Object Request Broker (ORB), 
• Message Driven Bean (MDB) container, etc. 

 
Tracing can be dynamically turned on or off by invok-

ing a management service in the BCI run-time. When a 
request that is being processed by the AppServer arrives at 
an interceptor, a new record is created for the request using 
a special buffer in the heap. At subsequent arrivals and 
departures from instrumented methods, the instrumented 
code collects some thread or LWP (light-weight process) 
level measurements such as the wall-clock time and CPU 
consumption. When the request processing departs the in-
terceptor, the buffer containing traces of methods and their 
corresponding measurements are flushed to a log file. Post 
run-time or after tracing is turned off, the log file can be 
processed, to give a comprehensive view of the methods 
that executed while the program was being observed. 

A standard report gives the hierarchy of the methods 
called positions (or levels) in the call tree, along with num-
ber of calls, and the average CPU time per call (inclusive) 
and the average elapsed (wall-clock) time per call (inclu-
sive). The term inclusive means that the time reported is 
for the method and all of the methods below it in the call 
tree. Table 1 shows an example of the output for a sum-
118
mary of a BCI log file. In Table 1, the term “serv” refers to 
service or wall-clock time. 

Some other tools and papers (Harkema et al. 2002) 
have used similar techniques as described above. These 
techniques are simple enough that tracing can be achieved 
using an existing tool or after a few enhancements to an 
available Java instrumentation tool. 

 
Table 1: Sample BCI Summary 

Level-id Method Count Incl cpu Incl serv 
0-18 TradeScenario.. 142235 0.004325 0.051677 
1-19 HttpServlet 142235 0.004261 0.051538 
2-20 HttpServlet 142235 0.004257 0.051531 
3-21 doAccount 14828 0.003372 0.045435 
4-22 postInvoke 14828 0.001261 0.012751 
5-23 save 14828 0.001042 0.012365 
6-24 save 14828 0.001037 0.012355 
7-25 doExecuteUpd 14828 0.000730 0.005074 
8-26 chl.execute 339 0.000668 0.001636 
8-27 chl.execute 14828 0.000672 0.004976 
9-28 chl.execute 14828 0.000668 0.004970 
7-29 getConnPool 14828 0.000224 0.005298 
8-30 chl..execute 14828 0.000123 0.001005 
7-31 resourceClosed 14828 0.000010, 0.001813 

4 ACCURACY, OVERHEAD AND COVERAGE 

The issues of accuracy, overhead and coverage are critical 
to the usefulness of a data collection tool such as BCI. In 
particular: 

 
• Accuracy refers to the collection of data which 

accurately characterizes the operation of the soft-
ware being analyzed. Accuracy is non-trivial to 
validate and high-level performance tools depend 
on tools and support in the platform (operation 
system and hardware counters) to assess accuracy. 

• Overhead refers to the extra-cost (processor cy-
cles, memory, I/O) associated with collecting the 
data. Data collection, data storage and related run-
time processing affect and alter the execution, 
thus causing variations in the execution time 
and/or resource utilization. In most cases one ob-
serves degraded performance, but in a few inter-
esting cases, a myriad of complexities in today's 
computer systems (e.g. caching effects in the 
memory hierarchy) can result in better perform-
ance. Most tools available today do not and can-
not determine their overhead and thus do not 
compensate for their overhead. As most perform-
ance engineers have observed, there is a trade-off 
between measurement detail and overhead. 

• Coverage refers to the amount of execution time 
for the application that is actually recorded by the 
data collection tool. Several Java-based perform-
ance tools do not provide insights into code exe-
9
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cuted outside the JVM machine and thus lack 
coverage outside the JVM machine. Several tools, 
including BCI, measure using interception points 
and thus miss measuring code executed in the 
JVM before the interception points were executed 
in the call stack. Most CPU's have two distinct 
modes of operation: system or kernel mode and 
user mode. Another problem in coverage arises 
from the inability to collect system-mode CPU 
time, which is the case with the BCI tool and sev-
eral other tools. Tools that do not support JVM 
machine profiling obviously do not produce de-
tailed results for Java applications. 

 
We made several attempts to validate the data pro-

vided by commonly available tools and decided to proceed 
with a custom solution, which we describe briefly here. In 
order to address the tool overhead problem, we compared 
several instrumented and un-instrumented runs of micro-
benchmarks and also some well-known benchmarks and 
observed that overhead in the case of BCI was proportional 
to the number of instrumented methods that were invoked 
during request processing. To get a global perspective on 
overhead, we used system measurement tools available 
with the Solaris operating system, and compared the per-
formance of instrumented and un-instrumented runs of the 
Trade2 benchmark. In order to validate accuracy of the 
BCI tool, we compared the collected traces for a method 
across several sampling tools that had low overhead under 
low sampling intervals. In order to address the inability of 
the BCI tool to capture system CPU time and missing 
measurements before the interception points, we utilized 
standard UNIX tools such as mpstat and vmstat to provide 
transaction metrics that, in turn, were used to deduce the 
missing time in the BCI traces. As we observed during our 
experiments and exploration, this technique worked out 
very well, given that the coverage of BCI was more than 
70%. It appears that BCI covers most of the interesting 
variations in applications that are of interest to J2EE tech-
nology architects and developers. Another observation was 
that the wall-clock coverage with BCI was correct, and 
these did not require further validation or correction. Thus 
by using system tools (e.g., mpstat) the amount of “lost” 
CPU time can be estimated, and this lost time is incorpo-
rated into the simulation model described below. 

A comprehensive description of a Java method in-
strumentation performance toolkit as applied to a CORBA 
implementation is given in (Harkema et al. 2002). 

 

5 THE TRADE2 BENCHMARK 

Trade2 is a benchmark that is often used to test the 
performance of application servers. In (An et al. 2004), 
Trade2 is described as “a collection of Java classes, Java 
1190
Servlets, Java Server Pages and Enterprise Java Beans in-
tegrated into a single application. It is designed to emulate 
an online brokerage firm”. (A database is maintained by 
Trade2, which holds account information and stock 
quotes.) The Trade2 transactions are as follows: 

 
• doAccount, 
• doAccountUpdate, 
• doBuy, 
• doHome, 
• doLogin, 
• doLogout, 
• doPortfolio, 
• doQuote, 
• doSell, 
• valveSave (used only for http-session replication). 

 
An important feature of the Trade2 benchmark is the 

ability to enable failover for user application objects such 
as the stateful session bean (an Enterprise Java Bean with 
application logic) and the HTTP session (a server-side state 
representing a web-based client). AppServer provides 
failover capabilities for these objects using techniques such 
as storing copies of the objects in shared disk storage or in 
the backend database tier (persistent storage), or maintain-
ing multiple in-memory copies within the AppServer tier 
(state replication). 

With failover enabled, when an AppServer process or 
a compute node fails, user requests are diverted to another 
process or another compute node in the AppServer tier 
which then uses the objects from persistent storage or the 
replicas from other AppServer processes to retrieve the 
most up-to-date user state. In this study, a separate high 
availability database (HADB) was used to implement 
failover for the AppServer application. 

The benchmark setup for the tests described in this pa-
per used a Sun utility, RequestRunner, to serve as the 
workload generator. RequestRunner simulates the opera-
tion of the Trade2 clients by presenting a stream of Trade2 
requests to the AppServer nodes. Key parameters to Re-
questRunner include the number of clients (users) to be 
simulated during the test and the average “think time” in-
terval for each client interaction with the AppServer. 

6 TRANSACTION PROFILES 

The goal of this exploration is to develop system models 
that can be used to predict the performance of the Sun JES 
Application Server executing on the application server 
nodes in a multi-tier system. The initial goal is to apply the 
analysis and modeling techniques to predict the perform-
ance of the Trade2 benchmark with special emphasis on 
the behavior of the state replication services in the Appli-
cation Server. 
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The BCI summaries provide a detailed and compre-
hensive view of the behavior of the AppServer as reflected 
in the sequences of method invocations. This level of detail 
permits a variety of investigations into the behavior of 
AppServer and its interactions with other components such 
as the replication service and the database service to be 
made. For the purposes of parameterizing the system 
model, a set of service categories was created, and the BCI 
method costs (counts, CPU times and wall-clock times) 
were aggregated into these service categories. In addition, 
the CPU times and wall-clock times were converted from 
inclusive times to exclusive times (the method times with-
out the times for the lower level methods). The service 
categories used in these experiments were as follows: 

 
• Lock: Methods associated with obtaining a lock. 
• Bean-management: Methods associated with con-

verting Java object data from internal form to ex-
ternal form. 

• Repl-prep: Methods associated with preparing for 
an interaction with the state-replication service. 

• DB-prep: Methods associated with preparing for 
an interaction with the database service. 

• Repl-IO: Methods associated with an interaction 
with the state-replication service. 

• DB-IO: Methods associated with an interaction 
with the database service. 

• Base: All of the methods that are not included in 
any of the above categories. 

 
As an example of a profile for the doAccount transac-

tion, consider the data in Table 2. In this profile, the Count 
field in the first line refers to the number of times this 
transaction was executed during an experiment. In the re-
maining lines, the Count field specifies the number of 
times the category was invoked per-call to the transaction. 
The CPU field designates the average CPU time (in sec-
onds) used by the methods in the category per call to the 
service category and the serv field designates the average 
wall-clock time experienced by the methods in the cate-
gory (in seconds) per call to the transaction. 

 
Table 2: Profile of DoAccount Transaction 

Method/Cat. Count Cpu time Serv time 
doAccount: 29583   
 base: 7.00 0.0002281 0.0004531 
 lock: 1.00 0.0001019 0.0042386 
 bean-mgmt: 3.00 0.0001223 0.0062204 
 repl-prep: 4.00 0.0000320 0.0005392 
 Db-prep: 42.00 0.0000075 0.0000171 
 repl-IO: 2.02  0.0004067 0.0030005 
 Db-IO: 10.00  0.0000062  0.0009666 
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Some of the transactions invoke another transaction; 
the profiles for transactions that do this have a call-
transaction line, showing the transaction being called. For 
example, the doAccountUpdate transaction calls the doAc-
count transaction. These profiles shown in Table 3, which 
are automatically constructed from the BCI summary re-
port, give a comprehensive view of the average use of the 
CPU and the average wall-clock time experienced by a call 
to the Trade2 transactions. The transaction profiles used by 
the model consist of the nine or ten profiles, one for each 
transaction type in the Trade2 benchmark. 

 
Table 3: Profile of the doAccountUpdate Transaction 

Method/Cat. Count Cpu time Serv time 
doAccountUpdate: 10871   
 base: 4.00 0.0001789 0.0002655 
 lock:  0.00 0.0000000 0.0000000 
 bean-mgmt : 2.00 0.0001395 0.0025863 
 repl-prep : 0.00 0.0000000 0.0000000 
 db-prep: 50.00 0.0000083 0.0000150 
 repl-IO : 0.00 0.0000000 0.0000000 
 db-IO: 11.00 0.0000071 0.0014276 
 called trans : 10871 doAccount  

7 MODELING TRANSACTION PROCESSING 

The predictive capabilities that were required for the pro-
ject are provided by a simulation model; this model has 
simulation objects that represent the hardware and software 
components shown in Figure 2: the system (the nodes or 
CPU's, and disk drives), the clients, the application 
server(s) executing Trade2 transactions, the replication 
server(s), and the database server). 
 

 
Figure 2: Diagram of System Model 

 
The model is written using CSIM (Mesquite 2002). 

The component that mimics the AppServer processing a 
particular Trade2 transaction uses the counts and average 
CPU times from the profile for that transaction to mimic 
usage of the simulated CPU in the model. The average 
wall-clock (serv) times are used to inject delays for the 
lock category and the bean-management category. The 

Clients 

AppServer 

Replication Disks Database Disks
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delays can be derived from a component model represent-
ing the lock and bean management services. 

In more detail, a transaction process originates at the 
client node; it travels to the AppServer node, where the 
type of transaction is determined by a routine that accu-
rately models the Trade2 servlet. With a specific transac-
tion type (equivalently with a specific transaction profile) 
attached, the transaction process “executes” the simulated 
routines that model the behavior specified by the profile. 
Using the “doAccount” profile (see Table 2) as an exam-
ple, the transaction first visits the simulated CPU seven 
times using an average of 0.0002881 seconds per visit (the 
base service category). Next, to model the activity of the 
lock category, it visits the simulated CPU once, using an 
average of 0.0001019 seconds and then occupies a “lock” 
resource for an amount of time so that the total elapsed 
time for the lock visit (CPU response time plus lock ser-
vice time) is the lock category serv time (0.0042386 sec-
onds). Simulating the activity of the bean-management 
service category is similar to the activity of the lock cate-
gory. The activities of the repl-prep and dp-prep categories 
are CPU usage intervals (as with the base category); the 
delays arise from the queueing at the CPU. 

Modeling the behavior of the repl-io and db-io catego-
ries is more complicated. It would be possible to use the 
average serv (wall-clock or elapsed time) values from the 
profiles, but this would minimize the predictive uses of the 
model. Instead, a IO category call is modeled by having the 
transaction visit a separate (simulated) server - a replica-
tion server for a repl-io category call and a database server 
for a db-io category call. All of the visits to a remote server 
are modeled as an average visit (i.e., the behavior of a visit 
is not specified by the type of transaction that caused the 
visit). The parameters that control a visit to a remote server 
are the mean CPU time per visit, the probability of a disk 
operation per visit, the mean disk operation time, and the 
mean server delay. 

The values of the parameters are determined by com-
bining the counts from the BCI reports with data from sys-
tem data that is collected for an experiment; on UNIX, the 
iostat and mpstat utilities give the necessary information: 
CPU utilization, disk operations per second and average 
time per operation. 

Estimating the mean server delay is less straightfor-
ward. This delay is intended to model that part of a visit 
that is not covered by waiting for the CPU and the disk 
drive plus the time spent using the CPU and the disk drive. 
This delay could include network times, waiting for locks 
on the server, waiting for connections, and waiting for 
other types of activities to complete. Currently this delay is 
estimated by computing an estimated active time (CPU 
service plus the probability of a disk operation times the 
disk service time) and then inflating this by a factor. While 
not entirely satisfactory, this approach does yield fairly 
accurate results. An alternative to this procedure of esti-
1192
mating a delay interval would be to implement a more ac-
curate model of the each type of server. Adding models of 
the node interconnection network components could also 
enhance the fidelity of the results. 

One issue that is handled in the model is the “lost CPU 
time” on the AppServer - the CPU time used by the 
AppServer that is not reported by the BCI tool (mentioned 
above). The amount of “lost time” can be estimated by 
comparing the total CPU time reported in the BCI sum-
mary and CPU utilization reported by a system utility such 
as mpstat. The model uses this estimate of lost time to pa-
rameterize extra processes on the simulated AppServer 
node. These extra process use the simulated CPU(s), in 
short slices of time, so that the “lost time” is in fact ac-
counted for in the model. These extra processes are neces-
sary to achieve two results: 

 
• The CPU utilization for the AppServer nodes are 

correct, and 
• The waiting time for the transactions at the CPU 

is approximately correct. 
 

Without these extra processes, the CPU utilization 
would be lower than that reported in the data and the re-
sponse times (serv times) for the transactions would be 
lower than the times reported in the BCI summary. 

8 VALIDATION OF THE MODEL 

A number of experiments on a variety of hardware and 
software configurations were run. In one experiment, 
Trade2 was run with 40 simulated clients sending requests 
to a pair of Sun V20Z nodes; each V20Z node has two 
AMD Opteron CPUs (with clock frequencies of 1.6 GHz) 
plus two gigabytes of main memory and a single disk 
drive. In addition to the two AppServer nodes, there was 
another pair of V20Z nodes hosting the replication servers 
and a single V40Z node (with four AMD Opteron CPUs) 
hosting the database server. 

In the initial experiments, variations in the number of 
accesses to the database server per transaction were ob-
served. Some investigation revealed that in the doQuote 
transaction, stock quotes are retrieved from a stock-quote 
cache and that quotes in the cache are expired after a time-
out interval. To guarantee consistent results for varying 
workloads and different architectures, the stock-quote 
cache was disabled and all stock quotes were retrieved 
from the database server. The alternative would have been 
to implement a more detailed model of the cache with the 
time-out feature. 

In order to make meaningful comparisons of different 
system architectures, the transaction injection rate was 
fixed to be as close to 400 requests per second as was pos-
sible. This was accomplished by modifying the load gen-
erator (RequestRunner). Specifying a fixed request rate 
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means that using transactions per second (TPS) as the pri-
mary performance metric is not meaningful. In particular, 
using TPS to assess the validity of the simulation models 
was not reasonable (almost any model should be able to 
produce the specified TPS). Instead of TPS, the average 
simulated CPU time per transaction and the average simu-
lated wall-clock time (sometimes called the average re-
sponse time) per transaction are used as bases for compari-
son. In addition, the CPU time by service category and the 
wall-clock time by service category are compared. The 
graphs in Figures 3 and 4 show the measured versus mod-
eled comparisons for two experiments: one using the repli-
cation service described above and one that does not use 
bean and state replication. 

 

Figure 3: Comparison of CPU Time/Transaction with Ser-
vice Categories 

Figure 4: Comparison of Wall-clock Times/transaction 
with Service Categories 
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9 USES OF QUANTITATIVE MEASUREMENT, 
ANALYSIS AND MODELING 

The framework described in the preceding sections can be 
used in a number of ways to analyze and improve system 
operation. In particular: 

 
• Capacity planning: An important aspect to suc-

cessfully deploying servers in production envi-
ronments is capacity planning. Analytical or simu-
lation models based on the measurement and 
analysis of systems can be used by a system ad-
ministrator to scale important metrics. e.g., ex-
pected peak load for holiday shopping.  

• Architecture and design analysis: Workload char-
acterizations (profiles) produced by the methodol-
ogy described in this paper have the ability to 
produce high-level service abstractions for each 
transaction type in the workload. This ability to 
characterize and model a service rather than using 
individual method calls in a trace provide a pow-
erful capability for analyzing system architectures 
and designs. For example a call-stack trace of 
methods representing several file IO operations 
can be coalesced into a "File-IO" category or pro-
file entry.  

• Trade-off analysis: A critical facet of system ar-
chitecture and design is trade-off analysis, where 
the important metrics are either chosen and added 
as model parameters or are the results of the exe-
cution of the model. Variations in the model pa-
rameters, the system architecture or the design can 
be compared using modeled results. For example, 
a model for a website may study the use of two, 
four and eight processor systems and evaluate sys-
tem cost for the targeted transaction rate as a met-
ric.  

• Root cause analysis: Performance bottlenecks can 
be analyzed when a system has been modeled in 
sufficient detail. The system model can be used to 
analyze resource constraints, locking delays, etc. 
For example a model of a middleware system can 
predict delays caused by reaching an upper limit 
for a connection pool to the database. Another ex-
ample is exhausting disk bandwidth while the 
processors are under utilized. 

10 SUMMARY 

A new tool, called BCI, for instrumenting Java server ap-
plications has been described. This tool gives an accurate, 
detailed and comprehensive trace of the methods used by 
the application, along with the inclusive CPU times and 
inclusive wall-clock times for each method. This tool was 
used to study the behavior of the Sun JES Application 
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Server processing runs of the Trade2 benchmark. Summa-
ries from these runs were then used to create statistical 
profiles of each Trade2 transaction. 

A simulation model used the automatically created 
transaction profiles to simulate the behavior of these trans-
actions on simulated systems. The validation runs suggest 
that a model combined with these profiles can yield accu-
rate results. 

In the future, the project will use these profiles to-
gether with the simulation model to study a variety of 
techniques for improving replication services for applica-
tion servers. One approach to improving replication service 
is to use new components, including new communications 
hardware. Another approach could be based on changes to 
the implementation of replication services, both on the 
replication services nodes and within the application 
server. It is possible to alter the call counts and service 
times so as to reflect these kinds of changes. 

The use of the BCI tool, coupled with the summary 
programs and the simulation model described above are 
proving to be a flexible tool for analyzing performance of 
the Application Server and for predicting the impacts of 
changes to both the hardware and software components 
that make up these multi-tier systems. 
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