
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

USING JAVA METHOD TRACES TO AUTOMATICALLY CHARACTERIZE
AND MODEL J2EE SERVER APPLICATIONS

Darpan Dinker
Herb Schwetman

Sun Microsystems Laboratories

16 Network Circle
Menlo Park, CA 94025, U.S.A.

ABSTRACT

This paper describes a novel framework used to character-
ize a J2EE (Java Enterprise Edition) application and de-
velop models of the application by using Java method trac-
ing in a Java-technology based application server. Applica-
tion servers are critical to large-scale, online servers and
serve as middleware to provide secure access to transac-
tional, legacy and web services. The tracing tool in this
framework gives a detailed and comprehensive view of the
sequences of methods invoked as the application server
processes requests. The output of this tool is processed and
automatically summarized into a set of transaction profiles
which form the input for a simulation model of the applica-
tion server and its related components. These profiles have
proven to be a useful abstraction of the behavior of the
transactions processed by the system. After describing the
tool and the model, the paper provides results of validation
runs and discusses the usefulness of quantitative measure-
ment, analysis and modeling in some areas of system de-
sign and system deployment. The models help architects,
designers, developers and deployers explore the different
facets of performance during all stages of an application's
life-cycle, especially during concept development and pro-
totyping.

1 INTRODUCTION

Studies of system performance require accurate descrip-
tions of the system workload. Typically, the goal of a per-
formance study is to gain an understanding of how the sys-
tem is behaving currently and to make recommendations
about corrective steps which can result in improved per-
formance in the future. Each of these steps depend on sev-
eral ingredients, including an accurate description of the
system components and how they interoperate and on an

1181-4244-0501-7/06/$20.00 ©2006 IEEE
accurate description of the demands being made by the
elements of the workload for use of these components.

This paper describes an approach to workload charac-
terization that is based on a trace of Java method invoca-
tions created by a special tool, the ByteCode Instrumenta-
tion (BCI) tool, developed at Sun Microsystems, Inc. A
Java application that is instrumented using BCI can be
studied in great detail, and a summary of this trace can be
processed to give a detailed and accurate characterization
of the activities of the application.

The paper gives a description of a model which uses
this characterization to enable the user to make accurate
predictions of performance of the system operating in new
environments.

2 BACKGROUND

Many modern on-line services are implemented using a
multi-tiered approach, placing different services on differ-
ent tiers of the total system. A typical configuration is
shown in Figure 1. In Figure 1, the system is made up of
three tiers, as follows:

• The web server tier,
• The application server tier, and
• The database tier.

In more detail, a user of this system is connected to the
Internet and is accessing the system using a web browser.
The browser sends a request for service to a node in the
web server tier. In some cases, the requested information is
in the form of a static page stored on the web server nodes;
in these cases, the page is returned immediately to the re-
questing browser. In other cases, the requested information
must be developed dynamically for the specific request.
7

Dinker and Schwetman

These requests are forwarded to a node in the application
server tier. A forwarded request invokes a particular appli-
cation Java Servlet or program which determines the con-
tent for the request and delivers this back to the web server,
which in turn delivers this back to the requesting browser.
Some of the requests require that the application find
and/or update data on a node in the database tier.

Figure 1: Multi-tiered Online System

The focus of this paper is the performance of the nodes

in the J2EE application server tier. In many instances, the
J2EE services such as Web services, enterprise beans, mes-
sage beans, etc. in this tier are implemented using a “con-
tainer” environment. This container environment provides
a multitude of services (e.g. security, transaction, life-cycle
management) which are used by the server applications
written in Java for the J2EE platform. One such environ-
ment is the Sun Java Enterprise System (JES) Application
Server (called AppServer) from Sun Microsystems, Inc.
With AppServer, application developers can create their
applications that are accessed through Web services
(HTTP, XML/SOAP, JMS, etc.) or rich-client paths such
as RMI/IIOP. An example of a J2EE application is an
online retail E-commerce web-site that has serves a prod-
uct catalog, has a shopping cart, and a check-out module.

The performance of the J2EE applications operating in
the application server tier can have a large impact on the
performance of the total system (across tiers). Furthermore,
the performance of the system can be a major factor in the
user's perception of the service delivered by the system,
namely response time. Systems maintaining service-level
agreements (e.g. 90-th percentile response time < 1.2 sec)
can attract and retain customers for the site, while systems
exhibiting “poor levels” of performance can discourage
customers from visiting the site. From the website adminis-
118
trator and deployer's perspective, throughput is an impor-
tant metric, in addition to response time. Throughput pro-
vides the ability to gage the system's ability to handle mul-
tiple user requests concurrently.

The paper begins with a description of a tool (called
BCI) that has been developed to give detailed views of
Java applications operating on AppServer. The use of BCI
is illustrated by using it to study the operation of the
Trade2 benchmark suite (An et al. 2002 and Trade2) of
transactions. The BCI outputs are used to create a statisti-
cal characterization or profile of the Trade2 transactions.
Finally, a simulation model that uses these profiles is de-
scribed. Some outputs from this model are compared to the
originally collected summary data, to gage the accuracy of
the model. In addition, some “what if” studies show how
the model can be used to predict system performance in
altered operating environments.

3 THE BCI TOOL

A Java program is compiled into its machine independent
representation called Java byte-code that is interpreted and
executed by the Java Virtual-Machine (JVM) available on
different platforms. Java supports automatic garbage col-
lection (GC), so that the user program does not have to
explicitly free objects on the heap. A JVM such as the Java
HotSpotT virtual machine maintains different regions in the
heap for segregating objects in the heap according to their
life span (young and old generations) and runs garbage
collector thread(s) to free un-referenced objects when a
heap partition is full. Although automatic garbage collec-
tion is a boon to programmers, the feature trades off ease-
of-use for performance. Another feature of a JVM, called
Just-in-time (JIT) compilation, is the ability to compile
frequently executed streams of byte-codes to machine rep-
resentation that result in faster execution. To summarize,
features of the JVM can impact the performance of a Java
program both positively and negatively.

As indicated above, Java has been widely used to im-
plement server programs operating in the application
server tier, and the performance of these programs (as re-
flected in speed of execution) can be critical to perceived
performance of the total system.

Several Java performance tools provide the ability to
identify “hot” methods or lines of code. When compared to
other methods, the “hot” methods could be using more
resources such as processor (CPU), memory (heap), lock
(latency), disk and network IO, etc. affecting the response
time of a service. Many Java performance tools use the
Java virtual machine profiler interface (JVMPI) and also
the Java virtual machine tool interface (JVMTI); JVMTI is
now included in the Java Developer Kit (JDK) 1.5 release
and provides the ability to instrument Java classes stati-
cally, at load-time or dynamically. Several profilers, such
8

Dinker and Schwetman

as JFluid (Dmitriev 2004) provide developers an intuitive
graphical user interface to display “hot” methods.

Many techniques for creating profiles (Harkema et al.
2002 and Putrycz 2004) have evolved; these techniques
include profilers and trace routines. Typically profilers use
a sampling technique to estimate the time spent in each
method, while trace routines actually record each invoca-
tion of the specified methods. One advantage of using trac-
ing routines is that counts of the number of method invoca-
tions are obtainable; another advantage is that by using the
order of invocation, an accurate depiction of the method
call-tree is also obtainable. It can be important to determine
that one method can appear at multiple points in the execu-
tion paths (equivalently in different branches of the call
tree) of the application.

The Byte Code Instrumentation (BCI) framework, de-
veloped at Sun, contains an instrumentation tool that stati-
cally instruments Java classes. The process of instrumenta-
tion consists of adding pre-compiled byte-codes (represent-
ing measurement calls) to the target Java application. The
instrumentation collects a trace of entry and exit points of
Java methods and logs this trace to a file at run-time. The
objective of the BCI collection framework is to provide a
trace representing the user's application executing in the
J2EE containers. In order to achieve this objective, the BCI
framework intercepts and captures the first points of re-
quest processing per unique request, per thread for con-
tainers such as:

• Java Server Pages (JSP)/Servlet Web container,
• Enterprise Java Beans (EJB) container,
• Object Request Broker (ORB),
• Message Driven Bean (MDB) container, etc.

Tracing can be dynamically turned on or off by invok-

ing a management service in the BCI run-time. When a
request that is being processed by the AppServer arrives at
an interceptor, a new record is created for the request using
a special buffer in the heap. At subsequent arrivals and
departures from instrumented methods, the instrumented
code collects some thread or LWP (light-weight process)
level measurements such as the wall-clock time and CPU
consumption. When the request processing departs the in-
terceptor, the buffer containing traces of methods and their
corresponding measurements are flushed to a log file. Post
run-time or after tracing is turned off, the log file can be
processed, to give a comprehensive view of the methods
that executed while the program was being observed.

A standard report gives the hierarchy of the methods
called positions (or levels) in the call tree, along with num-
ber of calls, and the average CPU time per call (inclusive)
and the average elapsed (wall-clock) time per call (inclu-
sive). The term inclusive means that the time reported is
for the method and all of the methods below it in the call
tree. Table 1 shows an example of the output for a sum-
118
mary of a BCI log file. In Table 1, the term “serv” refers to
service or wall-clock time.

Some other tools and papers (Harkema et al. 2002)
have used similar techniques as described above. These
techniques are simple enough that tracing can be achieved
using an existing tool or after a few enhancements to an
available Java instrumentation tool.

Table 1: Sample BCI Summary

Level-id Method Count Incl cpu Incl serv
0-18 TradeScenario.. 142235 0.004325 0.051677
1-19 HttpServlet 142235 0.004261 0.051538
2-20 HttpServlet 142235 0.004257 0.051531
3-21 doAccount 14828 0.003372 0.045435
4-22 postInvoke 14828 0.001261 0.012751
5-23 save 14828 0.001042 0.012365
6-24 save 14828 0.001037 0.012355
7-25 doExecuteUpd 14828 0.000730 0.005074
8-26 chl.execute 339 0.000668 0.001636
8-27 chl.execute 14828 0.000672 0.004976
9-28 chl.execute 14828 0.000668 0.004970
7-29 getConnPool 14828 0.000224 0.005298
8-30 chl..execute 14828 0.000123 0.001005
7-31 resourceClosed 14828 0.000010, 0.001813

4 ACCURACY, OVERHEAD AND COVERAGE

The issues of accuracy, overhead and coverage are critical
to the usefulness of a data collection tool such as BCI. In
particular:

• Accuracy refers to the collection of data which

accurately characterizes the operation of the soft-
ware being analyzed. Accuracy is non-trivial to
validate and high-level performance tools depend
on tools and support in the platform (operation
system and hardware counters) to assess accuracy.

• Overhead refers to the extra-cost (processor cy-
cles, memory, I/O) associated with collecting the
data. Data collection, data storage and related run-
time processing affect and alter the execution,
thus causing variations in the execution time
and/or resource utilization. In most cases one ob-
serves degraded performance, but in a few inter-
esting cases, a myriad of complexities in today's
computer systems (e.g. caching effects in the
memory hierarchy) can result in better perform-
ance. Most tools available today do not and can-
not determine their overhead and thus do not
compensate for their overhead. As most perform-
ance engineers have observed, there is a trade-off
between measurement detail and overhead.

• Coverage refers to the amount of execution time
for the application that is actually recorded by the
data collection tool. Several Java-based perform-
ance tools do not provide insights into code exe-
9

Dinker and Schwetman

cuted outside the JVM machine and thus lack
coverage outside the JVM machine. Several tools,
including BCI, measure using interception points
and thus miss measuring code executed in the
JVM before the interception points were executed
in the call stack. Most CPU's have two distinct
modes of operation: system or kernel mode and
user mode. Another problem in coverage arises
from the inability to collect system-mode CPU
time, which is the case with the BCI tool and sev-
eral other tools. Tools that do not support JVM
machine profiling obviously do not produce de-
tailed results for Java applications.

We made several attempts to validate the data pro-

vided by commonly available tools and decided to proceed
with a custom solution, which we describe briefly here. In
order to address the tool overhead problem, we compared
several instrumented and un-instrumented runs of micro-
benchmarks and also some well-known benchmarks and
observed that overhead in the case of BCI was proportional
to the number of instrumented methods that were invoked
during request processing. To get a global perspective on
overhead, we used system measurement tools available
with the Solaris operating system, and compared the per-
formance of instrumented and un-instrumented runs of the
Trade2 benchmark. In order to validate accuracy of the
BCI tool, we compared the collected traces for a method
across several sampling tools that had low overhead under
low sampling intervals. In order to address the inability of
the BCI tool to capture system CPU time and missing
measurements before the interception points, we utilized
standard UNIX tools such as mpstat and vmstat to provide
transaction metrics that, in turn, were used to deduce the
missing time in the BCI traces. As we observed during our
experiments and exploration, this technique worked out
very well, given that the coverage of BCI was more than
70%. It appears that BCI covers most of the interesting
variations in applications that are of interest to J2EE tech-
nology architects and developers. Another observation was
that the wall-clock coverage with BCI was correct, and
these did not require further validation or correction. Thus
by using system tools (e.g., mpstat) the amount of “lost”
CPU time can be estimated, and this lost time is incorpo-
rated into the simulation model described below.

A comprehensive description of a Java method in-
strumentation performance toolkit as applied to a CORBA
implementation is given in (Harkema et al. 2002).

5 THE TRADE2 BENCHMARK

Trade2 is a benchmark that is often used to test the
performance of application servers. In (An et al. 2004),
Trade2 is described as “a collection of Java classes, Java
1190
Servlets, Java Server Pages and Enterprise Java Beans in-
tegrated into a single application. It is designed to emulate
an online brokerage firm”. (A database is maintained by
Trade2, which holds account information and stock
quotes.) The Trade2 transactions are as follows:

• doAccount,
• doAccountUpdate,
• doBuy,
• doHome,
• doLogin,
• doLogout,
• doPortfolio,
• doQuote,
• doSell,
• valveSave (used only for http-session replication).

An important feature of the Trade2 benchmark is the

ability to enable failover for user application objects such
as the stateful session bean (an Enterprise Java Bean with
application logic) and the HTTP session (a server-side state
representing a web-based client). AppServer provides
failover capabilities for these objects using techniques such
as storing copies of the objects in shared disk storage or in
the backend database tier (persistent storage), or maintain-
ing multiple in-memory copies within the AppServer tier
(state replication).

With failover enabled, when an AppServer process or
a compute node fails, user requests are diverted to another
process or another compute node in the AppServer tier
which then uses the objects from persistent storage or the
replicas from other AppServer processes to retrieve the
most up-to-date user state. In this study, a separate high
availability database (HADB) was used to implement
failover for the AppServer application.

The benchmark setup for the tests described in this pa-
per used a Sun utility, RequestRunner, to serve as the
workload generator. RequestRunner simulates the opera-
tion of the Trade2 clients by presenting a stream of Trade2
requests to the AppServer nodes. Key parameters to Re-
questRunner include the number of clients (users) to be
simulated during the test and the average “think time” in-
terval for each client interaction with the AppServer.

6 TRANSACTION PROFILES

The goal of this exploration is to develop system models
that can be used to predict the performance of the Sun JES
Application Server executing on the application server
nodes in a multi-tier system. The initial goal is to apply the
analysis and modeling techniques to predict the perform-
ance of the Trade2 benchmark with special emphasis on
the behavior of the state replication services in the Appli-
cation Server.

Dinker and Schwetman

The BCI summaries provide a detailed and compre-
hensive view of the behavior of the AppServer as reflected
in the sequences of method invocations. This level of detail
permits a variety of investigations into the behavior of
AppServer and its interactions with other components such
as the replication service and the database service to be
made. For the purposes of parameterizing the system
model, a set of service categories was created, and the BCI
method costs (counts, CPU times and wall-clock times)
were aggregated into these service categories. In addition,
the CPU times and wall-clock times were converted from
inclusive times to exclusive times (the method times with-
out the times for the lower level methods). The service
categories used in these experiments were as follows:

• Lock: Methods associated with obtaining a lock.
• Bean-management: Methods associated with con-

verting Java object data from internal form to ex-
ternal form.

• Repl-prep: Methods associated with preparing for
an interaction with the state-replication service.

• DB-prep: Methods associated with preparing for
an interaction with the database service.

• Repl-IO: Methods associated with an interaction
with the state-replication service.

• DB-IO: Methods associated with an interaction
with the database service.

• Base: All of the methods that are not included in
any of the above categories.

As an example of a profile for the doAccount transac-

tion, consider the data in Table 2. In this profile, the Count
field in the first line refers to the number of times this
transaction was executed during an experiment. In the re-
maining lines, the Count field specifies the number of
times the category was invoked per-call to the transaction.
The CPU field designates the average CPU time (in sec-
onds) used by the methods in the category per call to the
service category and the serv field designates the average
wall-clock time experienced by the methods in the cate-
gory (in seconds) per call to the transaction.

Table 2: Profile of DoAccount Transaction

Method/Cat. Count Cpu time Serv time
doAccount: 29583
 base: 7.00 0.0002281 0.0004531
 lock: 1.00 0.0001019 0.0042386
 bean-mgmt: 3.00 0.0001223 0.0062204
 repl-prep: 4.00 0.0000320 0.0005392
 Db-prep: 42.00 0.0000075 0.0000171
 repl-IO: 2.02 0.0004067 0.0030005
 Db-IO: 10.00 0.0000062 0.0009666

1191
Some of the transactions invoke another transaction;
the profiles for transactions that do this have a call-
transaction line, showing the transaction being called. For
example, the doAccountUpdate transaction calls the doAc-
count transaction. These profiles shown in Table 3, which
are automatically constructed from the BCI summary re-
port, give a comprehensive view of the average use of the
CPU and the average wall-clock time experienced by a call
to the Trade2 transactions. The transaction profiles used by
the model consist of the nine or ten profiles, one for each
transaction type in the Trade2 benchmark.

Table 3: Profile of the doAccountUpdate Transaction

Method/Cat. Count Cpu time Serv time
doAccountUpdate: 10871
 base: 4.00 0.0001789 0.0002655
 lock: 0.00 0.0000000 0.0000000
 bean-mgmt : 2.00 0.0001395 0.0025863
 repl-prep : 0.00 0.0000000 0.0000000
 db-prep: 50.00 0.0000083 0.0000150
 repl-IO : 0.00 0.0000000 0.0000000
 db-IO: 11.00 0.0000071 0.0014276
 called trans : 10871 doAccount

7 MODELING TRANSACTION PROCESSING

The predictive capabilities that were required for the pro-
ject are provided by a simulation model; this model has
simulation objects that represent the hardware and software
components shown in Figure 2: the system (the nodes or
CPU's, and disk drives), the clients, the application
server(s) executing Trade2 transactions, the replication
server(s), and the database server).

Figure 2: Diagram of System Model

The model is written using CSIM (Mesquite 2002).

The component that mimics the AppServer processing a
particular Trade2 transaction uses the counts and average
CPU times from the profile for that transaction to mimic
usage of the simulated CPU in the model. The average
wall-clock (serv) times are used to inject delays for the
lock category and the bean-management category. The

Clients

AppServer

Replication Disks Database Disks

Dinker and Schwetman

delays can be derived from a component model represent-
ing the lock and bean management services.

In more detail, a transaction process originates at the
client node; it travels to the AppServer node, where the
type of transaction is determined by a routine that accu-
rately models the Trade2 servlet. With a specific transac-
tion type (equivalently with a specific transaction profile)
attached, the transaction process “executes” the simulated
routines that model the behavior specified by the profile.
Using the “doAccount” profile (see Table 2) as an exam-
ple, the transaction first visits the simulated CPU seven
times using an average of 0.0002881 seconds per visit (the
base service category). Next, to model the activity of the
lock category, it visits the simulated CPU once, using an
average of 0.0001019 seconds and then occupies a “lock”
resource for an amount of time so that the total elapsed
time for the lock visit (CPU response time plus lock ser-
vice time) is the lock category serv time (0.0042386 sec-
onds). Simulating the activity of the bean-management
service category is similar to the activity of the lock cate-
gory. The activities of the repl-prep and dp-prep categories
are CPU usage intervals (as with the base category); the
delays arise from the queueing at the CPU.

Modeling the behavior of the repl-io and db-io catego-
ries is more complicated. It would be possible to use the
average serv (wall-clock or elapsed time) values from the
profiles, but this would minimize the predictive uses of the
model. Instead, a IO category call is modeled by having the
transaction visit a separate (simulated) server - a replica-
tion server for a repl-io category call and a database server
for a db-io category call. All of the visits to a remote server
are modeled as an average visit (i.e., the behavior of a visit
is not specified by the type of transaction that caused the
visit). The parameters that control a visit to a remote server
are the mean CPU time per visit, the probability of a disk
operation per visit, the mean disk operation time, and the
mean server delay.

The values of the parameters are determined by com-
bining the counts from the BCI reports with data from sys-
tem data that is collected for an experiment; on UNIX, the
iostat and mpstat utilities give the necessary information:
CPU utilization, disk operations per second and average
time per operation.

Estimating the mean server delay is less straightfor-
ward. This delay is intended to model that part of a visit
that is not covered by waiting for the CPU and the disk
drive plus the time spent using the CPU and the disk drive.
This delay could include network times, waiting for locks
on the server, waiting for connections, and waiting for
other types of activities to complete. Currently this delay is
estimated by computing an estimated active time (CPU
service plus the probability of a disk operation times the
disk service time) and then inflating this by a factor. While
not entirely satisfactory, this approach does yield fairly
accurate results. An alternative to this procedure of esti-
1192
mating a delay interval would be to implement a more ac-
curate model of the each type of server. Adding models of
the node interconnection network components could also
enhance the fidelity of the results.

One issue that is handled in the model is the “lost CPU
time” on the AppServer - the CPU time used by the
AppServer that is not reported by the BCI tool (mentioned
above). The amount of “lost time” can be estimated by
comparing the total CPU time reported in the BCI sum-
mary and CPU utilization reported by a system utility such
as mpstat. The model uses this estimate of lost time to pa-
rameterize extra processes on the simulated AppServer
node. These extra process use the simulated CPU(s), in
short slices of time, so that the “lost time” is in fact ac-
counted for in the model. These extra processes are neces-
sary to achieve two results:

• The CPU utilization for the AppServer nodes are

correct, and
• The waiting time for the transactions at the CPU

is approximately correct.

Without these extra processes, the CPU utilization
would be lower than that reported in the data and the re-
sponse times (serv times) for the transactions would be
lower than the times reported in the BCI summary.

8 VALIDATION OF THE MODEL

A number of experiments on a variety of hardware and
software configurations were run. In one experiment,
Trade2 was run with 40 simulated clients sending requests
to a pair of Sun V20Z nodes; each V20Z node has two
AMD Opteron CPUs (with clock frequencies of 1.6 GHz)
plus two gigabytes of main memory and a single disk
drive. In addition to the two AppServer nodes, there was
another pair of V20Z nodes hosting the replication servers
and a single V40Z node (with four AMD Opteron CPUs)
hosting the database server.

In the initial experiments, variations in the number of
accesses to the database server per transaction were ob-
served. Some investigation revealed that in the doQuote
transaction, stock quotes are retrieved from a stock-quote
cache and that quotes in the cache are expired after a time-
out interval. To guarantee consistent results for varying
workloads and different architectures, the stock-quote
cache was disabled and all stock quotes were retrieved
from the database server. The alternative would have been
to implement a more detailed model of the cache with the
time-out feature.

In order to make meaningful comparisons of different
system architectures, the transaction injection rate was
fixed to be as close to 400 requests per second as was pos-
sible. This was accomplished by modifying the load gen-
erator (RequestRunner). Specifying a fixed request rate

Dinker and Schwetman

means that using transactions per second (TPS) as the pri-
mary performance metric is not meaningful. In particular,
using TPS to assess the validity of the simulation models
was not reasonable (almost any model should be able to
produce the specified TPS). Instead of TPS, the average
simulated CPU time per transaction and the average simu-
lated wall-clock time (sometimes called the average re-
sponse time) per transaction are used as bases for compari-
son. In addition, the CPU time by service category and the
wall-clock time by service category are compared. The
graphs in Figures 3 and 4 show the measured versus mod-
eled comparisons for two experiments: one using the repli-
cation service described above and one that does not use
bean and state replication.

Figure 3: Comparison of CPU Time/Transaction with Ser-
vice Categories

Figure 4: Comparison of Wall-clock Times/transaction
with Service Categories

no-repl-
meas

no-repl-
model

repl-meas repl-
modeled

0

1

2

3

4

5

6

7

8

9

10

11

CPUTime/trans (msec)

DB-offN
Repl-offN
DB-IO
DB-prep
Repl-IO
Repl-prep
BeanMnt
Lock
Base

no-repl-
meas

no-repl-
model

repl-meas repl-
modeled

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

WallClockTime/trans (msec)

DB-IO
DB-prep
Repl-IO
Repl-prep
BeanMnt
Lock
Base
1193
9 USES OF QUANTITATIVE MEASUREMENT,
ANALYSIS AND MODELING

The framework described in the preceding sections can be
used in a number of ways to analyze and improve system
operation. In particular:

• Capacity planning: An important aspect to suc-

cessfully deploying servers in production envi-
ronments is capacity planning. Analytical or simu-
lation models based on the measurement and
analysis of systems can be used by a system ad-
ministrator to scale important metrics. e.g., ex-
pected peak load for holiday shopping.

• Architecture and design analysis: Workload char-
acterizations (profiles) produced by the methodol-
ogy described in this paper have the ability to
produce high-level service abstractions for each
transaction type in the workload. This ability to
characterize and model a service rather than using
individual method calls in a trace provide a pow-
erful capability for analyzing system architectures
and designs. For example a call-stack trace of
methods representing several file IO operations
can be coalesced into a "File-IO" category or pro-
file entry.

• Trade-off analysis: A critical facet of system ar-
chitecture and design is trade-off analysis, where
the important metrics are either chosen and added
as model parameters or are the results of the exe-
cution of the model. Variations in the model pa-
rameters, the system architecture or the design can
be compared using modeled results. For example,
a model for a website may study the use of two,
four and eight processor systems and evaluate sys-
tem cost for the targeted transaction rate as a met-
ric.

• Root cause analysis: Performance bottlenecks can
be analyzed when a system has been modeled in
sufficient detail. The system model can be used to
analyze resource constraints, locking delays, etc.
For example a model of a middleware system can
predict delays caused by reaching an upper limit
for a connection pool to the database. Another ex-
ample is exhausting disk bandwidth while the
processors are under utilized.

10 SUMMARY

A new tool, called BCI, for instrumenting Java server ap-
plications has been described. This tool gives an accurate,
detailed and comprehensive trace of the methods used by
the application, along with the inclusive CPU times and
inclusive wall-clock times for each method. This tool was
used to study the behavior of the Sun JES Application

Dinker and Schwetman

Server processing runs of the Trade2 benchmark. Summa-
ries from these runs were then used to create statistical
profiles of each Trade2 transaction.

A simulation model used the automatically created
transaction profiles to simulate the behavior of these trans-
actions on simulated systems. The validation runs suggest
that a model combined with these profiles can yield accu-
rate results.

In the future, the project will use these profiles to-
gether with the simulation model to study a variety of
techniques for improving replication services for applica-
tion servers. One approach to improving replication service
is to use new components, including new communications
hardware. Another approach could be based on changes to
the implementation of replication services, both on the
replication services nodes and within the application
server. It is possible to alter the call counts and service
times so as to reflect these kinds of changes.

The use of the BCI tool, coupled with the summary
programs and the simulation model described above are
proving to be a flexible tool for analyzing performance of
the Application Server and for predicting the impacts of
changes to both the hardware and software components
that make up these multi-tier systems.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JSP,
JVM, JDK, EJB, Java Hotspot and Solaris are trademarks
or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. Opteron is a trademark
of Advanced Micro Devices, Inc. All other product names
mentioned herein are the trademarks of their respective
owners.

REFERENCES

An, Y., T. K. T. Lau,, and P. Shum. 2002. A Scalability
Study for WebSphere Application Server and DB2
Universal Database. DB2 Universal Database Per-
formance & Advanced Technology, IBM Toronto Lab,
IBM Canada.

Dmitriev, M. 2004. Profiling Java Applications Using
Code Hotswapping and Dynamic Call Graph Revela-
tion. In Proceedings of the 4th International Workshop
on Software and Performance, 139 – 150, January 14-
16. Redwood City, CA, ACM.

Harkema, M., D. Quartel, B. M. M. Gijsen,, and R.D. van
der Mei. 2002. Performance Monitoring of Java Ap-
plications. In Proceedings of the Workshop on Soft-
ware and Performance. Rome, Italy, 114 – 127, ACM.

J2EE 1.3 Specification. <http://java.sun.com/
j2ee/>, Sun Microsystems, Inc.
1194
Java Enterprise System Application Server. <http://
docs.sun.com/app/docs/coll/Applicati
onServer8_ee_04q4>, Sun Microsystems, Inc.

JVMPI - Java Virtual Machine Profiler Interface.
<http://java.sun.com/j2se/1.4.2/docs
/guide/jvmpi/jvmpi.html>, Sun Microsys-
tems, Inc.

JVMTI – JVM Tool Interface. <http://java.sun.
com/j2se/1.5.0/docs/guide/jvmti/jvmt
i.html> Sun Microsystems, Inc.

Mesquite Software, Inc. 2002. CSIM19/C++ User's Guide,
Mesquite Software, Inc.

Putrycz, Eric. 2004. Using Trace Analysis for Improving
Performance of COTS Systems. In Proceedings of the
2004 Conference of the Centre for Advanced Studies
on Collaborative Research, 68 – 80, IBM.

Trade2 Benchmark. Available at <http://www.ibm.
com/developerworks/db2/library/techa
rticle/0205an.html>, IBM.

AUTHOR BIOGRAPHIES

DARPAN DINKER is a Senior Staff Engineer at Sun Mi-
crosystems Laboratories (Menlo Park, California) in the
Computer Architecture and Performance group. He leads
an exploration into breakaway multi-tier clustered systems
where the research includes workload characterization,
analysis, modeling and prototyping. His current research
interests include high performance integrated hardware-
software architectures, transaction processing and fault
tolerance/recovery in clustered systems. His prior experi-
ence is in the architecture, engineering, performance, sus-
taining, and support/service of commercial software sys-
tem products and applications. He holds a Bachelors de-
gree in Computer Engineering from University of Pune,
India and has studied advanced topics in computer archi-
tecture and databases at Stanford University. His e-mail
address is <darpan@sun.com>.

HERB SCHWETMAN is a Senior Staff Engineer at Sun
Microsystems Laboratories in the Computer Architecture
and Performance Group; he has been at Sun Microsystems,
Inc. since 2001. From 1994 to 2001, he was President and
CEO of Mesquite Software, Inc., a startup company in
Austin, TX, focused on simulation software. He was a Sen-
ior Member of the Technical Staff at MCC in Austin from
1972 to 1984 and was a Professor of Computer Sciences at
Purdue University from 1972 to 1984. He received a Ph.D.
in Computer Sciences from The University of Texas in
Austin in 1970, a M.S. in Mathematics from Brown Uni-
versity, and a B.S. in Mathematics from Baylor University.
His e-mail address is <herb.schwetman@sun.com>.

http://java.sun.com/j2ee/
http://java.sun.com/j2ee/
http://docs.sun.com/app/docs/coll/ApplicationServer8_ee_04q4
http://docs.sun.com/app/docs/coll/ApplicationServer8_ee_04q4
http://docs.sun.com/app/docs/coll/ApplicationServer8_ee_04q4
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
http://www-306.ibm.com/software/webservers/appserv/wpbs_download.html
http://www-306.ibm.com/software/webservers/appserv/wpbs_download.html
http://www-306.ibm.com/software/webservers/appserv/wpbs_download.html
mailto:darpan@sun.com
mailto:herb.schwetman@sun.com

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

