
Proceedings of the 2006 Winter Simulation Conference 
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds. 
 
 
 
 
 

INTEROPERATING SIMULATIONS OF AUTOMATIC MATERIAL HANDLING SYSTEMS AND 
MANUFACTURING PROCESSES 

 
 

Boon Ping Gan 
Lai Peng Chan 

 
Planning and Operation Management Group 

Singapore Institute of Manufacturing Technology 
71 Nanyang Drive 

Singapore 638075, SINGAPORE 

 Stephen John Turner 
 

 
Parallel and Distributed Computing Centre 

Nanyang Technological University 
Block N4, Nanyang Avenue 

Singapore 639798, SINGAPORE 
   
   

 

ABSTRACT 

To perform a high fidelity simulation study on a 300 mm 
wafer fabrication plant, modeling of the manufacturing 
process (MP) alone is not sufficient. Inclusion of the auto-
mated material handling system (AMHS) model is neces-
sary due to the high degree of factory automation. There 
isn’t, however, a single tool that is capable of modeling 
both the AMHS and MP with sufficient accuracy and 
granularity. A commercial simulation package such as 
AutoMod is usually used to model the AMHS while Auto-
Sched AP is usually used to model the MP. These packages 
can be integrated using the supplied interoperation module 
but flexibility in optimizing the execution performance for 
different simulation models is lacking. In this paper, we 
present an approach to interoperation based on the High 
Level Architecture standard. We note that the typical char-
acteristics of disparity in the models’ time granularity and 
frequent model interactions are the obstacle to good execu-
tion performance. 

1 INTRODUCTION 

Various commercial off-the-shelf simulation packages, 
such as AutoSched AP (Brooks 2001a), AutoMod (Rohrer 
2000), FlexSim (FlexSim 2006), and WITNESS (Lanner 
2006) are available for the modeling of semiconductor 
manufacturing. These are generally preferred to mathe-
matical models which do not give sufficient accuracy due 
to the complexity of the semiconductor manufacturing 
process. Semiconductor manufacturing involves wafers go-
ing through a series of layering, patterning, doping, and 
heat treatment steps, repeating these steps through stages 
of the manufacturing process. Re-entrant flows, time con-
straints, varying product mixes, running prototypes and ad-
hoc resource breakdowns result in a high degree of vari-
ability. Discrete-event simulation is usually the best candi-
date to portray this dynamic and high variability behavior. 
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The simulation model generates an artificial history of the 
operations, and is used to study the impact of different 
policies or capacity changes to the overall performance. 

In the past two years, major semiconductor manufac-
turers such as TSMC, UMC, and Chartered Semiconductor 
have built 300 mm fabs. TSMC has recently announced 
that the company will build two more 300 mm fasb with an 
investment of close to US$6.2 billion dollars. One critical 
factor that dictates the operational efficiency of a 300 mm 
fab is the effectiveness of its fab automation. Properly de-
signed and well implemented automation solutions can 
help to improve the fab cycle time and productivity. The 
automation solutions include the automated material han-
dling system (AMHS) for moving and storing production 
lots (interbay and intrabay), real-time advanced equip-
ment/process control, and integrated yield management 
system. The investment on these integrated solutions can 
be in the range of  US$130 million to US$180 million dol-
lars. 

Due to the criticality of the automation solutions and 
their tight coupling to the efficiency of the manufacturing 
process, a high fidelity simulation study of a 300 mm fab 
must include the modeling of both the automation solutions 
(we are referring to the AMHS) and the manufacturing 
process. There isn’t, however, a single commercial simula-
tion package that is capable of modeling both aspects of 
the fab with sufficient accuracy and granularity. Our years 
of experience in simulation have helped us to identify the 
two most appropriate commercial simulation packages for 
this purpose, namely AutoMod to model the automation so-
lutions and AutoSched AP to model the manufacturing 
process. These simulation packages are supplied by Brooks 
Automation, and are interoperable through the use of the 
supplied model communication module. However, the in-
efficiency of the communication module results in a se-
quential execution of the two simulation models. This inef-
ficiency can potentially be resolved through the adoption 
of the High Level Architecture (HLA) standard. 
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The HLA is an IEEE standard that facilitates interop-
erability and reusability of simulation components. Com-
mercial simulation packages can be made interoperable at 
the infrastructure (or execution) level through the adoption 
of this standard. But it is important for us to realize that in-
teroperation at the infrastructure level alone does not guar-
antee a valid integrated model. Semantic interoperation of 
the simulation components is still crucial. In this paper, we 
will put our focus on resolving the issues of interoperation 
between AutoMod and AutoSched AP. We have ensured 
that the automation and manufacturing process models are 
semantically interoperable. 

One critical hurdle in integrating the automation and 
manufacturing process models is the disparity in their time 
granularity: seconds for the automation model and minutes 
for the manufacturing process model. This disparity results 
in close to sequential execution of the two models. Wang, 
Xu, and McGinnis (2005) proposed a time compensation 
scheme to improve the execution parallelism. But the pro-
posed scheme does not take lots dispatching and random 
events such as tool down into consideration. Such assump-
tions restrict the application of the scheme for general 
simulation models. 

Another critical hurdle are the frequent interactions 
between the manufacturing process and the automation 
models. The AMHS is required for every production lot 
movement from one machine to the next. The frequency of 
interactions could potentially degrade the performance of 
simulation execution. In this paper, we do not attempt to 
address these two hurdles. We focus, instead, on the extent 
to which the two hurdles affect the performance of simula-
tion execution. 

This paper is organized as follows: In Section 2, we 
discuss how AutoMod satisfies the HLA-based interopera-
tion requirements and the corresponding mechanism by 
which interoperation was realized. This is then followed by 
a discussion on the interoperation between AutoSched AP 
and AutoMod in Section 3. A general automation and 
manufacturing process model is then described in Section 
4. Using this model, we studied the contributing factors to 
the execution inefficiency of the interoperation mechanism 
in Section 5. Lastly, we conclude our study with an outline 
of future work in Section 6. 

2 INTEROPERATING AUTOMOD USING HLA 

2.1 The Interoperation Framework 

The Commercial off-the-shelf Simulation Package Interop-
erability Product Development Group (CSPI-PDG 2006) 
endorsed by the Simulation Interoperability Standards Or-
ganization (SISO) has devised a framework for the inter-
operation of commercial off-the-shelf simulation packages 
(CSP). The primary objective of the CSPI-PDG is to create 
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a set of standard reference models, data exchange stan-
dards and generic interfaces (Taylor, Turner, and Low 
2005) that supplement the HLA standard. The framework 
simplifies the interoperation efforts through a middleware 
approach as shown in Figure 1. The middleware (including 
the DSManager) facilitates the interaction between the 
CSP and the Runtime Infrastructure (RTI) of the HLA 
(Wang et al. 2004). It implements the interactions protocol 
for the reference models, transparent time synchronization 
mechanisms and simulation entities management. This 
middleware is general for all types of CSPs that satisfy the 
five following requirements for interoperation devised by 
Gan et al. (2005a): 

 
• (R1) Ability to initialize the distributed simulation 

prior to simulation execution. 
• (R2) Ability to suspend the simulation execution  
• (R3) Access to the time of the next event to be 

simulated. 
• (R4) Ability to introduce new events/entities from 

the external source into the event list. 
• (R5) Access to information of simulation ob-

jects/entities that are shared among federates. 
 

Using this interoperation framework, the efforts for inter-
operating CSPs were reduced significantly. 

 

 
Figure 1: The Interoperation Framework 

 

2.2 Adapting AutoMod Using the Interoperation 
Framework 

To adapt AutoMod for interoperation using the defined 
framework, we studied if it satisfies the five requirements. 
We found that AutoMod exposes its simulation execution 
through the AutoMod runtime object. The runtime object 
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triggers system or user-defined events based on the occur-
rence of defined conditions in the simulation. A corre-
sponding function implemented in Visual Basic is then 
executed to handle the event. In addition, the runtime ob-
ject allows the state of the simulation to be accessed from 
an external interface. This two-way communication 
mechanism, as illustrated in Figure 2, facilitates the inte-
gration of the interoperation framework, and the fulfillment 
of the five interoperation requirements. Figure 3 shows the 
system architecture of the interoperating AutoMod. 

 

 
Figure 2: Interaction between Custom Interface and Auto-
Mod Runtime Object 

 

 
 

Figure 3: System Architecture of the Interoperating Auto-
Mod 

AutoMod Simulation 
 

Function: 
 FireUserEvent 

 
AutoMod Runtime 

Object 

Methods Properties Events 

Custom Interface 
(VBA) 

 
Procedures and 
functions are de-
fined in the custom 
interface to: 
 Call methods 
 Read and set 

properties 
 React to events 

Custom Interface 
(VBA) 

AutoMod 

AutoMod Runtime 
Object 

Middleware 
RTI+ 

DSManager Interface 

Runtime Infrastructure 
(RTI) 
 
 

1131
(R1) Ability to initialize the distributed simulation 
prior to simulation execution 
 
The OnModelReady event of the AutoMod runtime object 
is triggered after all the initialization of the model is com-
pleted and before simulation begins. A function is associ-
ated with this event to initialize the distributed simulation 
prior to simulation execution. 

 
(R2) Ability to suspend the simulation execution 

 
When a user event is triggered by calling the FireUserE-
vent method, the execution control is handed over to the 
custom interface. This suspends the execution of the simu-
lation and allows the middleware to take appropriate ac-
tions for distributed simulation execution. Termination of 
the simulation is associated with the OnStateChange event. 

 
(R3) Access to the time of the next event to be simulated 

 
The model nextclock function is called after all the events 
at the current simulation time are processed and before the 
simulation clock advances to the next future event. A time 
synchronization user event is triggered in this function us-
ing the FireUserEvent method. The minimum of the earli-
est future event time (fetched using the FEvFirstTime func-
tion) in the AutoMod’s event list is used as the request time 
to the interoperation framework. 
 
(R4) Ability to introduce new events/entities from the 
external source into the event list 

 
The CallFunction method allows the custom interface to 
call user-defined functions in the model during simulation. 
This mechanism is used to introduce new events/entities 
from an external source to the simulation. Note that the 
new event/entity could possibly have a timestamp larger 
than the current simulation clock. A wait for primitive is 
thus issued, with the difference of the event’s timestamp 
and the current simulation clock as the parameter, before 
the event/entity is handled. This ensures that the 
event/entity is handled at the correct simulation time. 

 
(R5) Access to information of simulation objects/entities 
that are shared among federates 

 
The information of simulation objects/entities are defined 
as attributes, which are accessible to the model. To share 
the information, the values of attributes are packed into a 
string and passed as a parameter to the FireUserEvent 
method. The corresponding event handler is then used to 
send out the information through calls to the interoperation 
middleware. 
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2.3 Adapting AutoSched AP Using the Interoperation 

Framework 

The AutoSched AP satisfies the five interoperation re-
quirements as discussed in (Gan et al. 2005a). It was 
adapted for interoperation using the defined interoperation 
framework. This earlier effort enables wafer lots to be re-
routed from one model to another through the action list 
associated with each processing step. The action list is used 
to define a series of methods to be executed when a new 
wafer lot arrives at a processing step. Instead of using the 
default action list, we replaced it with one that invokes the 
DSManager at the processing step that reroutes wafer lot to 
an external model. This new action list first sends the wa-
fer lot out with the receiving time as its timestamp and then 
deletes the lot from the sending factory. Simulation execu-
tion is suspended after processing of safe events (events 
that would not result in causality violation). A new time 
request is issued via the DSManager for the next safe time 
before the control is handed back to the simulation engine.  

3 INTEROPERATING AUTOSCHED AP AND 
AUTOMOD 

3.1 Vendor Supplied Interoperation Module 

Brooks Automation, the vendor for AutoSched AP and 
AutoMod, supplies a model communication module 
(MCM) and an AMAP custom extension that facilitate the 
interoperation of the simulation packages (Brooks 2001a). 
The MCM, which is model independent, manages time 
synchronization and enables message exchange using a 
network socket between any two models. It supports two 
time synchronization modes, namely exact synchronization 
and periodical synchronization. When exact synchroniza-
tion is used, only one model is active at a time. The active 
model advances its time to its next future event and com-
pletes all the events at the current simulation time. Once 
this is done, the timestamp of its next future event is com-
pared to the timestamp of the inactive model’s next future 
event. The model with a smaller timestamp for the next fu-
ture event is made the active model while the other is made 
inactive. For periodical synchronization, the models com-
plete all events within the same synchronization period in 
parallel. The next synchronization period is initiated only 
after all models complete the current period. The period 
chosen has impact on the model’s accuracy. The larger the 
period, the less accurate the model becomes. As such, effi-
ciency is traded off against accuracy when the periodical 
synchronization approach is used. 

The AMAP uses the MCM module to model the 
movement of wafer lots from one tool to another. It ex-
tends the storage feature of the AutoSched AP such that the 
storage system, storage, and system travel capacity are 
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mapped to path mover system, control point, and number 
of vehicles in AutoMod (Brooks 2001a). A request message 
is sent to the AutoMod model for every lot movement from 
one storage to another. The AutoMod replies when the lot 
is picked up or when the lot is delivered. The movement is 
simulated by considering the distance and the paths to take 
between two points, traffic congestion, and complex vehi-
cle behavior such as vehicle speed. 

One drawback of using the AMAP is the inefficiency 
in message exchange. The request message from Auto-
Sched AP to AutoMod and the pickup and delivery mes-
sages from AutoMod to AutoSched AP are sent at the in-
stant of time that they occur. This results in two tightly 
coupled simulation models whose potential parallelism is 
not fully exploited. This is probably not a critical issue 
when the MCM module has the limitation of executing 
both models on one computer. To our knowledge, the only 
possible means of executing the two models on different 
computers is to use the MCM plus (Brooks 2003) which 
does not come as a standard package. 

3.2 Interoperation Using the HLA 

The approach described earlier for adapting AutoSched AP 
for interoperation can be used for the interoperation of 
AutoSched AP and AutoMod. But a simpler way is to mod-
ify the AMAP custom extension of the AutoSched AP such 
that the modeler is not aware of whether the MCM or our 
interoperation framework is used. This was done by replac-
ing all the lot sending and receiving methods in the AMAP 
custom extension with the corresponding methods pro-
vided by the DSManager. Though there was no one-to-one 
mapping of methods, the process of replacing was straight-
forward. Using this approach, any models that use AMAP 
can directly be replaced with the modified AMAP for inter-
operation. This provides the benefit of transparency as  the 
modeler does not need to make any changes to existing 
models that are using the AMAP custom extension. The 
only difference is that instead of invoking the AutoMod 
model automatically when AutoSched AP starts, AutoMod 
has to be invoked manually. But the added advantage of 
the modified AMAP is the possibility of executing models 
on different computers. 

3.3 Time Synchronization Issues 

In our previous work on interoperating AutoSched AP 
models, an optimized time synchronization algorithm using 
the manufacturing process flow was devised to reduce the 
number of interactions between the simulation execution 
and the middleware (Gan et al. 2005a and Gan et al. 
2005b). This had the effect of improving the simulation 
execution time by a factor of ten compared with a conven-
tional time synchronization algorithm. 
2
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This optimized time synchronization algorithm is not 
able to resolve the problem of execution inefficiency due 
to the disparity in time granularity between the AutoSched 
AP and AutoMod models. The benefits of the optimized 
time synchronization algorithm can only be fully exploited 
when a small number of processing steps trigger external 
events. But the manufacturing process and the automation 
models do not posses such characteristics. In fact all proc-
essing steps in the manufacturing process trigger an exter-
nal event as movement of production lots from one step to 
another is handled by the automation system. As this paper 
is focusing on identifying the different means available to 
interoperate AutoSched AP and AutoMod models, the time 
synchronization issue will not be addressed here. 

4 SIMULATION MODEL 

To evaluate the performance of interoperation between a 
manufacturing model in AutoSched AP and an automation 
model in AutoMod, we used a simplified model provided 
by the vendor. In this model, the AutoSched AP drives the 
AutoMod simulation where lots are generated only at the 
AutoSched AP model. Two different product types are re-
leased into the AutoSched AP model with a constant inter-
val. There are a total of 72 processing steps for each prod-
uct type with 6 different station families. Messages are sent 
to AutoMod to move lots from one location to another. The 
AutoSched AP model determines all the destinations for 
moving a lot in the simulation, including the lot’s final des-
tination and each of its intermediate steps. The AutoMod 
model holds the responsibility of determining the path on 
which a lot travels and which vehicle it takes to reach its 
next stop. The retrieval time, travel delays and delivery 
time are determined based on conditions in the AutoMod 
model, such as vehicle congestion, vehicle velocities and 
distances in the system. 

When a move request message is sent by AutoSched 
AP, AutoMod creates a new lot at the starting location and 
determines how long it will take to retrieve the lot and 
move it to the destination location. On successfully retriev-
ing a lot, AutoMod responds to AutoSched AP that the lot 
has been picked up. In the meantime, the lot is delayed in 
the AutoSched AP model until it has successfully been de-
livered to its destination. On reaching its intended destina-
tion location, the lot is destroyed in the AutoMod model. 
AutoMod then responds to AutoSched AP by sending a 
message to indicate that the lot has been delivered so that 
lot processing at the AutoSched AP model can resume. The 
storages in AutoSched AP are modeled in AutoMod as 
shown in Table 1. 

Figure 5 illustrates the layout of the automated mate-
rial handling system. Lots from one system can travel to 
another through bridges. An AutoMod vehicle drops the lot 
at a bridge control point in the first system and another ve-
hicle picks it up at the same bridge control point in the next 
113
system. Each control point located in the path mover sys-
tem corresponds to its storage in the AutoSched AP. Next 
to each control point is a label with three numbers that rep-
resent the following: 

 
 1st digit: The total number of lots claiming the 

control point (including lots that have claimed but 
are not yet at the storage). 

 2nd digit: The total number of lots occupying the 
control point and waiting to leave. 

 3rd digit: The total number of lots currently claim-
ing and occupying the control point and not yet 
waiting to leave. A more detailed description on 
this model can be found in Brooks (2001b). 

 
Table 1: Mapping of AutoSched AP to AutoMod Models 

AutoSched AP AutoMod 
Storage system Path mover system with the 

same name as storage system 
Storage Control point with same name 

as storage 
System travel capacity Number of vehicles in system 

 

 
 
 
 
 
 

Figure 5: Layout of Automated Material Handling System 

5 EXPERIMENTAL RESULTS 

Two factors that could possibly restrict the execution effi-
ciency of interoperating AutoSched AP and AutoMod mod-
els are: (1) disparity in time granularity, and (2) frequent 
(zero time increment) interactions between the two models. 
The first factor can be observed by measuring the number 
of time requests issued by each simulation package. A sig-
nificant deviation in this performance measure implies a 

Storage/path mover system 

x       Storage/control point 

Bridge
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significant disparity in time granularity. The average time 
step size, computed by taking the simulation run length di-
vided by the number of time requests, can also be used as 
an indicator. The intensity of interactions between the two 
models can be observed by measuring the ratio of external 
events to internal events, termed as event ratio hereafter. 
The higher the event ratio, the higher the frequency of in-
teractions. This generally infers a tightly coupled model 
with less opportunity for further optimization. 

Using the simulation model described in Section 4, 
experiments were conducted to measure four performance 
metrics: number of time requests issued, average time step 
size, ratio of external to internal events, and execution 
time. Simulation was repeated for different work-in-
progress (WIP) levels (12, 18, and 24 lots) to evaluate the 
scalability of the interoperating AutoSched AP and Auto-
Mod models. The scalability was studied as the perform-
ance of our interoperation approach is sensitive towards the 
WIP level. The higher the WIP, the higher the frequency of 
time requests. This usually has negative (but unavoidable) 
impact on the speed of simulation execution. 

Table 2 and 3 show the number of time requests issued 
and the average time step size for the AutoSched AP and 
AutoMod models. As we can see, AutoMod issues more 
than ten times the number of time requests as compared to 
AutoSched AP. A time request is issued for less than one 
second (simulation time) interval consistently. On the other 
hand, AutoSched AP issues time requests with a larger in-
terval, in the range of tens of seconds. This disparity in 
time granularity can significantly slowdown the simulation 
as no model parallelism can be exploited. 

 
Table 2: Number of Time Requests Issued 

No of Time Requests WIP Level 
(Lots) AutoSched AP AutoMod 

12 14249 150889 
18 20237 239443 
24 26444 348817 

 
Table 3: Average Time Step Size 

Average Time Step (seconds) WIP Level 
(Lots) AutoSched AP AutoMod 

12 12.1 1.1 
18 8.5 0.7 
24 6.5 0.5 

 
Table 4: Event Ratio for the Interoperating AutoSched AP 
(ASAP) and AutoMod (AM) Models 

No of 
External 
Events 

No of 
Internal Events 

Event  
Ratio WIP 

Level 
ASAP AM ASAP AM ASAP AM 

12 4943 9886 14250 150890 0.35 0.07 
18 7641 15282 20238 239444 0.38 0.06 
24 10463 20926 26445 348818 0.40 0.06 
1134
Table 4 shows that the external event to internal event 
ratio for the AutoSched AP and AutoMod models is ap-
proximately 0.4 and 0.06 respectively. This implies that 
there are enormous opportunities to exploit the model par-
allelism as time requests only need to be issued for those 
events that potentially could trigger external events. In the 
best case, the number of time requests should be equal to 
the number of external events sent by a model. Neverthe-
less, this best case is not attainable as it would require 
complete knowledge of the simulation execution. A more 
practical approach is to devise a scheme that predicts the 
time at which an external event will be sent. Some knowl-
edge of the model characteristics is essential to devise such 
a scheme. This same concept has been applied in our ear-
lier work to improve the execution efficiency of interoper-
ating AutoSched AP models (Gan et al. 2005b).  
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Figure 6: Execution Time for the Interoperating AutoSched 
AP and AutoMod Models 

 
The relationship between the execution time and the 

WIP level is linear as shown in Figure 6. This increase in 
execution time is generally due to the larger number of 
events being processed for higher WIP level (Table 4). Our 
future work aims to bring down the simulation execution 
time by exploiting the enormous opportunities that are pre-
senting in these models. 

6 CONCLUSIONS 

The interoperation of commercial off-the-shelf simulation 
packages remains a challenge even with the availability of 
standards such as the CSPI-PDG and the HLA. The simu-
lation execution time is one critical hurdle that cannot be 
addressed by any standard. Analysis has to be done to 
identify if opportunities exist for exploiting the underlying 
model parallelism. Often, this requires understanding of 
the model characteristics in order to devise an efficient 
mechanism. 

Nevertheless, we have shown this task of interoper-
ating commercial off-the-shelf simulation packages is not 
impossible. Our work in interoperating AutoMod and 
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AutoSched AP has made it possible to simulate 300 mm 
wafer fabrication plants with high fidelity. Adopting the 
standard defined by CSPI-PDG helped to reduce the efforts 
in the interoperation exercise. The issue of execution effi-
ciency remains to be addressed, however. This is not an 
unsolvable problem as our analysis has revealed that there 
are opportunities to improve the simulation execution time. 
We are currently working on a customized time synchroni-
zation algorithm which exploits the model characteristics. 
In addition, the issue of zero time increment interactions 
will also be addressed. 
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