
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

INTEROPERATING SIMULATIONS OF AUTOMATIC MATERIAL HANDLING SYSTEMS AND
MANUFACTURING PROCESSES

Boon Ping Gan
Lai Peng Chan

Planning and Operation Management Group

Singapore Institute of Manufacturing Technology
71 Nanyang Drive

Singapore 638075, SINGAPORE

 Stephen John Turner

Parallel and Distributed Computing Centre

Nanyang Technological University
Block N4, Nanyang Avenue

Singapore 639798, SINGAPORE

ABSTRACT

To perform a high fidelity simulation study on a 300 mm
wafer fabrication plant, modeling of the manufacturing
process (MP) alone is not sufficient. Inclusion of the auto-
mated material handling system (AMHS) model is neces-
sary due to the high degree of factory automation. There
isn’t, however, a single tool that is capable of modeling
both the AMHS and MP with sufficient accuracy and
granularity. A commercial simulation package such as
AutoMod is usually used to model the AMHS while Auto-
Sched AP is usually used to model the MP. These packages
can be integrated using the supplied interoperation module
but flexibility in optimizing the execution performance for
different simulation models is lacking. In this paper, we
present an approach to interoperation based on the High
Level Architecture standard. We note that the typical char-
acteristics of disparity in the models’ time granularity and
frequent model interactions are the obstacle to good execu-
tion performance.

1 INTRODUCTION

Various commercial off-the-shelf simulation packages,
such as AutoSched AP (Brooks 2001a), AutoMod (Rohrer
2000), FlexSim (FlexSim 2006), and WITNESS (Lanner
2006) are available for the modeling of semiconductor
manufacturing. These are generally preferred to mathe-
matical models which do not give sufficient accuracy due
to the complexity of the semiconductor manufacturing
process. Semiconductor manufacturing involves wafers go-
ing through a series of layering, patterning, doping, and
heat treatment steps, repeating these steps through stages
of the manufacturing process. Re-entrant flows, time con-
straints, varying product mixes, running prototypes and ad-
hoc resource breakdowns result in a high degree of vari-
ability. Discrete-event simulation is usually the best candi-
date to portray this dynamic and high variability behavior.

1121-4244-0501-7/06/$20.00 ©2006 IEEE
The simulation model generates an artificial history of the
operations, and is used to study the impact of different
policies or capacity changes to the overall performance.

In the past two years, major semiconductor manufac-
turers such as TSMC, UMC, and Chartered Semiconductor
have built 300 mm fabs. TSMC has recently announced
that the company will build two more 300 mm fasb with an
investment of close to US$6.2 billion dollars. One critical
factor that dictates the operational efficiency of a 300 mm
fab is the effectiveness of its fab automation. Properly de-
signed and well implemented automation solutions can
help to improve the fab cycle time and productivity. The
automation solutions include the automated material han-
dling system (AMHS) for moving and storing production
lots (interbay and intrabay), real-time advanced equip-
ment/process control, and integrated yield management
system. The investment on these integrated solutions can
be in the range of US$130 million to US$180 million dol-
lars.

Due to the criticality of the automation solutions and
their tight coupling to the efficiency of the manufacturing
process, a high fidelity simulation study of a 300 mm fab
must include the modeling of both the automation solutions
(we are referring to the AMHS) and the manufacturing
process. There isn’t, however, a single commercial simula-
tion package that is capable of modeling both aspects of
the fab with sufficient accuracy and granularity. Our years
of experience in simulation have helped us to identify the
two most appropriate commercial simulation packages for
this purpose, namely AutoMod to model the automation so-
lutions and AutoSched AP to model the manufacturing
process. These simulation packages are supplied by Brooks
Automation, and are interoperable through the use of the
supplied model communication module. However, the in-
efficiency of the communication module results in a se-
quential execution of the two simulation models. This inef-
ficiency can potentially be resolved through the adoption
of the High Level Architecture (HLA) standard.

9

Gan, Chan, and Turner

The HLA is an IEEE standard that facilitates interop-
erability and reusability of simulation components. Com-
mercial simulation packages can be made interoperable at
the infrastructure (or execution) level through the adoption
of this standard. But it is important for us to realize that in-
teroperation at the infrastructure level alone does not guar-
antee a valid integrated model. Semantic interoperation of
the simulation components is still crucial. In this paper, we
will put our focus on resolving the issues of interoperation
between AutoMod and AutoSched AP. We have ensured
that the automation and manufacturing process models are
semantically interoperable.

One critical hurdle in integrating the automation and
manufacturing process models is the disparity in their time
granularity: seconds for the automation model and minutes
for the manufacturing process model. This disparity results
in close to sequential execution of the two models. Wang,
Xu, and McGinnis (2005) proposed a time compensation
scheme to improve the execution parallelism. But the pro-
posed scheme does not take lots dispatching and random
events such as tool down into consideration. Such assump-
tions restrict the application of the scheme for general
simulation models.

Another critical hurdle are the frequent interactions
between the manufacturing process and the automation
models. The AMHS is required for every production lot
movement from one machine to the next. The frequency of
interactions could potentially degrade the performance of
simulation execution. In this paper, we do not attempt to
address these two hurdles. We focus, instead, on the extent
to which the two hurdles affect the performance of simula-
tion execution.

This paper is organized as follows: In Section 2, we
discuss how AutoMod satisfies the HLA-based interopera-
tion requirements and the corresponding mechanism by
which interoperation was realized. This is then followed by
a discussion on the interoperation between AutoSched AP
and AutoMod in Section 3. A general automation and
manufacturing process model is then described in Section
4. Using this model, we studied the contributing factors to
the execution inefficiency of the interoperation mechanism
in Section 5. Lastly, we conclude our study with an outline
of future work in Section 6.

2 INTEROPERATING AUTOMOD USING HLA

2.1 The Interoperation Framework

The Commercial off-the-shelf Simulation Package Interop-
erability Product Development Group (CSPI-PDG 2006)
endorsed by the Simulation Interoperability Standards Or-
ganization (SISO) has devised a framework for the inter-
operation of commercial off-the-shelf simulation packages
(CSP). The primary objective of the CSPI-PDG is to create
1130
a set of standard reference models, data exchange stan-
dards and generic interfaces (Taylor, Turner, and Low
2005) that supplement the HLA standard. The framework
simplifies the interoperation efforts through a middleware
approach as shown in Figure 1. The middleware (including
the DSManager) facilitates the interaction between the
CSP and the Runtime Infrastructure (RTI) of the HLA
(Wang et al. 2004). It implements the interactions protocol
for the reference models, transparent time synchronization
mechanisms and simulation entities management. This
middleware is general for all types of CSPs that satisfy the
five following requirements for interoperation devised by
Gan et al. (2005a):

• (R1) Ability to initialize the distributed simulation

prior to simulation execution.
• (R2) Ability to suspend the simulation execution
• (R3) Access to the time of the next event to be

simulated.
• (R4) Ability to introduce new events/entities from

the external source into the event list.
• (R5) Access to information of simulation ob-

jects/entities that are shared among federates.

Using this interoperation framework, the efforts for inter-
operating CSPs were reduced significantly.

Figure 1: The Interoperation Framework

2.2 Adapting AutoMod Using the Interoperation
Framework

To adapt AutoMod for interoperation using the defined
framework, we studied if it satisfies the five requirements.
We found that AutoMod exposes its simulation execution
through the AutoMod runtime object. The runtime object

Runtime Infrastructure (RTI)

Generic
Interface

Simulation
Model

RTIAmbassador+
Middleware

RTI+

DSManager (C)
FederateAmbassador

CSP

mapping file
/ GUI

FederateAmbassador+

FED

RTI Library (C++)
RTIAmbassador

Gan, Chan, and Turner

triggers system or user-defined events based on the occur-
rence of defined conditions in the simulation. A corre-
sponding function implemented in Visual Basic is then
executed to handle the event. In addition, the runtime ob-
ject allows the state of the simulation to be accessed from
an external interface. This two-way communication
mechanism, as illustrated in Figure 2, facilitates the inte-
gration of the interoperation framework, and the fulfillment
of the five interoperation requirements. Figure 3 shows the
system architecture of the interoperating AutoMod.

Figure 2: Interaction between Custom Interface and Auto-
Mod Runtime Object

Figure 3: System Architecture of the Interoperating Auto-
Mod

AutoMod Simulation

Function:
 FireUserEvent

AutoMod Runtime

Object

Methods Properties Events

Custom Interface
(VBA)

Procedures and
functions are de-
fined in the custom
interface to:
 Call methods
 Read and set

properties
 React to events

Custom Interface
(VBA)

AutoMod

AutoMod Runtime
Object

Middleware
RTI+

DSManager Interface

Runtime Infrastructure
(RTI)

1131
(R1) Ability to initialize the distributed simulation
prior to simulation execution

The OnModelReady event of the AutoMod runtime object
is triggered after all the initialization of the model is com-
pleted and before simulation begins. A function is associ-
ated with this event to initialize the distributed simulation
prior to simulation execution.

(R2) Ability to suspend the simulation execution

When a user event is triggered by calling the FireUserE-
vent method, the execution control is handed over to the
custom interface. This suspends the execution of the simu-
lation and allows the middleware to take appropriate ac-
tions for distributed simulation execution. Termination of
the simulation is associated with the OnStateChange event.

(R3) Access to the time of the next event to be simulated

The model nextclock function is called after all the events
at the current simulation time are processed and before the
simulation clock advances to the next future event. A time
synchronization user event is triggered in this function us-
ing the FireUserEvent method. The minimum of the earli-
est future event time (fetched using the FEvFirstTime func-
tion) in the AutoMod’s event list is used as the request time
to the interoperation framework.

(R4) Ability to introduce new events/entities from the
external source into the event list

The CallFunction method allows the custom interface to
call user-defined functions in the model during simulation.
This mechanism is used to introduce new events/entities
from an external source to the simulation. Note that the
new event/entity could possibly have a timestamp larger
than the current simulation clock. A wait for primitive is
thus issued, with the difference of the event’s timestamp
and the current simulation clock as the parameter, before
the event/entity is handled. This ensures that the
event/entity is handled at the correct simulation time.

(R5) Access to information of simulation objects/entities
that are shared among federates

The information of simulation objects/entities are defined
as attributes, which are accessible to the model. To share
the information, the values of attributes are packed into a
string and passed as a parameter to the FireUserEvent
method. The corresponding event handler is then used to
send out the information through calls to the interoperation
middleware.

Gan, Chan, and Turner

2.3 Adapting AutoSched AP Using the Interoperation

Framework

The AutoSched AP satisfies the five interoperation re-
quirements as discussed in (Gan et al. 2005a). It was
adapted for interoperation using the defined interoperation
framework. This earlier effort enables wafer lots to be re-
routed from one model to another through the action list
associated with each processing step. The action list is used
to define a series of methods to be executed when a new
wafer lot arrives at a processing step. Instead of using the
default action list, we replaced it with one that invokes the
DSManager at the processing step that reroutes wafer lot to
an external model. This new action list first sends the wa-
fer lot out with the receiving time as its timestamp and then
deletes the lot from the sending factory. Simulation execu-
tion is suspended after processing of safe events (events
that would not result in causality violation). A new time
request is issued via the DSManager for the next safe time
before the control is handed back to the simulation engine.

3 INTEROPERATING AUTOSCHED AP AND
AUTOMOD

3.1 Vendor Supplied Interoperation Module

Brooks Automation, the vendor for AutoSched AP and
AutoMod, supplies a model communication module
(MCM) and an AMAP custom extension that facilitate the
interoperation of the simulation packages (Brooks 2001a).
The MCM, which is model independent, manages time
synchronization and enables message exchange using a
network socket between any two models. It supports two
time synchronization modes, namely exact synchronization
and periodical synchronization. When exact synchroniza-
tion is used, only one model is active at a time. The active
model advances its time to its next future event and com-
pletes all the events at the current simulation time. Once
this is done, the timestamp of its next future event is com-
pared to the timestamp of the inactive model’s next future
event. The model with a smaller timestamp for the next fu-
ture event is made the active model while the other is made
inactive. For periodical synchronization, the models com-
plete all events within the same synchronization period in
parallel. The next synchronization period is initiated only
after all models complete the current period. The period
chosen has impact on the model’s accuracy. The larger the
period, the less accurate the model becomes. As such, effi-
ciency is traded off against accuracy when the periodical
synchronization approach is used.

The AMAP uses the MCM module to model the
movement of wafer lots from one tool to another. It ex-
tends the storage feature of the AutoSched AP such that the
storage system, storage, and system travel capacity are
113
mapped to path mover system, control point, and number
of vehicles in AutoMod (Brooks 2001a). A request message
is sent to the AutoMod model for every lot movement from
one storage to another. The AutoMod replies when the lot
is picked up or when the lot is delivered. The movement is
simulated by considering the distance and the paths to take
between two points, traffic congestion, and complex vehi-
cle behavior such as vehicle speed.

One drawback of using the AMAP is the inefficiency
in message exchange. The request message from Auto-
Sched AP to AutoMod and the pickup and delivery mes-
sages from AutoMod to AutoSched AP are sent at the in-
stant of time that they occur. This results in two tightly
coupled simulation models whose potential parallelism is
not fully exploited. This is probably not a critical issue
when the MCM module has the limitation of executing
both models on one computer. To our knowledge, the only
possible means of executing the two models on different
computers is to use the MCM plus (Brooks 2003) which
does not come as a standard package.

3.2 Interoperation Using the HLA

The approach described earlier for adapting AutoSched AP
for interoperation can be used for the interoperation of
AutoSched AP and AutoMod. But a simpler way is to mod-
ify the AMAP custom extension of the AutoSched AP such
that the modeler is not aware of whether the MCM or our
interoperation framework is used. This was done by replac-
ing all the lot sending and receiving methods in the AMAP
custom extension with the corresponding methods pro-
vided by the DSManager. Though there was no one-to-one
mapping of methods, the process of replacing was straight-
forward. Using this approach, any models that use AMAP
can directly be replaced with the modified AMAP for inter-
operation. This provides the benefit of transparency as the
modeler does not need to make any changes to existing
models that are using the AMAP custom extension. The
only difference is that instead of invoking the AutoMod
model automatically when AutoSched AP starts, AutoMod
has to be invoked manually. But the added advantage of
the modified AMAP is the possibility of executing models
on different computers.

3.3 Time Synchronization Issues

In our previous work on interoperating AutoSched AP
models, an optimized time synchronization algorithm using
the manufacturing process flow was devised to reduce the
number of interactions between the simulation execution
and the middleware (Gan et al. 2005a and Gan et al.
2005b). This had the effect of improving the simulation
execution time by a factor of ten compared with a conven-
tional time synchronization algorithm.
2

Gan, Chan, and Turner

This optimized time synchronization algorithm is not
able to resolve the problem of execution inefficiency due
to the disparity in time granularity between the AutoSched
AP and AutoMod models. The benefits of the optimized
time synchronization algorithm can only be fully exploited
when a small number of processing steps trigger external
events. But the manufacturing process and the automation
models do not posses such characteristics. In fact all proc-
essing steps in the manufacturing process trigger an exter-
nal event as movement of production lots from one step to
another is handled by the automation system. As this paper
is focusing on identifying the different means available to
interoperate AutoSched AP and AutoMod models, the time
synchronization issue will not be addressed here.

4 SIMULATION MODEL

To evaluate the performance of interoperation between a
manufacturing model in AutoSched AP and an automation
model in AutoMod, we used a simplified model provided
by the vendor. In this model, the AutoSched AP drives the
AutoMod simulation where lots are generated only at the
AutoSched AP model. Two different product types are re-
leased into the AutoSched AP model with a constant inter-
val. There are a total of 72 processing steps for each prod-
uct type with 6 different station families. Messages are sent
to AutoMod to move lots from one location to another. The
AutoSched AP model determines all the destinations for
moving a lot in the simulation, including the lot’s final des-
tination and each of its intermediate steps. The AutoMod
model holds the responsibility of determining the path on
which a lot travels and which vehicle it takes to reach its
next stop. The retrieval time, travel delays and delivery
time are determined based on conditions in the AutoMod
model, such as vehicle congestion, vehicle velocities and
distances in the system.

When a move request message is sent by AutoSched
AP, AutoMod creates a new lot at the starting location and
determines how long it will take to retrieve the lot and
move it to the destination location. On successfully retriev-
ing a lot, AutoMod responds to AutoSched AP that the lot
has been picked up. In the meantime, the lot is delayed in
the AutoSched AP model until it has successfully been de-
livered to its destination. On reaching its intended destina-
tion location, the lot is destroyed in the AutoMod model.
AutoMod then responds to AutoSched AP by sending a
message to indicate that the lot has been delivered so that
lot processing at the AutoSched AP model can resume. The
storages in AutoSched AP are modeled in AutoMod as
shown in Table 1.

Figure 5 illustrates the layout of the automated mate-
rial handling system. Lots from one system can travel to
another through bridges. An AutoMod vehicle drops the lot
at a bridge control point in the first system and another ve-
hicle picks it up at the same bridge control point in the next
113
system. Each control point located in the path mover sys-
tem corresponds to its storage in the AutoSched AP. Next
to each control point is a label with three numbers that rep-
resent the following:

 1st digit: The total number of lots claiming the

control point (including lots that have claimed but
are not yet at the storage).

 2nd digit: The total number of lots occupying the
control point and waiting to leave.

 3rd digit: The total number of lots currently claim-
ing and occupying the control point and not yet
waiting to leave. A more detailed description on
this model can be found in Brooks (2001b).

Table 1: Mapping of AutoSched AP to AutoMod Models

AutoSched AP AutoMod
Storage system Path mover system with the

same name as storage system
Storage Control point with same name

as storage
System travel capacity Number of vehicles in system

Figure 5: Layout of Automated Material Handling System

5 EXPERIMENTAL RESULTS

Two factors that could possibly restrict the execution effi-
ciency of interoperating AutoSched AP and AutoMod mod-
els are: (1) disparity in time granularity, and (2) frequent
(zero time increment) interactions between the two models.
The first factor can be observed by measuring the number
of time requests issued by each simulation package. A sig-
nificant deviation in this performance measure implies a

Storage/path mover system

x Storage/control point

Bridge
3

Gan, Chan, and Turner

significant disparity in time granularity. The average time
step size, computed by taking the simulation run length di-
vided by the number of time requests, can also be used as
an indicator. The intensity of interactions between the two
models can be observed by measuring the ratio of external
events to internal events, termed as event ratio hereafter.
The higher the event ratio, the higher the frequency of in-
teractions. This generally infers a tightly coupled model
with less opportunity for further optimization.

Using the simulation model described in Section 4,
experiments were conducted to measure four performance
metrics: number of time requests issued, average time step
size, ratio of external to internal events, and execution
time. Simulation was repeated for different work-in-
progress (WIP) levels (12, 18, and 24 lots) to evaluate the
scalability of the interoperating AutoSched AP and Auto-
Mod models. The scalability was studied as the perform-
ance of our interoperation approach is sensitive towards the
WIP level. The higher the WIP, the higher the frequency of
time requests. This usually has negative (but unavoidable)
impact on the speed of simulation execution.

Table 2 and 3 show the number of time requests issued
and the average time step size for the AutoSched AP and
AutoMod models. As we can see, AutoMod issues more
than ten times the number of time requests as compared to
AutoSched AP. A time request is issued for less than one
second (simulation time) interval consistently. On the other
hand, AutoSched AP issues time requests with a larger in-
terval, in the range of tens of seconds. This disparity in
time granularity can significantly slowdown the simulation
as no model parallelism can be exploited.

Table 2: Number of Time Requests Issued

No of Time Requests WIP Level
(Lots) AutoSched AP AutoMod

12 14249 150889
18 20237 239443
24 26444 348817

Table 3: Average Time Step Size

Average Time Step (seconds) WIP Level
(Lots) AutoSched AP AutoMod

12 12.1 1.1
18 8.5 0.7
24 6.5 0.5

Table 4: Event Ratio for the Interoperating AutoSched AP
(ASAP) and AutoMod (AM) Models

No of
External
Events

No of
Internal Events

Event
Ratio WIP

Level
ASAP AM ASAP AM ASAP AM

12 4943 9886 14250 150890 0.35 0.07
18 7641 15282 20238 239444 0.38 0.06
24 10463 20926 26445 348818 0.40 0.06
1134
Table 4 shows that the external event to internal event
ratio for the AutoSched AP and AutoMod models is ap-
proximately 0.4 and 0.06 respectively. This implies that
there are enormous opportunities to exploit the model par-
allelism as time requests only need to be issued for those
events that potentially could trigger external events. In the
best case, the number of time requests should be equal to
the number of external events sent by a model. Neverthe-
less, this best case is not attainable as it would require
complete knowledge of the simulation execution. A more
practical approach is to devise a scheme that predicts the
time at which an external event will be sent. Some knowl-
edge of the model characteristics is essential to devise such
a scheme. This same concept has been applied in our ear-
lier work to improve the execution efficiency of interoper-
ating AutoSched AP models (Gan et al. 2005b).

Execution Time Vs WIP Level

10

15

20

25

30

12 18 24

WIP Level

Ex
ec

ut
io

n
Ti

m
e

(m
in

s)

Figure 6: Execution Time for the Interoperating AutoSched
AP and AutoMod Models

The relationship between the execution time and the

WIP level is linear as shown in Figure 6. This increase in
execution time is generally due to the larger number of
events being processed for higher WIP level (Table 4). Our
future work aims to bring down the simulation execution
time by exploiting the enormous opportunities that are pre-
senting in these models.

6 CONCLUSIONS

The interoperation of commercial off-the-shelf simulation
packages remains a challenge even with the availability of
standards such as the CSPI-PDG and the HLA. The simu-
lation execution time is one critical hurdle that cannot be
addressed by any standard. Analysis has to be done to
identify if opportunities exist for exploiting the underlying
model parallelism. Often, this requires understanding of
the model characteristics in order to devise an efficient
mechanism.

Nevertheless, we have shown this task of interoper-
ating commercial off-the-shelf simulation packages is not
impossible. Our work in interoperating AutoMod and

Gan, Chan, and Turner

AutoSched AP has made it possible to simulate 300 mm
wafer fabrication plants with high fidelity. Adopting the
standard defined by CSPI-PDG helped to reduce the efforts
in the interoperation exercise. The issue of execution effi-
ciency remains to be addressed, however. This is not an
unsolvable problem as our analysis has revealed that there
are opportunities to improve the simulation execution time.
We are currently working on a customized time synchroni-
zation algorithm which exploits the model characteristics.
In addition, the issue of zero time increment interactions
will also be addressed.

REFERENCES

Brooks Automation. 2001a. AutoSched AP User’s Guide
v7.0.

Brooks Automation. 2001b. AutoSched AP Customization
Guide v7.0.

Brooks Automation. 2003. Model Communications User’s
Guide: A Module for AutoMod.

CSPI-PDG. 2006. <http://www.cspi-pdg.org>
[accessed June 1, 2006]

Flexsim. 2006. <http://www.flexsim.com/
software/flexsim> [accessed March 2, 2006].

Gan B. P., M. Y. H. Low, S. J. Turner, X. Wang, and S. J.
E. Taylor. 2005a. Interoperating AutoSched AP Using
the High Level Architecture. In Proceedings of the
2005 Winter Simulation Conference, ed. M. E. Kuhl,
N. M. Steiger, F. B. Armstrong, and J. A. Joines, 394-
401. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

Gan B.P., M. Y. H. Low, X. Wang, and S. J. Turner.
2005b. Using Manufacturing Process Flow for Time
Synchronization in HLA-Based Simulation. In Pro-
ceedings of the Ninth IEEE International Symposium
on Distributed Simulation and Real-Time Applica-
tions, 148-157.

Lanner Group. 2006. <http://www.lanner.com/
products/simulation_suite/witness.
php> [accessed March 2, 2006].

Rohrer, M. W. 2000. AutoMod Tutorial. In Proceedings of
the 2000 Winter Simulation Conference, ed. J.A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick,
170-176. Piscataway, New Jersey: Institute of Electri-
cal and Electronics Engineers.

Taylor S. J. E., S. J. Turner and M. Y. H. Low. 2005. The
COTS Simulation Interoperability Product Develop-
ment Group (CSPI-PDG). In Proceedings of the 2005
European Simulation Interoperability Workshop, 05E-
SIW-056.

Wang, K., S. Xu, and L. F. McGinnis. 2005. Time Man-
agement in Distributed Factory Simulation, A Case
Study Using HLA. In Proceedings of the 2005 Winter
Simulation Conference, ed. M. E. Kuhl, N. M. Steiger,
F. B. Armstrong, and J. A. Joines, 1781-1786. Pis-
113
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.

Wang, X. G., S. J. Turner, M. Y. H. Low and B. P. Gan.
2004. A Generic Architecture for the Integration of
COTS Packages with the HLA. In Proceedings of the
UK Operational Research Society Simulation Work-
shop, 225-233.

ACKNOWLEDGMENT

The authors would like to thank Mr. Gao Junjie for provid-
ing support in exploring the interoperation mechanism for
the AutoMod simulation package.

AUTHOR BIOGRAPHIES

BOON PING GAN is a Senior Research Engineer with
the Planning and Operations Group at the Singapore Insti-
tute of Manufacturing Technology. The focus of his re-
search is on the application of distributed simulation tech-
nology for supply chain simulation. He received a
Bachelor of Applied Science (Hons) in Computer Engi-
neering and a Master of Applied Science from Nanyang
Technological University of Singapore in 1995 and 1998,
respectively. His research interests are parallel and distrib-
uted simulation, parallel programs scheduling, and applica-
tion of genetic algorithms. His e-mail address is
<bpgan@SIMTec.a-star.edu.sg>.

LAI PENG CHAN is a Senior Research Engineer with the
Planning and Operations Management Group at the Singa-
pore Institute of Manufacturing Technology. She obtained
her BSc and MTech at the National University of Singa-
pore. Her research interests include modeling and simula-
tion, optimization and intelligent systems. Her e-mail ad-
dress is <lpchan@SIMTech.a-star.edu.sg>.

STEPHEN JOHN TURNER joined Nanyang Techno-
logical University (Singapore) in 1999 and is currently an
Associate Professor in the School of Computer Engineer-
ing and Director of the Parallel and Distributed Computing
Centre. Previously, he was a Senior Lecturer in Computer
Science at Exeter University (UK). He received his MA in
Mathematics and Computer Science from Cambridge Uni-
versity (UK) and his M.Sc. and Ph.D. in Computer Science
from Manchester University (UK). His current research in-
terests include: parallel and distributed simulation, distrib-
uted virtual environments, grid computing and multiagent
systems. His e-mail address is <assjturner@ntu.
edu.sg>.
5

http://www.cspi-pdg.org/
http://www.flexsim.com/software/flexsim
http://www.flexsim.com/software/flexsim
http://www.lanner.com/products/simulation_suite/witness.php
http://www.lanner.com/products/simulation_suite/witness.php
http://www.lanner.com/products/simulation_suite/witness.php
mailto:bpgan@SIMTec.a-star.edu.sg
mailto:lpchan@SIMTech.a-star.edu.sg
mailto:assjturner@ntu.edu.sg
mailto:assjturner@ntu.edu.sg

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

