
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

ON THE PERFORMANCE OF INTER-ORGANIZATIONAL DESIGN OPTIMIZATION SYSTEMS

Paolo Vercesi

ESTECO

99, Padriciano

Trieste, TS 34012, ITALY

Alberto Bartoli

DEEI

University of Trieste

Trieste, TS 34127, ITALY
ABSTRACT

Simulation-based design optimization is a key technology in

many industrial sectors. Recent developments in software

technology have opened a novel range of possibilities in this

area. It has now become possible to involve multiple orga-

nizations in the simulation of a candidate design, by com-

posing their respective simulation modules on the Internet.

Thus, it is possible to deploy an inter-organizational design

optimization system, which may be particularly appealing

because modern engineering products are assembled out of

smaller blocks developed by different organizations. In this

paper we explore some of the fundamental performance-

related issues involved in such a novel scenario, by analyzing

a variety of options: centralized control vs. distributed con-

trol; generation of new candidate designs one at a time

or in batches; communication and computation performed

serially or with time overlap. Our analysis provides use-

ful insights into the numerous trade-offs involved in the

implementation of inter-organizational design optimization.

1 INTRODUCTION

Design optimization is one of the key problems to be faced

in nearly all industrial sectors. Optimizing, or simply im-

proving, the design of a component or a system is a complex

and time-consuming job, but it is also a necessity to stay

competitive. Satisfying this requirement while achieving

faster product development times, faster product innovation

and turnaround, lower costs is becoming more and more

difficult. In many cases, the use of specialized simulation

software has become the only practical way for addressing

such conflicting goals. In particular, simulation-based op-

timization systems (Swisher et al. 2000, Banks et al. 2005,

April et al. 2003) and design-optimization environments

allow exploring efficiently the design search space: they

generate a set of candidate designs, evaluate each design

by means of simulation and then generate a new set of

better designs, based on some search optimization strat-
11771-4244-0501-7/06/$20.00 ©2006 IEEE
egy. The simulation techniques used for evaluating each

“virtual prototype” include disparate applications ranging

from parametric CAD, to Finite Element Solvers, Discrete

Event Simulators software, legacy solvers. The entire pro-

cess proceeds automatically and iterates until one or more

satisfactory designs are found. At this point, the results are

given to human specialists, e.g., a team of engineers, for

further analysis and evaluation.

This approach is now widely used and has become

a key component of many CAD/CAE tools. Concern-

ing the specific system with which we are more familiar

(<http://www.esteco.com>), significant successful

applications have been performed in a number of different

sectors: aerospace and defense (Gaiddon, Knight, and Poloni

2004), appliances, architectural, automotive (Fu, Kach-

nowski, and Lee 2004), biomedical (Taga, Funakubo, and

Fukui 2005), experimental data, food and beverage, manu-

facturing, marine and off–shores (Maisonneuve et al. 2003;

Boulougouris, Papanikolaou, and Zaraphonitis 2004), tur-

bomachinery and casting (Hepp, Lohne, and Sannes 2003).

Other applications can be found in multi-disciplinary de-

sign optimization (Giassi, Bennis, and Maisonneuve 2004;

Botros et al. 2004).

Recent developments in software technology have

opened a new range of possibilities for simulation-based de-

sign optimization systems (hereinafter, design optimization

systems for short). Technologies capable of greatly sim-

plifying the integration among remote programs hosted by

different organizations are now widely available. Web ser-

vice technology (Gottschalk et al. 2002, Stal 2002, Alonso

et al. 2004), for example, allows an organization to expose

(some of) the functionality of its internal systems on the In-

ternet and to make it discoverable and accessible through the

World Wide Web in a controlled manner. It has thus become

possible to build inter-organizational services by combining

multiple services exported by single organizations. As a

result, one can build complex services resulting from the

Internet-based integration of simpler building blocks, possi-



Vercesi and Bartoli
bly consisting of simple adaptors wrapped around existing

systems.

Such a technological advance may enable novel applica-

tions also in the area of design optimization. Contemporary

design optimization systems are usually confined within

the boundary of a single organization. Modern engineering

products, on the other hand, are assembled out of compo-

nents developed by several organizations. One may devise

a scenario in which each organization makes it available on

the Internet services for simulating its own components and,

based on such services, an inter-organizational service that

simulates the behavior of the whole product is constructed.

Such a composite service could then be used by a design

optimization system. This approach could lead to more

accurate results, simplify the tailoring of generic designs

to specific scenarios, allow identifying fundamental design

problems earlier, make it easier the management of product

upgrades and so on.

Motivated by the above considerations, in this paper

we explore such novel applications of simulation by fo-

cussing on some of its fundamental performance-related

issues. A system involving several remote organizations

can be managed in a centralized way, by an engine that

moves data back and forth among all modules involved, or

a in a distributed way, with data flowing from one module

to the next. The former is much simpler to implement, but

the latter may be much more efficient depending on the

bandwidth available and the size of the data, for example.

Gaining insight in this area is crucial for understanding how

to structure design optimization systems spanning multiple

organizations. There are also fundamental questions to be

answered regarding the desirable trade-offs. For example,

from the point of view of the system as a whole, one would

like to maximize throughput, i.e., number of optimizations

performed per unit of time. From the point of view of a par-

ticipant organization, however, one would like to minimize

the execution time of its services. These points of view

may conflict because such services are usually associated

with expensive software licenses that cannot be held by

more than one process at a time. It follows that overlapping

computation with communication at a node, a simple strat-

egy for improving throughput, may lead to longer times in

which a license is kept busy.

In this paper we evaluate by simulation the performance

of an inter-organizational design optimization system in a

variety of scenarios. We consider a system managed by a

centralized engine and one managed by a distributed engine,

in the above meaning. In each case, we study the behavior

of a block optimization scheduler, i.e., one injecting a batch

of candidate designs when the previous batch has been

completed, and that of a steady optimization scheduler, i.e.,

one injecting a new design as soon as evaluation of the

previous one has completed. Moreover, we study all these

scenarios under two different patterns for data delivery, one
1178
in which a service starts only when all input data have been

downloaded and one in which a service starts as soon as the

first chunk of input data is available. Our analysis provides

useful insights into the numerous trade-offs involved in the

implementation of such a complex scenario.

2 APPLICATION DOMAIN

In this work we are concerned with design optimization

systems. In this context optimization is an iterative process

where each step is divided in two phases: the first phase is the

evaluation of a set of proposed designs through simulation,

the second phase is the generation of a new set of hopefully

better designs. Each design represents a virtual prototype

of an engineering product.

The strategy for producing new designs based on the

evaluations of prior attempts is irrelevant to this discussion,

e.g., Miettinen (1998), Quagliarella et al. (1997). The

process terminates when either a satisfactory design is found

or a predefined maximum number of designs have been

evaluated. Evaluation of each design is performed according

to a simulation workflow representing the sequence of tasks

necessary for the analysis of the virtual prototype. As shown

in Figure 1 design evaluation starts from the design variables

x and leads to the performance measure y = f (x).
A design optimization system is thus composed of two

main blocks: the optimization scheduler, responsible for

the synthesis on new designs from the prior ones; and the

workflow engine, that receives evaluation requests from the

scheduler and executes the simulation workflow to provide

the corresponding results.

Figure 1: Simulation Based Optimization

2.1 Scenario

A workflow is: “The automation of a business process,

in whole or part, during which documents, information or

tasks are passed from one participant to another for action,

according to a set of procedural rules” (Workflow Manage-

ment Coalition 1999). Simulation workflows adhere to this

definition although they represent engineering simulations

rather than business processes. Each workflow is defined

by a workflow process definition (Aalst 1998) also called

schema. A schema specifies which application programs



Vercesi and Bartoli
need to be executed, in what order and on which data. Each

application program appears as a service that can be invoked

by its clients (Papazoglou and Georgakopoulos 2003). A

workflow instance consists of an execution of a schema on

a specified set of input data and it produces a set of output

data.

Execution of workflow instances is performed by a

workflow engine, that interprets a high-level description

of a schema. Description of workflow schemes and their

execution is usually performed under control of a workflow

management system (WfMS). The optimization scheduler,

scheduler for short, is the client application for the WfMS.

The scheduler requires design evaluations and waits for the

simulation results. Then, it schedules new design evaluations

according to the specific optimization algorithm used.

The gray box showed in Figure 1 depicts a simple

simulation workflow within a design optimization system.

The schema is composed of four services and describes

the relationships among services as well as the data flow.

This schema could be implemented as shown in Figure 2.

Obviously, our notion of different organizations could cor-

respond to different department or branches of the same

organization. Communication across organizations occur, in

general, through the Internet, which is the case of main in-

terest in our work. In this example Organization C is the one

interested in the optimization and invokes services provided

by different organizations. Obviously, a given organization

could provide more services and similar, or functionally

equivalent, services could be provided by more organiza-

tions. The scheduler and the workflow engine could also

communicate through the Internet, but we are not interested

in emphasize this aspect.

The optimization scheduler is the closest process to the

end users. An end user selects an optimization scheduler,

feeds a simulation workflow to the optimization scheduler,

and asks the scheduler to perform the optimization. In turn,

the optimization scheduler submits workflow evaluations to

the workflow management system.

Workflows are used in numerous fields of science and

engineering, usually for elaborating data coming from ex-

periments (Bose and Frew 2005, Johnston 2004, Ludäscher

et al. 2005). Although we focus on workflows for design

optimization systems, much of our analysis may be applied

also to such contexts, in particular, whenever the delay in-

curred for transferring data between services is comparable

to the computation time spent in services (see Section 7).

3 MODEL DESIGN

At the core of the simulation workflow there is a set of

solvers. A solver is an application code specialized in a

specific computation, e.g., finite elements of fluidodynamic

analysis, and often it is a commercial licensed software.

A solver execution usually proceeds as follows: it obtains
11
Figure 2: Physical Layout

an available license (the maximum number of solver in-

stances that can be run simultaneously is bounded by the

license agreement), reads the input data, performs the spe-

cific computation without any interaction with other entities,

in particular, without interacting with other solvers, and fi-

nally it produces the corresponding output data. Input and

output take the form of files.

The solver is wrapped by an ancillary code that we call

service and takes care of all the communication activities

required by the workflow engine, including the exchange

of input and output files. Each service runs on a server. In

most real-world settings, each server is tied to a specific

solver.

3.1 The Service Structure

Data is exchanged through a pull protocol, i.e., each service

is responsible for downloading the data it needs. Of course,

the workflow engine must notify services about the location

of the respective input files.

We analyzed the performance of two different inter-

action patterns among the components of the design op-

timization system. The first pattern, that we call NoPipe,

works as shown in Figure 3: 1) the engine invokes a service,

passing the relevant data links to it; 2) the service starts the

downloading of the specified data; 3) when downloading

has completed, the service starts the solver; 4) when the

solver has completed, the service communicates the solver

end to the engine. Only at this point the engine can start

other services that depend on the data produced by the one

just completed.

The second pattern, that we call FullPipe, works as

shown in Figure 4: 1) as soon as there is output data available
79



Vercesi and Bartoli
Figure 3: NoPipe Service Lifecycle

the service notifies the engine; 2) the engine, according to

the workflow schema invokes the subsequent services and

a data pipeline is established between pairs of services;

3) each service starts both the downloader and the solver.

Each solver obtains a license as soon as it starts, like in the

previous case; we did not include the corresponding actions

in Figure 4 for the sake of clarity. The service notifies

the engine as soon as there is some output data available

for downloading (this step is not shown in the Figure 4).

Thanks to elaboration and transmission overlap, we expect

this pattern to provide better performance in terms of overall

throughput, but we also expect it to give worse results in

terms of resource (license) usage.

Figure 4: FullPipe Service Lifecycle

3.2 Data Storage

A design optimization system is usually implemented in a

centralized way, as follows. There is a single repository

that can be accessed by all modules (i.e., workflow engine,

optimization scheduler, services). The workflow engine

stores input and output data generated by the services in

this repository. Each service reads input data from the

repository, stores them on local storage and writes the final

output data back to the repository.

When the services are distributed geographically, as in

a multi-organizational system, it makes sense to explore a
118
distributed storage architecture, in which the output data of

a service are passed directly to the service that needs that

data, i.e., without moving such intermediate results back and

forth to the workflow engine. In this case, the repository at

the workflow engine stores only the final results produced by

each instance. The two alternatives are depicted in Figure 5.

Figure 5: Storage Architectures

3.3 The Scheduler Policies

The optimization scheduler may submit new tentative de-

signs for evaluation according to several different policies.

We explored the two policies most commonly used, as fol-

lows. With the block submission policy the scheduler first

generates a batch of n workflow instances (designs), submits

all these instances to the workflow engine and waits for

completion of all of them. The scheduler then generates

a new batch based on the results of the previous batch,

and so on. This submission pattern is typical of optimiza-

tion schedulers based on generations of population such as

genetic algorithms and evolutionary strategies (Carson and

Maria 1997). With the steady (or steady-state) policy the

scheduler starts a batch of n instances and then submits a

new evaluation as soon as a previous one has completed.

Note that submission policies are largely independent of the

specific search strategy implemented by the scheduler.

4 MODEL IMPLEMENTATION

We simulated the scenario of our interest using DESMO–J

(2000), a discrete event simulation framework written in

Java. The scenario was modelled as follows.

We defined the following processes: optimization

scheduler, workflow engine, service instances, uploaders,

downloaders and solvers. The entities we modeled are:

hosts and the file system components. Finally the resources

we modeled are: link connections, file systems, disks and

the licenses available for running the solvers.

Hosts are the sites providing services, they have: unlim-

ited memory, a number of CPUs at least equal to the number

of licenses for the solvers (this is common in practice) and

a file system shared among all the processes running in the

host. Solvers elaborate input data at a rate specified by their

elaboration speed.
0



Vercesi and Bartoli
The file is the basic entity needed to model the host

file system. The file is modeled as a list of disk sector. The

file system is the intermediate between the host processes

and the host disk, it contains a fixed size buffer cache based

on a Last Recently Used buffer replacement policy. The

processes access local data via files, because files are part

of the file system every read or write request is mediated by

the file system and the buffer cache. File system metadata

is not stored on the disk. Disks are modeled as unlimited

lists of sector, read and write operations are queued in the

same fifo queue. Disks are characterized by the sector size

and by the minimum and maximum time for read and write

a single sector.

There is a communication link between each pair of

hosts. Links are characterized by a mean latency time and

a mean bandwidth. Links have also a dynamic parameter:

the number of active connections, an active connection is a

connection that is feeding data into the link. The bandwidth

of a link is fairly distributed among all the active connections.

Processes create connections over a specified link in respond

to a file transfer request, then they write and read data to

and from the connection a chunk at time. A chunk is a unit

of data with a size equal to the disk sector size.

5 PERFORMANCE METRICS

We define as optimization latency the time required for

completing the optimization session, we define as throughput

the number of evaluated workflow instances divided by the

optimization latency. We define as solver latency the time

required for one solver execution. This time includes reading

of input data from the local disk, their processing and the

writing of output data on the local disk. We define as

service latency (or service lifespan) the time required for

one service execution. This time includes the downloading

of input data, the solver latency, the uploading of output

data.

A key element of our analysis is the cost incurred by each

organization participating in the workflow. We assume the

service cost is proportional to the service lifespan, whereas

the solver cost is proportional to the solver latency — recall

that a solver performs a license checkin as soon as it starts

and the corresponding license checkout when it is about

to finish. These definitions of the service cost and of the

solver cost are associated with one workflow instance. The

cost associated with the complete workflow is simply the

sum of the cost associated with all the instances.

6 EXPERIMENTS AND RESULTS

We conducted experiments on a simple workflow schema,

composed of four identical services serially connected as

shown in Figure 6. We assume that at each stage the size

of the output data is equal to the product of the size of
118
input data for the output/input ratio, each service behaves

as described in Section 3.1.

We performed a number of experiments around a work-

ing point described by the parameter values in Table 1. The

buffer cache size is expressed in number of disk sectors.

We modeled the disk access times as random variables with

uniform distribution. We modeled link delay and band-

width as random variables with gaussian distribution, with

standard deviation equal to 1/10 of the mean value.

Figure 6: Serial Workflow Schema

Table 1: Working Point

Parameter value

Buffer Cache Size 100000

Minimum Disk Read Time [s] 0.001

Maximum Disk Read Time [s] 0.002

Minimum Disk Write Time [s] 0.0002

Maximum Disk Write Time [s] 0.0004

Sector Size [B] 8192

Initial Data Size [B] 1000000

Batch Size 10

StartUp Time [s] 30

Elaboration Speed [B/s] 65536

Output/Input Ratio 1.1

Mean Link Delay [s] 0.001

Number of Batches 20

All the experiments have been conducted with both

storage architectures (centralized vs. distributed), with both

scheduler policies (block vs. steady) and with both data

delivery patterns (NoPipe vs. FullPipe). This analysis has

enabled us to gain insights into the relationships between the

numerous systems available. We remark, however, that the

modules used in contemporary design optimization systems

may restrict such choices. In particular, some optimization

algorithms are inherently steady while others are inherently

block based. Moreover, the majority of solvers do not

support the FullPipe data delivery pattern.

The following three subsections show the obtained re-

sults. The first is related to the NoPipe pattern, the second

is related to the FullPipe pattern and the third describes the

results in an aggregated way. Each plotted value on the

charts is the mean of 20 simulation runs.
1



Vercesi and Bartoli
6.1 Results for NoPipe

Figure 7 shows throughput as a function of link bandwidth

(note the logarithmic scale on the Y-axis). For small val-

ues, bandwidth is the system bottleneck then for larger

values system throughput becomes independent from the

bandwidth, the storage architecture and the scheduler pol-

icy. The steady policy achieves greater throughput than

the block policy, the distributed storage achieves greater

throughput than the centralized one.

It can be seen that when the link bandwidth is the system

bottleneck, a Steady scheduler achieves better throughput

than a Block scheduler. The improvement is about 200%

for bandwidth in the range 10000-100000 B/sec, which

may be representative of the bandwidth available in a WAN

environment. As expected, when the bandwidth is no longer

an issue, throughput is limited by other bottlenecks and

becomes independent of both the storage architecture and

scheduler policy.

Figure 7: NoPipe Throughput

Figure 8 describes the effect of the storage architecture.

It shows the ratio of throughput with distributed storage to

throughput with centralized storage. It can be seen that a

distributed storage is always beneficial for a block scheduler,

whereas for a steady scheduler the difference in the two cases

is less sensible. Obviously, when the link bandwidth is no

longer a bottleneck, whether the architecture is distributed

or centralized becomes irrelevant from the point of view of

throughput (ratio tends to 1).

Figure 9 shows the service lifespan measured on the

fourth stage of the workflow schema versus the link band-

width. It can be seen that the centralized storage guarantees a

lower lifespan (note that the Y-axis has a logarithmic scale).

The improvement over the distributed storage is about 100%

for bandwidth in the range 10000-100000 B/sec, which may

be representative of the bandwidth available in a WAN en-

vironment.
1182
Figure 8: NoPipe Throughput Ratio (Dis-

tributed/Centralized)

Figure 9: NoPipe Service Lifespan

Figure 10 shows the effect of the storage architecture,

in terms of ratio of service lifespan in the distributed case

vs. service lifespan in the centralized case. Once again,

distribution is more beneficial for a block scheduler espe-

cially when the available bandwidth is small. The solver

latency is not shown because with the NoPipe pattern it is

essentially independent of the link bandwidth.

6.2 Results for FullPipe

Figure 11 shows the throughput versus the link bandwidth,

almost all curves are superimposed (on a logarithmic scale)

within an envelope less than 10%. Figure 12 shows the

throughput speedup and it confirms that the maximum

throughput difference between centralized and distributed

storage is around 10%. Figure 13 shows the service lifes-



Vercesi and Bartoli
Figure 10: NoPipe Service Lifespan Ratio (Dis-

tributed/Centralized)

Figure 11: FullPipe Throughput

pan versus the link bandwidth. Figure 14 shows the latency

ratio of the service lifespan measured with the distributed

and the centralized storage. With the considered bandwidth

range and with the FullPipe pattern, throughput and service

lifespan are practically unaffected by the scheduler and the

storage architecture.

Figure 15 shows the solver latency versus the link

bandwidth. The solver latency with the block scheduler is

greater than the solver latency with the steady scheduler,

and the solver latency with the distributed storage is greater

than solver latency with the centralized storage. Note that

Figure 15 also includes the solver latency for the NoPipe

pattern (this value is constant for the entire bandwidth range).

Figure 16 shows the solver latency ratio of the solver latency

measured with the distributed and the centralized storage.

For low bandwidth values distributed storage with the steady
118
Figure 12: FullPipe Throughput Ratio (Dis-

tributed/Centralized)

Figure 13: FullPipe Service Lifespan

scheduler experiences a slowdown ranging from about 20%

to about 90%.

6.3 Aggregated Results

Figure 17 shows the ratio of throughput with the FullPipe

pattern to the NoPipe pattern. This figure says to us that,

as long as the bandwidth is a bottleneck, we could have

a significant throughput improvement when connecting the

services in a data pipeline. On the other hand Figure 18

shows that the data delivery pattern has not a great impact

on the service lifespan, the ratio of FullPipe to NoPipe

pattern is never greater than 1.5 and in certain conditions it

is lower than 1. Under such condition the FullPipe pattern

is preferable also from the point of view of the service cost.
3



Vercesi and Bartoli
Figure 14: FullPipe Service Lifespan Ratio (Dis-

tributed/Centralized)

Figure 15: FullPipe Solver Latency

7 DISCUSSION

A first significant finding is that when link bandwidth is

an issue storage architecture, scheduler policy, data de-

livery may all have a significant impact on performance.

Although this result is not completely unexpected, it was

not obvious whether the performance implications of the

various implementation options are indeed significant. In

particular, we found it difficult to predict the effect of the

interactions between them. According to our analysis, on

the other hand, it seems evident that when one moves to a

bandwidth-limited environment, the previously mentioned

options do have a strong impact on performance and thus

they have to be analyzed carefully.

Having said this, it would be useful to provide useful

rules for selecting the implementation options most suitable
1184
Figure 16: FullPipe Solver Latency Ratio (Dis-

tributed/Centralized)

Figure 17: Throughput Ratio (FullPipe/NoPipe)

for a given scenario. It is evident, though, that our results

cannot be used for predicting exactly the performance of

any possible scenario, because of the large numbers of

parameters involved and, perhaps most importantly, because

the behavior of the overall system may be largely dependent

on the specific workflow schema used.

Having warned that our results cannot be generalized

easily, the key advices that we can draw from our simulations

follow. Recall from the introduction that throughput is the

key performance index from the point of view of the user

of the design optimization system, whereas service cost and

solver cost are the indices most relevant for the organizations

that cooperate in the implementation of the system.

• When bandwidth
elaboration speed

> batch size , it basically

does not matter how the system is implemented:



Vercesi and Bartoli
Figure 18: Service Lifespan Ratio (FullPipe/NoPipe)

all the options that we have analyzed exhibit

more or less the same performance. When
bandwidth

elaboration speed
< batch size, on the other hand,

different options may lead to strong differences

in performance.

• To maximize system throughput one should use

a FullPipe data delivery pattern. From this point

of view, this strategy is always to be preferred

to NoPipe even when bandwidth is not an issue

(Figure 17). If FullPipe cannot be used (recall that

many existing solvers do not support this option),

then use of a steady scheduler is to be preferred

over use of a block scheduler (Figure 7). In this

case, whether storage is centralized or distributed

is not very significant although distributed storage

could provide some advantage.

• To minimize service cost one should use a cen-

tralized storage (Figure 9 and Figure 13). This

conclusion is particularly useful, because a cen-

tralized storage is far simpler to develop, deploy and

manage than a distributed one. A steady scheduler

is to be preferred over a continuous one (Figure 10

and Figure 14). The choice between NoPipe and

FullPipe is not univocally determined (Figure 18).

• To minimize solver cost one should use a NoPipe

data delivery pattern. We note, also in this case,

that NoPipe is much simpler to implement than

FullPipe and, in particular, directly supported by

most existing solvers. Alternatively we can obtain

some minor improvements using a steady scheduler

(Figure 15).

• The steady scheduler is almost always preferable

to the block scheduler. Many generation based

optimization schedulers have variations to run in

a steady–state way (Vavak and Fogarty 1996).
1185
ACKNOWLEDGMENTS

This work has been supported by ESTECO (<http://

www.esteco.com>). Carlo Poloni, Luka Onesti, Cyril

Fillon, and Eric Medvet provided useful comments at several

stages of this work.

REFERENCES

Aalst, W. 1998. The application of Petri nets to workflow

management. The Journal of Circuits, Systems and

Computers 8 (1): 21–66.

Alonso, G., F. Casati, H. Kuno, and V. Machiraju. 2004.

Web services: Concepts, architectures and applications.

Springer Verlag.

April, J., F. Glover, J. P. Kelly, and M. Laguna. 2003.

Simulation-based optimization: practical introduction

to simulation optimization. In Proceedings of the Winter

Simulation Conference, 71–78.

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol.

2005. Discrete–event system simulation. 4th ed. Upper

Sadder River, New Jersey: Prentice–Hall.

Bose, R., and J. Frew. 2005. Lineage retrieval for scientific

data processing: a survey. ACM Computing Surveys 37

(1): 1–28.

Botros, K., D. Sennhauser, K. Jungowski, G. Poissant,

H. Golshan, and J. Stoffregen. 2004. Effects of dy-

namic penalty parameters on the convergence of moga

in optimization of a large gas pipeline network. In 10th

AIAA/ISSMO Multidisciplinary Analysis and Optimiza-

tion Conference.

Boulougouris, E. K., A. D. Papanikolaou, and G. Zara-

phonitis. 2004. Optimization of arrangements of ro-ro

passenger ships with genetic algorithms. Ship Technol-

ogy Research 51 (3): 99–105.

Carson, Y., and A. Maria. 1997. Simulation optimization:

methods and applications. In Proceedings of the Winter

Simulation Conference, 118–126.

DESMO–J. 2000. The desmo–j homepage. <http://

www.desmoj.de>.

Fu, Y., B. Kachnowski, and E. Lee. 2004. Occupant model

correlation using a multiobjective evolution strategy.

In 10th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, Albany, New York, August

30-31.

Gaiddon, A., D. D. Knight, and C. Poloni. 2004. Multicriteria

design optimization of a supersonic inlet based upon

global missile performance. Journal of Propulsion and

Power 20 (3): 542–558.

Giassi, A., F. Bennis, and J. J. Maisonneuve. 2004. Multi-

disciplinary design optimisation and robust design ap-

proaches applied to concurrent design. Structural and

Multidisciplinary Optimization 28 (5): 356–371.



Vercesi and Bartoli
Gottschalk, K., S. Graham, H. Kreger, and J. Snell. 2002.

Introduction to web services architecture. IBM Systems

Journal 41 (2): 170–177.

Hepp, E., O. Lohne, and S. Sannes. 2003, November. Ex-

tended casting simulation for improved magnesium die

casting. In DGM 6th International Conference on Mag-

nesium Alloys and Their Applications, 669–674. Wolfs-

burg, Germany.

Johnston, W. E. 2004. Semantic services for grid-based,

large-scale science. IEEE Intelligent Systems 19 (1):

34–39.

Ludäscher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. A. Lee, J. Tao, and Y. Zhao. 2005. Sci-

entific workflow management and the kepler system.

Concurrency & Computation: Practice & Experience.

To appear.

Maisonneuve, J. J., S. Harries, J. Marzi, H. C. Raven, U. Vi-

viani, and H. Piippo. 2003. Towards optimal design of

ship hull shapes. In Proceedings of the 8th International

Marine Design Conference, 31–42.

Miettinen, K. M. 1998. Nonlinear multiobjective optimiza-

tion, Volume 12 of International Series in Operations

Research & Management Science. Springer Verlag.

Papazoglou, M. P., and D. Georgakopoulos. 2003. Service–

oriented computing: Introduction. Communications of

the ACM 46 (10): 24–28.

Quagliarella, D., J. Périaux, C. Poloni, and G. Winter.

(Eds.) 1997. Genetic algorithms and evolution strategies

in engineering and computer science. West Sussex,

England: John Wiley and Sons.

Stal, M. 2002. Web services: beyond component-based

computing. Communications of the ACM 45 (10): 71–

76.

Swisher, J., P. Hyden, S. Jacobson, and L. Scruben. 2000. A

survey of simulation optimization techniques and pro-

cedures. In Proceedings of the 2000 Winter Simulation

Conference.

Taga, I., A. Funakubo, and Y. Fukui. 2005. Design and

development of an artificial implantable lung using

multiobjective genetic algorithm: Evaluation of gas

exchange performance. ASAIO Journal 51 (1): 92–102.

Vavak, F., and T. Fogarty. 1996. Comparison of steady

state and generational genetic algorithms for use in

nonstationary environments. In Proceedings of the 1996

IEEE Conference on Evolutionary Computation: IEEE

Press.

Workflow Management Coalition 1999. Workflow manage-

ment coalition terminology & glossary. Workflow Man-

agement Coalition. Document No. WFMC-TC-1011.3.

AUTHOR BIOGRAPHIES

PAOLO VERCESI is a PhD student in Computer Science

at the University of Trieste, Italy. He is an Information
118
Technology consultant for ESTECO. He is a member of

the IEEE Computer Society. His research interests include

distributed computing and business process modeling. His

e-mail address is <pvercesi@univ.trieste.it>.

ALBERTO BARTOLI is an associate professor of Com-

puter Engineering at the University of Trieste, Italy. His

research interests are in the area of reliability in distributed

computing His Web address is <http://www.univ.

trieste.it/bartolia>.
6


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



