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ABSTRACT 

The Discrete Event Simulation (DES) process interaction 
world view describes models that focus on simulated enti-
ties that progress through a series of temporally related ac-
tivities.  DES formalisms and vendor approaches for repre-
senting DES models serve as a basis for developing an 
open neutral representation of models that can be encoded 
into ontologies.  This paper reviews world views, formal 
foundations, and ontologies as background. The process 
for creating ontologies for the process interaction DES 
domain is discussed. Next an approach to ontology based 
simulation model representation is presented and last con-
clusions and recommendations for future work are pro-
vided. 

1 INTRODUCTION 

Discrete event simulations (DES) are often characterized 
by their world views.  The process interaction world view 
describes models that focus on simulated entities that pro-
gress through a series of temporally related activities.   

Formalisms have been developed to describe discrete 
event simulations.  Dozens of popular commercial simula-
tion software packages support DES.  DES formalisms and 
vendor approaches for representing DES models serve as a 
basis for developing an open neutral representation of 
models.  Ontologies provide a mechanism for formalizing 
the representation. 

Ontology-based representations of simulation models 
support model interchange which leads to higher quality 
models that are developed more quickly and at lower cost 
due to reuse (Lacy and Gerber 2004).  An ontology-based 
representation also enables the use of tools that support the 
ontology language standard. 

In order to provide a basis for ontology development 
world views, formal foundations, and ontologies as back-
ground are reviewed in Section 2. Section 3 discusses cre-
ating ontologies for the process interaction DES domain. 
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An approach to ontology-based simulation model represen-
tation is presented in Section 4. Finally, Section 5 provides 
conclusions and recommendations for future work. 

2 BACKGROUND 

Discrete event simulations are categorized based on their 
world view.  Various efforts have described DES formal-
isms. Process interaction (PI) world view formalisms are 
important because they serve as a basis for developing a PI 
DES ontology. 

2.1 World Views 

DES world view development began with simulation pro-
gramming languages (SPL). According to Lackner (1962) 
SPLs allowed models to be defined using a set of catego-
ries that were identified with a particular view of reality. 
Lackner believed that modelers used these views when 
contemplating the system and that a theory of systems and 
models needed to be developed independently of SPLs. 
Kiviat’s (1969) paper on simulation and programming lan-
guages led to a DES taxonomy. Three DES world view 
definitions (i.e., event scheduling, activity scanning, and 
process interaction) emerged from the work of Lackner 
(1962) and Kiviat (1969). 

From a static point of view, a model consists of enti-
ties and their configurations (e.g., their location and inter-
nal state). However, for simulation, much of the work in-
volves modeling dynamics or behavior (i.e., the entities 
have behaviors). From an abstract modeling perspective 
there is a simple way to make a distinction between two of 
the most prominent world views. The essential question is 
where does “behavior” come from – is it within the entity 
itself or imposed upon it from outside?  One approach to 
induce behavior is to have the entities react to events. This 
is easy to code. One needs simply to write event routines to 
change the location or internal state of affected entities. Al-
though this is straightforward from a programming point of 
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view, one tends to lose continuity of entity behavior. 
Therefore, an alternative approach which requires more 
programming effort, but provides a higher level of abstrac-
tion for the modeler, is to make the behavior an intrinsic 
part of the entity. The former technique corresponds to the 
event scheduling world view, while the latter corresponds 
to the process interaction world view.   

The activity scanning world view (the third view) (To-
cher and Owen 1961) differs from process interaction and 
event scheduling in that it repeatedly scans at fixed time 
intervals to check conditions and determine whether an ac-
tivity is to begin. Since repeatedly scanning to check con-
ditions results in poor runtime performance, the activity 
scanning approach has been modified into the three-phase-
approach. This approach improves runtime performance by 
combining features of the event scheduling world view 
with the activity scanning world view (Banks et al. 2001).  

A simulation that follows the process interaction world 
view consists of processes which often can be represented 
as a single source multi-sink directed graph. Each node 
within the graph captures a stretch of execution. Control 
must flow into a node through some incoming edge. It will 
remain with this node until control flows out. Control may 
flow out in two ways: (1) A definite delay may be handled 
by scheduling its next reactivation on the future activation 
list (FAL) at a particular time in the future, or (2) An in-
definite delay may also be used, in which case the process 
becomes indefinitely suspended until something outside 
this process happens (e.g., a condition becomes true). 

2.2 DES Formalisms 

DES formalisms serve as candidate foundations for on-
tologies. They provide a precise, unambiguous definition, 
facilitate model transformations/morphisms, and establish 
a clear categorization.  

Research on formal models for process modeling pre-
sents multiple approaches for formalizing semantics for 
DES. One category of such formal modeling is referred to 
as process algebra, which is an algebra used for describing 
and reasoning about systems that are defined in terms of 
states and transitions. Another approach extends classical 
system theory to simulation modeling. This second ap-
proach led to the development of the Discrete Event Sys-
tems Specification (DEVS) formalism (Zeigler 1976), 
which provides a foundation for discrete event simulation 
and modeling including the process interaction world view. 
Cota and Sargent (1992) propose a modification to the 
process interaction world view, and, in doing so, they rely 
on the DEVS formalism as a language independent founda-
tion for presenting their work. We briefly review the work 
of Zeigler as well as the work of Cota and Sargent in the 
following subsections. 
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2.2.1 Zeigler 

In the 1970s, Zeigler carried out seminal work establishing 
theoretical foundations for simulation. His most well 
known contribution was DEVS, which provides a formal 
framework for discrete event systems using mathematical 
abstraction. It uses the components (X, S, Y, δint ,δext, λ, τ ) 
to specify a simulation model (Zeigler 1976). Briefly, X is 
the set of inputs, S is the set of states, Y is the set of out-
puts, δint ,δext are the transition functions, λ is the output 
function and τ is the time advance function (see the appen-
dix for formal definitions of these elements).  

Although less well known, in related work, he has de-
veloped a detailed formal framework for process interac-
tion simulations. While some of the elements of the proc-
ess interaction framework are analogous to the elements in 
DEVS, we believe it might be awkward to cast it entirely 
within the classical DEVS framework. The following is a 
reformulation, with a few simplifications, of Zeigler’s 
work on process interaction, which is presented in (Zeigler 
1976): 

 
• P∈α , which is a set of processes (or active 

components) that can take actions to change the 
state of the system. 

• R∈γ , which is a set of resources (or passive 
components) that are unable to directly take ac-
tions. 

• RPD ∪=∈β , which is a set of components. 

• +ℜ∈ 0αt , which is the set of nonnegative real 
numbers representing time. 

• αα Ll ∈ , which is a set labels indicating activation 
points in a process α.  

• ββ Vv ∈ , which is a set of descriptive variables 
for a component β. 

• ββββ Slvs ∈= ),( , which is a set of states for 
component β, if β is passive then lβ is null. 

• { }DIG jiji ∈= ββββ ,),(  is the influences 

graph for the model, where the nodes are the 
components of the system and edges (βi, βj) indi-
cate which components can influence other com-
ponents. Either βi or βj must be a process. The 
state of an influencing component (influencer) 
may be used in the computations of influenced 
component’s (influencee) condition and activation 
functions. An influencer’s functions may also 
change the state of influencees.   

• 
}),({)(,

}),({)(,

IGIEPfor

IGIRPfor

∈=∈

∈=∈

βαβαα

αββαα
  

The domains and ranges for process α’s condition 
and activation functions are characterized by the 
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set of influencers IR(α) and the set of influencees 
IE(α). Note influencers and influencees may be 
either processes (active components) or resources 
(passive components). 

• ββββ Ztsz ∈= ),( , which is a set of total states 
for component β, if β is passive then tβ will be 
null. 

• }1,0{:
)(

→×
∈ βαβα

α ZC
IR

l  

This is a condition that is evaluated based on the 
state values of the IR(α). There is a condition α

α
lC  

associated with each αα Ll ∈ . 

• βαββααβα
α ZZf

IEIEIR

l

)()()(
:

∈∪∈
×→×  

This is an activation function that may take ac-
tions to change the state values of the IE(α). 
There is an activation function associated with 
each αα Ll ∈ . It is necessary for the domain of the 
activation function to contain both IR(α) and 
IE(α) rather than just IR(α), since the function of-
ten needs access to the state values of IE(α) in or-
der to make the desired calculations. 

• ),( ααα
ααακ lll fC=  

This is a computation segment of a process α. The 
combination of all computation segments for a 
process is analogous to the notion of a transition 
function in classical DEVS (see appendix). Each 
label αα Ll ∈  points to the first statement of a com-
putation segment α

ακ l  in α. When process α is ac-
tivated at label lα, function α

α
lf  will execute to 

update the states of the IE(α) only if condition 
α

α
lC  evaluates to true. 

• +ℜ→× 0: βτ Z  
This is the time advance function that computes 
the next event time. 

• }){,( αααα
ακα Llz l ∈=  

That is, process α consists of its total state as well 
as all of its computation segments. 

• ),,( αααη tl=  
This is an activation notice of a process α. An ac-
tivation notice is used to represent a process, its 
reactivation point as indicated by a label, and its 
reactivation time. 

• { }η=FAL  
This is the future activations list. The FAL is or-
dered by reactivation time tα.. Note in Zeigler’s 
work (Zeigler 1976) he uses two lists, a FAL and a 
current activations list (CAL). 
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Given the definitions in this subsection, an algorithm 
for implementing process interaction simulation is outlined 
below. 

 
•  INITIALIZATION: The simulation clock t is set to 

the initial simulation time, the states of the com-
ponents D∈β are set to their initial values and a 
set of initial activations notices {η} are placed on 
the FAL. 

 
• PROCESSING: The FAL is processed sequentially 

by removing the first activation notice η = (α, lα, 
tα). Notice η is handled by setting the simulation 
clock t = tα, then going to the computation seg-
ment indicated by label lα in process α (note in 
practice this might involve coroutine or thread 
transfers of control). Next, condition α

α
lC attached 

to label lα is checked. If this condition function 
evaluates to true, activation function α

α
lf is applied. 

Among other things, α
α
lf may schedule notices 

such as (α, lα, tα = t + delay). Processing contin-
ues until the FAL becomes empty or the clock ex-
ceeds some upper bound. 

2.2.2 Cota-Sargent 

Zeigler’s work on the process interaction world view was 
later modified by Cota and Sargent (1992). In particular, 
they define a modified process world view which allows 
preemption of an activity in one process by another process 
while supporting encapsulation. Process α’s activity can be 
preempted by having another process β cancel (or remove) 
α’s activation notice on the FAL. This normally involves 
modifying α’s reactivation time and, in some cases, reacti-
vation point. Preemption implemented in this way violates 
the encapsulation of the preempted process. Cota and Sar-
gent suggest modifying the process world view to allow 

α
α
lf  to be applied when α

α
lC  is true even if the reactivation 

notice is not at the front of the FAL (tα > t meaning there is 
still time left in the state). This allows α

α
lC to specify the 

conditions for applying α
α
lf when the time left in state is 

greater than zero as well as when the time left in state is 
zero. The modification allows the information necessary 
for preempting an activity to exist within the process, thus 
supporting encapsulation. 

2.2.3 Terminology for the Process Interaction World 
View 

The development of a process-oriented model can follow 
either the active server approach, in which the focus is on 
0
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the behavior of the resources in the system, or a transac-
tion flow approach, in which the focus is on the behavior of 
simulation entities, referred to as transactions, as they 
travel through the system (Cota and Sargent 1992). Most of 
what is proposed in this paper assumes the transaction flow 
approach as described by Schriber and Brunner (1999). 
They describe the transaction flow approach by visualizing 
a system as consisting of discrete units of traffic, some-
times called transactions, that move from point to point in 
a system while competing with each other for scarce re-
sources. 

Vendor-developed simulation packages and tools pro-
vide implicit formalisms of PI DES through their imple-
mentation of data models for representing simulation mod-
els. These packages often provide a graphical user interface 
to support populating their internal data structures.  Many 
applications share common terminologies and representa-
tions of elements for PI DES (e.g., entity creation with 
random interarrival times). These practical descriptions of 
PI DES models have been proven through successive use 
and evolving versions of software. 

2.3 Simulation Ontologies 

Ontologies (Gruber 1993) are formal descriptions used to 
describe and categorize concepts and the relationships 
among concepts within a particular knowledge domain. 
They can be processed by machines or read by domain ex-
perts. Ontologies may be used to share a common under-
standing of the structure of information, enable reuse of 
domain knowledge, make domain assumptions explicit, 
separate domain knowledge from operational knowledge, 
and analyze domain knowledge (Noy and McGuinness 
2001). Such uses facilitate the need for ontologies within 
the domain of simulation and modeling. 

Taxonomies and ontologies allow words and concepts 
related to domain semantics to be grouped and related to 
one another in a logical way. While taxonomies for simula-
tion and modeling have existed on paper for some time on-
tologies for the field are a recent development. They can be 
used to provide links between the concepts used by various 
simulation and modeling researchers in a way that can be 
processed by machines as well as humans. When used in 
this way ontologies increase the potential for interoperabil-
ity, integration and reuse of simulation artifacts (Miller et 
al. 2004).   

Semantic Web (Berners-Lee et al. 2001) research and 
development has led to the creation of machine-
processable languages such as XML and RDF allowing 
meaningful descriptions of Web resources to be encoded 
into ontologies.  The Web Ontology Language – OWL has 
recently been developed as a standard for encoding ontolo-
gies (McGuinness and Harmelen 2004; Lacy 2005a).  

Ontologies have been proffered as a solution for mod-
eling and simulation challenges including domain descrip-
1171
tions and simulation development/composition (Lacy 
2001).  Ontologies have also been identified as a potential 
solution for data mapping across simulated representations 
(Blais and Lacy 2004).  The activities performed on enti-
ties in a PI DES are related to the dynamic behaviors per-
formed on simulated computer-generated forces (CGF) en-
tities. Although CGF entities are usually more complex 
than PI DES entities, they both undergo state changes that 
must be described in the simulation models. Ontologies 
have been developed for representing CGF behaviors to 
support simulation reuse (Lacy and Gerber 2004). 

In addition, there is ongoing work to integrate ontolo-
gies into modeling and simulation frameworks and to use 
them in the development formal methods for simulation 
and modeling. Knowledge Based System Inc’s Framework 
for Adaptive Modeling and Simulation (FAMOS) is using 
ontologies for the purpose of ontology driven simulation 
and the University of Georgia’s Discrete Event Model On-
tology (DeMO) exists as a test bed for exploring issues in 
ontology development and formal methods for simulation 
and modeling (Miller et al. 2004).  

Simulation models are typically developed using 
SPLs, while formalisms exist to provide a basis for the 
specification of the models. We take elements from DES 
formalisms and organize them into an ontology in order to 
provide a foundation for ontology-based model representa-
tions.  

3 PROCESS INTERACTION ONTOLOGIES 

Researchers have implemented a variety of approaches for 
developing PI DES ontologies. Much of the challenge of 
developing an ontology involves minimizing the compro-
mises in integrating knowledge from related sub-domains 
(i.e., keep complexity under control, but do not muddy or 
dilute the definitions of concepts for the sake of unity). The 
approach taken by DeMO is to provide a comprehensive 
ontology for discrete-event simulation with parts for each 
of the DES world views (Fishwick and Miller 2004). An 
alternative approach is taken by Lacy (2005b, 2005c) in 
which a complete ontology is built specifically for the 
process interaction world view. A third approach would be 
to develop an ontology for discrete-event simulation based 
on a unified framework such as DEVS. Time will tell the 
subset of the these three approaches that will be useful. 

3.1 PI DES Concepts 

The first step in developing a formal ontology is often to 
identify the primary concepts for the subject domain and 
their relationships.  Figure 1 identifies categories of com-
mon high-level concepts associated with process interac-
tion world view simulation models.   

It is prudent to examine the major formal frameworks 
that have been developed for the process interaction world 
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view. We have given an overview of two of the most de-
tailed formal frameworks in the background section (Sec-
tion 2). We now discuss the development of process ori-
ented simulation ontologies.  

Two research groups rely on Figure 1 as a common 
core for the development of two ontologies. The first is 
called Process Interaction Modeling Ontology for Discrete 
Event Simulations (PIMODES) and the second is called 
DeMO. The intention of PIMODES is to create a complete 
ontology focused on the process interaction world view, 
while the purpose of DeMO is to provide a comprehensive 
ontology for discrete event model interaction of which the 
process interaction world view is an important component. 

3.2 PIMODES 

PIMODES is being developed to support the interchange 
of simulation models.   

The PIMODES ontology includes sets of classes for 
basic concepts (e.g., entity type, entity attribute, variable, 
location), activities (e.g., creation, branching, processing, 
disposition), and control flow relationships of activities de-
scribed with flowcharts.  Ontological properties help define 
class attributes with OWL data type properties for simple 
values and OWL object properties to relate instances of 
classes. 

PIMODES provides a formal open neutral interchange 
format that is encoded using the Web Ontology Language 
– OWL.  OWL uses the Resources Description Framework 
(RDF) encoded using XML.  The ontology is heavily in-
fluenced by implicit formalisms from popular software 
packages and standard terminology from the Workflow 
Management Coalition. 

PIMODES serves as a Data Interchange Format (DIF) 
for DES models that are described using the process inter-
action world view.  Historically, simulation application 
vendors have used proprietary methods for representing 
their models.  However, they often provide programmatic 
access to their internal data structures or export the con-
tents of their data structures to accessible file formats.  Por-
tions of models developed in Arena, ProcessModel, Any-
Logic, and ProModel have been translated to and from 
PIMODES instance data files. 

3.3 PIModel of DeMO 

In the past, natural language has been used to provide se-
mantics for modeling and simulation, but these semantics 
are not machine processable or searchable. Multiple groups 
are working to overcome this limitation by creating on-
tologies for modeling and simulation. The Discrete Event 
Model Ontology (Miller et al. 2004; Miller and Baramidze 
2005), known as DeMO, uses the XML-based ontology 
language OWL to define a general ontology for state ori-
ented, activity oriented, event oriented, and process ori-
1172
ented models. DeMO defines several upper level formal-
isms that are used as root classes for all of its other 
modeling formalisms.  
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Figure 1: Model Representation Concepts in Process Inter-
action World View 

 
We have extended the process oriented portion of 

DeMO (PIModel) to better support ontology based repre-
sentations of simulation models. Figure 2 contains a 
graphical representation of the DeMO PIModel ontology. 
Models can be represented as instances of the DeMO PI-
Model using OWL or as instances of the Process Interac-
tion Modeling Language (XPIM) which will be introduced 
in Section 4. 

4 ONTOLOGY BASED MODEL 
REPRESENTATION 

Model specifications can be represented as instances of a 
DES ontology defined using OWL. Models can be repre-
sented as RDF/XML files that conform to the PIMODES 
ontology. Translation software has demonstrated that 
PIMODES model instance files can be converted to/from 
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popular simulation software packages. Models can also be 
described as instances of the DeMO PIModel.  

 

 
 

Figure 2: DeMO PIModel Ontology 

4.1 Simulation Markup Languages as XML Dialects 

Markup languages are languages that allow text along with 
information about the format, presentation, or meaning of 
the text to be placed in the same document. The most 
common example is HTML which allows a document to 
contain text and tags, used to describe information about 
the presentation of the text. While HTML is concerned 
with allowing specific types of applications, usually Web 
browsers, to display the information embedded in a docu-
ment, another  more general purpose markup language 
called XML can be used to describe text for almost any 
purpose. XML is most often used to describe other more 
specialized markup languages. This is accomplished by 
providing tools for defining document types or schemata. 
Once a schema has been defined XML documents con-
forming to the schema can be created. In order to conform 
to a schema an XML document must use the structure and 
vocabulary specified by the schema. 
We have defined a markup language to describe discrete 
event simulation models using the process interaction 
world view. The language, Extensible Process Interaction 
Markup (XPIM), allows instances of model specifications 
to be defined in XML. The markup language was defined 
using XML schema, as seen in Figure 3, and instances can 
be transformed into Java for processing by the JSIM simu-
lation engine (Nair, et al. 1996). 

4.2 Models as a Collection of OWL Instances 

When a model has been defined as DeMO PIModel in-
stances the concepts used to define the model are standard-
ized as specified by the ontology. Since a common set of 
terms, concepts and relationships are described in DeMO 
the model specification may be understood and processed 
by a variety of tools. Humans with access to DeMO have 
1173
the potential to read and understand the specification as 
does software written to make use of DeMO.  
 

 
 

Figure 3: XPIM Schema 
 
Describing models using DeMO has the advantage of 

a semantic grounding in a DES ontology. The components 
that make up a model are instances of particular DeMO 
PIModel classes and can be referred to, queried, stored, 
etc. based on their type.  

Once described as DeMO instances models can be 
transformed into a modeling markup language. DeMO 
based Petri Net models have been transformed to PNML 
(Billington, et al. 2003) and DeMO based PI models have 
been transformed into XPIM as described later in this pa-
per. The process for transforming DeMO PIModel in-
stances into XPIM model specifications has been auto-
mated using the Extensible Stylesheet Language 
Transformation (XSLT) (Clark 1999). The XSLT docu-
ment used for the transformation contains template rules 
for transforming DeMO PIModel instances into XPIM in-
stances. This process is described in Section 4.3. 

4.3 Transforming Ontological Instances into Markups 

Process Interaction models in XPIM are described as a col-
lection of processes, which are themselves described as a 
collection of activities. Each process within the model is a 
directed graph with nodes representing activities and arcs 
indicating the control flow between activities. The primary 
elements of the XPIM schema are matched with classes de-
fined in the DeMO PIModel. Figure 4 shows an example 
of two XPIM elements that match PIModel classes.  

As mentioned earlier, PI models can also be expressed 
as OWL instances of DeMO PIModel classes. Since XPIM 
has a semantic grounding in the DeMO PIModel,  PIModel  
instances can be transformed into XPIM instances using 
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XSLT. An XSLT stylesheet containing template rules for 
transforming instances of PIModel classes into XPIM ele-
ments is executed by an XSLT processor to create an 
XPIM instance document. Figure 5 shows an example of a 
DeMO PIModel instance for a loan application activity. 
The LoanApplicaton instance of the Activity class in the 
example has properties that describe the flow of control 
into and out of the activity and the resource which supports 
the activity. Each of the properties of the LoanApplication 
instance are also instances of DeMO PIModel classes, and 
the LoanApplication instance is part of a collection of Ac-
tivity class instances used to describe a Process class in-
stance. 

  

 
 

Figure 4: XPIM Elements Matched to PIModel Classes 
 

 

 
 

Figure 5: DeMO PIModel Instance 
 
The instances seen in Figure 5 can be transformed into 

XPIM elements as shown in Figure 6. The LoanApplica-
tion instance of Figure 5 maps to an XPIM activity ele-
ment, with the name of the instance mapping to the activ-
ityid attribute of the XPIM element. The instances that 
represent the activity’s inflow and outflow arcs map to 
XPIM arc elements, while the Resource instance, LoanOf-
ficer, maps to an XPIM resource attribute of the LoanAp-
plicaton element.  
117
 
 

Figure 6: XPIM Instance 
 

While DeMO PIModel instances can be translated into 
XPIM instances that are suitable for further translation into 
JSIM model specifications, (see Figure 7), our goal is to 
provide an ontology and a markup language that will pro-
vide general support for ontology driven simulation model 
development. Ontology driven development of JSIM 
model specifications is simply a first step in the process.  

Figure 7 illustrates the process that we are currently 
using for ontology driven development of DeMO PIModel  
based simulation models. Models can be created as DeMO 
PIModel instances, be transformed into XPIM and then to 
JSIM model specifications which can be executed via the 
JSIM simulation engine. The transformation of XPIM in-
stances into JSIM model specifications is accomplished us-
ing our XPIM to JSIM Translator.  
   

 
 
Figure 7: Ontology Driven Model Development Using the 
DeMO PIModel 

5 CONCLUSIONS AND FUTURE WORK 

This paper presents PI DES modeling ontologies devel-
oped by two different research groups. Both were devel-
4
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oped using OWL, but each group takes a different ap-
proach for the development of their ontology.  

PIMODES is intended to be a complete ontology fo-
cused specifically on the process interaction world view 
and is being developed to support the interchange of simu-
lation models. Models can be represented as PIMODES 
instances and PIMODES instances have been converted 
to/from popular simulation software packages. DeMO is 
intended to be a comprehensive DES ontology with parts 
for each of the DES world views. The process interaction 
portion of DeMO (PIModel) has been extended to better 
support ontology-based representations of simulation mod-
els. PI DES models can also be represented as DeMO PI-
Model instances and can be transformed into XPIM in-
stances using XSLT. XPIM instances can then be 
transformed into executable JSIM simulation specifica-
tions. 

Areas to consider for future work include the follow-
ing: (1) Research on ontology-based representations of 
simulation models could compare and contrast the various 
approaches for representing PI DES models with ontolo-
gies. (2) DeMO PIModel instances and JSIM simulation 
specifications can both be created and edited using graphi-
cal design tools but no design tool exists for creating and 
editing XPIM instances. A graphical design tool suitable 
for editing XPIM should be developed so that model speci-
fications can be created or refined in each of the languages 
supported by the DeMO PIModel. (3) The XPIM to JSIM 
Translator needs to be enhanced to support the translation 
of XPIM instances into languages used by other simulation 
software packages.  

 

APPENDIX 

Classical DEVS: DEVS provides a formal framework for 
discrete event systems using mathematical abstraction. It 
uses the components (X, S, Y, δint , δext, λ,  τ) to specify a 
model. The easiest way to understand DEVS is to focus on 
the transition functions, both internal (δint) and external 
(δext). Let x at time tx be the first input once the system is in 
state s since time ts, then the next state s’ is given by 
whichever of the transition occurs first.  
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The specification includes the definition of three sets 

and four functions: 
  
• X is a set of inputs. 
• S is a set of states. 
• Y  is a set of outputs. 
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• +ℜ→ 0: Sτ is a time advance function which 
computes the time that the model stays in state s 
given no external transitions (events) occur in the 
time interval [ts, ts + τ(s)].  

• SS →:intδ is an internal transition function 
which determines the next state s’ = δint(s), pro-
vided no external events occur in the time interval 
[ts, ts + τ(s)]. 

• SXSext →×ℜ× +
0:δ  is an external transition 

function which determines the next state s’ =  
δext(s, tx – ts, x) as a response to an external event, 
provided this event occurs before an internal tran-
sition changes the state.  

• YS →:λ is an output function which determines 
the output,  y = λ(s). The output is generated just 
before the internal transition changes the state (ex-
ternal transition functions can only produce output 
indirectly by triggering internal transitions). 

 

REFERENCES 

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 
2001. Discrete Event System Simulation. 3rd ed. Upper 
Saddle River, New Jersey: Prentice Hall. 

Berners-Lee, T., J. Hendler, O. Lassila. 2001. The Seman-
tic Web. Scientific American May 2001: 28-37. 

Billington, J., S. Christensen, K. van Hee, E. Kindler, L. 
Petrucci, O. Kummer, C. Stehno, and M. Weber. 2003. 
The Petri Net Markup Language: Concepts, Technol-
ogy, and Tools. In Proceedings of the International 
Conference on Applications and Theory of Petri Nets, 
483-505. Eindhoven, Netherlands.  

Blais, C. and L. W. Lacy. 2004. Semantic Web: Implica-
tions for Modeling and Simulation System Interopera-
bility. In Proceedings of the Fall 2004 Simulation In-
teroperability Workshop. Orlando, Florida. 

Clark, J. 1999. XSL Transformations (XSLT) Version 1.0. 
Available at <http://www.w3.org/TR/xslt/> 
[Accessed June 8, 2006]. 

Cota, B. A. and G. S. Sargent. 1992. A Modification of the 
Process Interaction World View. ACM Transactions 
on Modeling and Computer Simulation. (2):2, 109-
129. 

Fishwick, P. A. and J. A. Miller. 2004. Ontologies for 
Modeling and Simulation: Issues and Approaches. In 
Proceedings of the 2005 Winter Simulation Confer-
ence. Piscataway, New Jersey: Institute of Electrical 
and Electronics Engineers. 

Gruber, G.R. 1995. Toward Principles for the Design of 
Ontologies Used in Knowledge Sharing. International 
Journal of Human Computer Studies. Vol. 45: 907-
928. 
5

http://www.w3.org/TR/xslt/


Silver, Lacy, and Miller 

 
Kiviat, P. J. 1969. Digital computer simulation: Computer 

programming languages. RAND Memo. RM-5883-
PR, RAND Corporation, Santa Monica, California. 

Lackner, M. R. 1962. Toward a General Simulation Capa-
bility. In Proceedings of the AFIPS Spring Joint Com-
puter Conference, 1-14. San Francisco, California. 

Lacy, L. W. 2001. Representing Computer Generated 
Forces Behaviors Using eXtensible Markup Language 
(XML) Techniques. In Proceedings of the 10th Con-
ference on Computer Generated Forces. Norfolk, Vir-
ginia. 

Lacy, L. W. 2005a. OWL:  Representing Information Us-
ing the Web Ontology Language. Victoria, British Co-
lumbia: Trafford Publishing. 

Lacy, L. W. 2005b. PIMODES. 2005 Winter Simulation 
Conference (Doctoral Symposium). Piscataway, New 
Jersey: Institute of Electrical and Electronics Engi-
neers. 

Lacy, L. W. 2005c. PIMODES. Fourth International Se-
mantic Web Conference Doctoral Symposium. Gal-
way, Ireland. 

Lacy, L. W. and W. J. Gerber. 2004. Potential Modeling 
and Simulation Applications of the Web Ontology 
Language – OWL. In Proceedings of the Winter Simu-
lation Conference. Piscataway, New Jersey: Institute 
of Electrical and Electronics Engineers. 

McGuinness, D. L. and F. Harmelen. 2004. OWL Web On-
tology Language Overview. Available at 
<http://www.w3.org/TR/owl-features/> 
[Accessed June 8, 2006]. 

Miller, J. A. and G. Baramidze. 2005. Simulation and the 
Semantic Web. In Proceedings of the 2005 Winter 
Simulation Conference. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.  

Miller, J. A., G. Baramidze, and P. A. Fishwick. 2004. In-
vestigating Ontologies for Simulation and Modeling. 
In Proceedings of the 37th  Annual Simulation Sympo-
sium,  55-71. Arlington, Virginia. 

Nair, R., J. A. Miller, and Z. Zhang.  1996. A Java-Based 
Query Driven Simulation Environment. In Proceed-
ings of the 1996 Winter Simulation Conference. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.  

Noy, N. F. and D. L. McGuinness. 2001. Technical Report 
KSL-01-05, Ontology Development 101: A Guide to 
Creating Your First Ontology, Stanford Knowledge 
Systems Laboratory, Stanford California. 

Schriber, T. J. and D. T. Brunner. 1999. Inside Simulation 
Software: How it works and why it matters. In Pro-
ceedings of the 1999 Winter Simulation Conference. 
Piscataway, New Jersey: Institute of Electrical and 
Electronics Engineers.  

Tocher, K. D. and D. G. Owen. 1961. The Automatic Pro-
gramming of Simulations. In Proceedings of The Sec-
117
ond International Conference on Operations Re-
search, 50-67.   

Zeigler, B. P. 1976. Theory of Modeling and Simulation. 
New York: John Wiley and Sons. 
 

AUTHOR BIOGRAPHIES 

GREGORY A. SILVER is a Ph.D. student in the Com-
puter Science Department at the University of Georgia. He 
is also a Computer Information Systems Instructor at 
Anderson University. Mr. Silver received his M.S. Degree 
in Computer Information Systems from Georgia State Uni-
versity in 1996. His research interests include modeling 
and simulation, Web services, and distributed systems. 
 
LEE LACY is a Ph.D. candidate at the University of Cen-
tral Florida.  He also heads the Modeling, Simulation, and 
Training Business Unit at Dynamics Research Corporation 
(DRC) and is on the Board of Directors for the National 
Center for Simulation (NCS). 
 
JOHN A. MILLER is a Professor of Computer Science at 
the University of Georgia and has also been the Graduate 
Coordinator for the department for 9 years. His research 
interests include database systems, simulation and work-
flow as well as parallel and distributed systems. Dr. Miller 
received a B.S. degree in Applied Mathematics from 
Northwestern University in 1980 and M.S. and Ph.D. de-
grees in Information and Computer Science from the Geor-
gia Institute of Technology in 1982 and 1986, respectively. 
During his undergraduate education, he worked as a pro-
grammer at the Princeton Plasma Physics Laboratory. Dr. 
Miller is the author of over 100 technical papers in the ar-
eas of database, simulation and workflow. He is an Associ-
ate Editor for the ACM Transactions on Modeling and 
Computer Simulation and IEEE Transactions on Systems, 
Man and Cybernetics.  
6

http://www.w3.org/TR/owl-features/

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



