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ABSTRACT 

Interoperability between commercial-off-the-shelf (COTS) 
simulation packages (CSPs) is a topic which has been dis-
cussed for many years without a solution. With the advent 
of the High Level Architecture for Modeling and Simula-
tion (HLA) for the first time a real industry standard has 
been made available which promises interoperability for a 
wide range of simulation systems and applications. Suc-
cessful attempts to integrate HLA interfaces into different 
simulation packages have been made in the past. However, 
these interfaces typically place a significant overhead on 
the simulation developer. Also, as often a generic HLA in-
terface is provided, different HLA interfaces for different 
simulation packages are not necessarily interoperable per 
se, as there are different possible ways to use HLA for the 
same task. This article addresses these issues and discusses 
interoperability solutions based on and beyond of HLA. It 
further investigates and comments the interoperability ref-
erence solutions put forward by SISO’s COTS Simulation 
Package Interoperability Product Development Group. 

1 MOTIVATION 

After the initial definition of the HLA it soon became 
obvious that its applicability was not limited to military 
simulation applications. However, it was also obvious to 
all researchers involved in that area, that there would be 
major differences between both military and non-military 
simulation communities. One major difference is in the 
way how simulations are developed. While in the military 
community simulations are often developed in languages 
such as C++ or Java, in the civilian simulation community, 
the use of commercial-off-the-shelf simulation packages 
(CSPs) (e.g. Arena, Extend, GPSS/H, Pro Model, Simul8, 
SLX, etc.) is commonplace. These simulation tools satisfy 
the need to develop models rapidly and cost-effectively. 

These different approaches for developing simulations 
also apply to HLA. While it is rather straightforward to di-
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rectly access and use HLA in a simulation developed in 
C++, alternative means had to be developed for allowing 
HLA usage from a CSP (Strassburger 2001). 

Initial solutions have integrated HLA into these simu-
lation packages by providing a simulation system specific 
HLA interface for the individual systems. Some of these 
interfaces (e.g., the HLA interface for SLX) were generic 
in the sense of being usable almost as flexibly as the native 
HLA application programming interface (API). Others 
were limited to a specific HLA use patterns. 

Section 2 of this paper discusses some of these solu-
tions in further detail and explains the differences and 
problems associated with them. 

As the general HLA-enablement of simulation pack-
ages has been proven possible, it could be assumed that the 
solution to the interoperability issue of CSPs is that easy: 
each vendor simply needed to provide their system with a 
generic HLA interface. 

Reality, however, is more difficult (Taylor et al. 2002). 
The following facts indicate that more standardization ef-
forts are needed to provide true plug-and-play-like and 
easy-to-use interoperability between different COTS simu-
lation packages: 

 
1. HLA is a quite complex standard. A generic HLA 

interface provides a developer with all means to 
solve his/her interoperability problem, however, it 
also leaves the burden of doing it on his/her side. 
Also, COTS vendors tend to be reluctant to sup-
port HLA because of its complexity. 

2. Approaches to hide the HLA complexity from the 
user exist, however, they often introduce proprie-
tary protocols on top of HLA resulting in non-
interoperable solutions. 

3. Different use patterns exist in HLA for accom-
plishing the same task. A simple matter like entity 
passing from one model to another can be solved 
in different ways, e.g., using HLA interactions or 
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HLA object instances plus ownership manage-
ment. The results are non-interoperable solutions. 

4. Insufficiencies in the HLA specification (e.g. non-
time managed services) can lead to the usage of 
proprietary protocols as workarounds. 

 
The remainder of this paper is structured as follows. 

Section 2 introduces previous solutions for HLA-enabling 
COTS simulation packages and discusses their advantages 
and disadvantages. Section 3 introduces the initiative of 
SISO’s COTS Simulation Package Interoperability Product 
Development Group (CSPI PDG). Section 4 outlines in a 
case study how the interoperability reference solutions sug-
gested by the CSPI PDG can be implemented based on an 
existing generic HLA interface. Based on the experience 
gained in these efforts, section 5 makes recommendations 
for further standardization efforts. Section 6 provides a 
summary and gives directions for future research. 

2 REVIEW OF EXISTING HLA INTERFACES 
FOR COTS SIMULATION PACKAGES 

HLA enabling a simulation package imposes the fulfill-
ment of two types of requirements:  

• Requirements derived from the HLA Interface 
Specification and the resulting programming 
paradigm, and  

• Requirements derived from being part of a dis-
tributed simulation in general (Strassburger et al. 
1998). Both categories will first be discussed in 
general. In the following, the properties of differ-
ent solutions for HLA-enabling SLX, Simplex3, 
QUEST and IGRIP will be discussed. 

 
The HLA Federate Interface Specification (IEEE 

1516.1-2000) defines a two-part interface, which federates 
are required to use for communicating with the Runtime 
Infrastructure (RTI). This interface is based on an ambas-
sador paradigm. A federate communicates with the RTI us-
ing its RTI ambassador. Conversely, the RTI communi-
cates with a federate via the federate’s ambassador. From 
the federate programmer’s point of view these ambassa-
dors are C++ or Java objects and the communication be-
tween the participants is performed by calling methods of 
these objects. 

For COTS simulation packages this means that they 
must be able to create an instance of the RTI ambassador 
and they must implement a federate ambassador for receiv-
ing callbacks. Neither of these tasks can be typically done 
inside the COTS simulation package. 

Besides conformance with the HLA programming 
paradigm, being part of a distributed simulation requires 
COTS simulation packages to be able to synchronize their 
local simulation clocks with other simulations and to 
meaningfully exchange data with them. 
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2.1 HLA Interface for SLX 

The HLA interface for SLX (Henriksen 1997) uses the dy-
namic link library (DLL) interface of SLX to access a 
wrapper library providing access to the HLA functionality 
(Strassburger et al. 1998). The wrapper library implements 
the HLA ambassador objects discussed previously. 

The wrapper furthermore converts the two directional 
calling convention of HLA into an SLX-usable form. All 
outgoing communication (time advance requests, attribute 
updates, interaction messages) can be triggered by the SLX 
model using the DLL-provided functions (e.g., 
RTI_NextEventRequest, RTI_UpdateAttributeValues, 
RTI_SendInteraction). These functions are provided in 
close affinity to the most important functions of the origi-
nal HLA API, but with SLX specific argument lists. 

All incoming communication is received by the feder-
ate ambassador inside the wrapper library via callback 
functions. The federate ambassador internally stores all re-
ceived information and provides it to the SLX model at the 
appropriate time. Most commonly, this will happen during 
a synchronization request issued from the SLX model.  

The most interesting feature offered by the SLX wrap-
per library in that context is that attribute updates and in-
teractions are delivered directly to the associated SLX ob-
ject instances. In this way an attribute update for a remote 
object instance directly modifies the SLX proxy instance of 
that object. This is possible due to a special feature of SLX 
which allows a DLL to dynamically determine the memory 
layout of complex data objects at runtime. 

Other interfaces (e.g., the HLA interface for QUEST 
and IGRIP, see section 2.3) have to use a query feature for 
explicitly retrieving events received by the federate ambas-
sador and then making the changes from within the simula-
tion system. 

Another highlight of the HLA interface for SLX is its 
good integration with SLX. This allows for a good simpli-
fication of the sometimes very complex HLA API, while 
still maintaining the highest degree of flexibility which 
only a generic HLA interface can offer. Let us consider an 
example:  For generating an attribute update for any HLA 
object instance, the following native HLA function calls 
are needed:  

 
1. RTI::AttributeSetFactory::create; 
2. RTI::RTIambassador::getObjectClassHandle 
3. RTI::RTIambassador::getAttributeHandle 
4. RTI::AttributeHandleValuePairSet::add  
5. RTI::RTIambassador::updateAttributeValues 

 
From  SLX, only a single function call must be issued: 

procedure RTI_UpdateAttributeValues 
(int Object_ID,  
string(*) AttributeList,  
double TimeStamp) returning int dll="slxrti13ng"; 
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The SLX model only has to pass the object ID to the 
wrapper library and the name of the attributes it wishes to 
update. The data encoding is performed entirely transpar-
ently inside the function implementation. 

With these mechanisms, the HLA interface for SLX 
provides a very good balance between being a very flexible 
and generic HLA interface and maintaining a high degree 
of user friendliness. The drawback of this flexibility, of 
course, is that usage of the HLA functionality must be ex-
plicitly integrated into the simulation model.  

The HLA interface for SLX in its native form can not 
be considered as a true plug-and-play interface. This is not 
a disadvantage introduced by the way the interface is im-
plemented, rather, it is caused by a lack of further stan-
dardization of top of HLA (compare section 3).  

Section 4 will discuss how the SLX statement concept 
can be used to add plug-and-play capabilities based on the 
existing generic interface and additional standardization. 

2.2 HLA Interface for Simplex3 

In contrast to the HLA interface for SLX, the HLA in-
terface for Simplex3 uses an implicit approach to integrate 
HLA functionality into the simulation system. “Implicit” 
indicates that HLA functionality is not explicitly called 
from the simulation model, rather, the simulation system 
itself generates the appropriate RTI function calls when-
ever necessary. This was achieved by integrating the dis-
tributed simulation functionality with the Simplex3 model-
ing paradigm. As the source code of the simulation system 
was available for this work, the HLA ambassador object 
could be directly integrated into its code (Lantzsch et al. 
1999), (Strassburger 2001). 

Simplex3 is a simulation system for discrete, continu-
ous, and combined simulation models (Eschenbacher 
2006). Simplex allows the creation of hierarchical models, 
in which different subcomponents can be assembled to a 
new component, which again can be part of a component 
from a higher level.  

Each component can be compiled and executed as an 
individual simulation for itself or in conjunction with other 
components. This characteristic has formed the basis for 
the development of the HLA interface, since each compo-
nent already has defined interfaces with other components. 
Therefore the HLA interface basically replaces the internal 
connection of components by a mechanisms allowing an 
arbitrary hierarchical collection of Simplex components to 
interact with “components” from different simulation sys-
tems (in HLA terms federates) using the HLA. 

The connectivity between components is defined 
within a mapping component which indicates which inter-
nal state variables translate into which object/interaction 
classes of the HLA federation object model. 

From the Simplex components, the following compo-
nent types can be mapped to HLA: 
1113
 
1. Basic Components are the basic building blocks 

of a Simplex model. They define the dynamic be-
havior of a certain part of the model. The best 
translation into the HLA world view is to treat a 
basic component as an HLA object class. The user 
can define which state variables are mapped onto 
which HLA object attributes.  

2. Mobile Components are responsible for modeling 
moving entities within the Simplex language. 
They contain the same constructs as basic compo-
nents except dynamic behavior definitions. Mo-
bile components can only exist within locations, 
which need to be defined before using mobile 
components within a model. For passing entities 
between components, a mechanism using HLA in-
teractions has been implemented. Once a mobile 
component leaves the Simplex modeling world, 
an interaction is generated containing the relevant 
state variables as parameters as well as the target 
location. 

 
The HLA interface for Simplex3 leaves it up to the 

user to define the mapping of basic and mobile compo-
nents to HLA object classes and interactions. Some care 
has to be taken, since each basic component only exists 
once in the model. Therefore it is not advisable to define a 
connection between an HLA object class with multiple in-
stances and one basic component. Rather, these should be 
mapped with mobile components, as these can be gener-
ated dynamically. 

A major advantage of the HLA interface for Simplex3 
is its user-friendliness: As the user does not have to place 
HLA calls into his code, the usage comes close to a plug-
and-play manner.  

However, there are also some drawbacks: Due to the 
integration of the HLA functionality with the simulation 
kernel attribute updates and interaction messages are al-
ways sent for a single attribute instances or interaction pa-
rameters only, i.e., changes which belong together are not 
sent together. The reason for that is simple: whenever a 
state variable which is mapped to HLA changes, the 
change has to be sent. Bundling cannot be easily imple-
mented, as it would change the Simplex modeling para-
digm. 

In summary, the HLA interface for Simplex 3 is a 
good example for an attempt of hiding the HLA complex-
ity from the user. The HLA interface for Simplex3 leaves 
the path of being a fully generic and flexible HLA interface 
and by doing this it gains user friendliness. 

For creating distributed simulations which only consist 
of Simplex3 models, the interface provides true plug-and-
play capabilities. For the connection with other federates 
(e.g., implemented in SLX with its HLA interface), the 
plug-and-play capabilities diminish, as potential other fed-
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erates have to take into account some of the implementa-
tion details used within the HLA interface for Simplex3.  

With that, the HLA interface for Simplex is a good ex-
ample to show the necessity for further standardization on 
top of HLA. If all COTS simulation packages were to im-
plement the same use pattern of HLA, plug-and-play capa-
bilities can become possible. 

2.3 HLA Interfaces for QUEST and IGRIP 

The HLA interfaces for QUEST and IGRIP apply a 
combination of both (explicit and implicit) approaches in-
troduced in the previous sections. HLA functionality is 
provided for both systems using a DLL interface and a 
wrapper library called universal federate adapter (UFA). 
(Strassburger et al. 2003). The UFA wrapper library pro-
vides the callable HLA functions to both systems in a form 
accessible to them. Inside the simulation systems, the HLA 
functions are provided to the modeler in special HLA 
building blocks which are ready to use. Examples for these 
blocks are the HLA controller, the HLA source, and the 
HLA sink. 

The HLA controller encapsulates the synchronization 
of the simulation clock with other federates and the exter-
nal event retrieval and dispatching. The HLA source and 
sink blocks allow the passing and reception of entities be-
tween models.  

Model developers can chose between two ways of us-
ing HLA. They can simply use the predefined building 
blocks and place them into their models without worrying 
about HLA details. This comes close to a plug-and-play, 
since the modeler only needs to specify the connection be-
tween each HLA sink and source pair in different models. 
Alternatively, they can use the HLA functions provided by 
UFA directly in their own SCL and BCL logics. SCL and 
BCL are the simulation languages which are used in 
QUEST and IGRIP for defining customized behavior 
(called “logics”). 

The first approach provides simple plug-and-play like 
capabilities but is limited to passing entities between mod-
els. The UFA function provided for this is 
RTI_TRANSFER_INSTANCE. It takes the sink name and 
the instance ID as parameters. Internally, the UFA imple-
ments a proprietary protocol for passing the entities 
(Strassburger et al. 2002). The basic principle is that each 
HLA source has a parameter telling it which HLA sink it is 
receiving entities from. Entities are modeled as HLA ob-
ject instances with attributes. Passing of entities is imple-
mented using HLA ownership management. The sender-
receiver connection is communicated using the userDe-
finedTag of these services. In addition, a time stamped in-
teraction has to be used for making the entity transfer time 
managed. This is necessary because ownership manage-
ment services are not time-managed – a lack of the HLA 
interface specification (compare with Section 1). 
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Like in the Simplex3 approach, the UFA for QUEST 
and IGRIP introduces a proprietary protocol of how to use 
HLA for a certain purpose (here: entity passing ). This has 
allowed the creating of a plug-and-play capable interface, 
but at the same time it limits its applicability to all simula-
tion systems using the same approach. 

3 CSPI PDG 

As outlined in the previous section, there have been vari-
ous attempts in the past to interoperate models and the 
COTS simulation packages in which they have been devel-
oped. For the reasons stated above these approaches are not 
fully compatible. In essence, there is no real standard “use” 
pattern for the High Level Architecture within the context 
of the focused application area. As an attempt to create 
such a use pattern and to unify research and development 
activities in this area the High Level Architecture – COTS 
Simulation Package Interoperability Forum (HLA-CSPIF) 
has been created (Taylor 2003), (Taylor et al. 2003a).  This 
has now become SISO’s COTS Simulation Package Inter-
operability Product Development Group (CSPI PDG) (note 
that “product” is used in SISO to denote standards). 

The ultimate goal of the Forum is to create standards 
through SISO that will facilitate the interoperation of 
COTS simulation packages and thus make available to us-
ers of such packages the benefits of distributed simulation 
in a user-friendly and plug-and-play like manner. As a first 
activity, CSPI-PDG has created standard interoperability 
reference models that can be used to communicate con-
cepts and problems between researchers, users, and ven-
dors in support of the CSPI-PDG aims. 

The following lists the interoperabilily reference mod-
els (IRMs) that have currently been identified. For an in-
depth discussion of these IRMs please refer to (Taylor 
2003). 

 
• Type I Interoperability Reference Model - Asyn-

chronous entity passing. 
• Type II Interoperability Reference Model  - Syn-

chronous entity passing. 
• Type III Interoperability Reference Model - 

Shared resources. 
• Type IV Interoperability Reference Model  - 

Shared events. 
• Type V Interoperability Reference Model - 

Shared data structure. 
• Type VI Interoperability Reference Model  - 

Shared conveyor. 
 
The remainder of this article is mainly concerned with 

the type I IRM with an outlook on the challenges of type II 
solutions. 

The Type I IRM represents models that interact on the 
basis of entities,  i.e. models are linked together so that one 
4
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model may pass an entity to another. The term “Entity” 
here refers to the dynamically created elements that move 
through a simulation. They may be called differently in dif-
ferent simulation system (e.g., transaction in GPSS/H, 
widget in QUEST, “movable elements” in eM-Plant, mo-
bile components in Simplex3, etc.). The IRM is labelled 
“asynchronous” as there is no direct feedback when an en-
tity is passed (Figure 1). 
 

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2

 
Figure 1: Type I IRM for Asynchronous Entity Passing 

 
The Type II IRM extends the Type I IRM by introduc-

ing the need for immediate feedback to the entity passing. 
This is required in cases where the receiving simulation 
may be in a state unable to accept the entity being passed, 
e.g., because of a bounded queue (Figure ). In this case the 
entity transfer cannot succeed. One may argue that this is 
an academic problem, since models could in almost any 
case be partitioned to prevent this from happening. How-
ever, this IRM is an example for an entire class of prob-
lems requiring immediate communication between simula-
tions. Actually, all IRMs above the Type II RM require this 
basic functionality. Therefore a solution to the Type II RM 
could be the basis for standardizing solutions to the other 
RMs as well. 

 

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2
Bounded

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2
Bounded

 
Figure 2: Type II IRM for Synchronous Entity Passing 
 

Besides these reference models, the CSPI-PDG has 
put forward a proposal for an Entity Transfer Specification 
Standard as the basis for solving the Type I IRM (Taylor et 
al. 2004).  
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In a nutshell, the ETS version 1.1.1 suggests the usage 
of HLA interactions for transferring entities between two 
models. The sender-receiver relationship is represented by 
building a special hierarchy of interaction classes and sub-
classes. As the root class, an interaction class called 
“TransferEntity” is specified. It has sub-classes which cor-
respond to all potential recipient models, e.g. “TransferEn-
tityToFactoryModel1, TransferEntityToFactoryModel2, 
etc.). These subclasses are meant to build a unique class 
which a certain federate would have to subscribe. In our 
simple example, Factory Model 2 would subscribe to 
“TransferEntityToFactoryModel2” and could be sure that it 
received information about all potential subclasses of this 
class. The practical feasibility of this is commented on 
later. 

Further to this subclass identifying the target federate, 
individual interaction classes are introduced for each con-
nection between a sending model and a target model. In 
our example, there would be a single subclass to “Trans-
ferEntityToFactoryModel2” called “TransferEntityFac-
toryModel1ToFactoryModel2”. This interaction class 
would be published by the sending model (Factory Model 
1). 

For transmitting the state of an transferred entity, the 
interaction classes have a single parameter named “Entity“. 
The type of this parameter is a complex datatype (record) 
identifying the name of the entity, identifiers for the source 
and destination, and any simulation dependent parameter. 
The source and destination tags operate on the federate 
identification level, i.e., they do not identify any 
sink/source inside a model. As this article cannot repro-
duce the entire ETS the reader is referred to (Taylor et al. 
2003b) and (Taylor et al. 2004) for further details. For spe-
cific comments on this specification please refer to section 
5 of this article. 

The following section investigates if and how a simu-
lation package with a generic HLA interface can adapt to 
the so-defined standard and what benefits towards plug-
and-play interoperability it yields. 

4 CASE STUDY: FROM GENERIC HLA 
INTERFACES TO PLUG-AND-PLAY 
CAPABILITIES  

This case study has investigated, if and how the proposed 
entity transfer specification (ETS) can be implemented on 
top of the existing generic HLA interface for SLX and 
which benefits it yields.  

For performing these tasks, the SLX statement concept 
has been used. SLX statements allow the extension of the 
SLX language itself. Statements can be compared with 
marcos known from other languages, however SLX state-
ments extend the macro concept by allowing the execution 
of SLX code at compile time. In this way, a very flexible 
way of extending the SLX language is provided. For im-
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plementing the ETS specification two new statements 
(“Federate” and “Transfer Entity”) have been defined in-
side SLX as follows: 

 
statement Federate #FederateName  

joining Federation #Federation  
using FedFile #FedFile 

 receiving entities [=  {<#Recipient yes>| <#Recipient no>}]  
        [@from  {#SourceFederateName} ,...] 
 [sending entities @to {#TargetFederateName} ,...] 

[lookahead = #lookahead]; 
 
The federate statement has to be used for specifying 

certain definitions like the federate name and the federation 
name. Most importantly, the federate can specify if it ex-
pects to receive entities from other federates, and if it in-
tends to send entities to other federates. In the latter case, 
multiple target federates can be specified.  

In our example, factory models 1 and 2 would use the 
following federate statements: 

 
Federate FactoryModel1  

joining Federation FactorySimulation  
using FedFile Factory.fed  
receiving entities = no 
sending entities to FactoryModel2; 

  
Federate FactoryModel2  
 joining Federation FactorySimulation  
 using FedFile Factory.fed  

receiving entities from FactoryModel1; 
 

The main benefit of the federate statement is the hid-
ing of all HLA details in its inside. From the simple argu-
ment list shown above the federate statement generates all 
necessary HLA calls completely transparently to the user. 
The statement automatically constructs the correct interac-
tion class names which it has to publish and subscribe ac-
cording to the ETS. It further on generates the code re-
quired for joining and synchronizing the model with other 
federates. Please note that in the above example the op-
tional parameter “lookahead” is not specified. In that case, 
the statement always assumes the safe option of “zero 
lookehead”. Otherwise the specified lookahead value will 
be used. Finally, the statement also contains code for re-
ceiving incoming entities and dispatching them to the right 
location. This will be explained later. 

For transferring entities to external federates, the fol-
lowing statement is defined: 

 
statement Transfer [Entity] [#EntityPtr]  

To #TargetFederateName  
  [transferTime =  #timeValue]  

 
This statement internally generates the correct transfer 

interaction which it has to send according to the ETS. The 
optional parameter “transferTime” specifies the duration of 
the transfer. If no value is specified, the transfer at the cur-
rent simulation time. The “Transfer” statement internally 
111
performs runtime checking about potential user errors, 
which could result from specifying a transfer time which is 
smaller than the lookahead specified in the “Federate” 
statement. In our example from above Federate 1 would 
use the “Transfer” statement as follows: 
 

Transfer Entity me To FactoryModel2; 
 
The transfer statement is capable of transferring any 

user defined entity. The user can specify any number of at-
tributes for the entity. This is achieved by encapsulating 
the complex record data type into a single parameter of the 
transfer interaction. This certainly also has drawbacks 
(compare section 5), but in its current form it allows for a 
very user friendly implementation. For our example factory 
models, the entity class is defined as follows: 

 
class Entity { 
 string(256) EntityName;  //parameter according to ETS 
 string(256) Source;  //parameter according to ETS 
 string(256) Destination;  //parameter according to ETS 
 int   size;   //model specific parameter 
 double  production_time;  //model specific parameter 
 
 procedure dispatch_me { 
   //Add code here to dispatch externally received  

//entities within your model 
  } 
} 

 
It can be noted that this interaction has a special 

method called “dispatch_me”. This method only has to be 
implemented in the receiving federates. The method will 
be called from the synchronization algorithm, whenever a 
new entity is received for the local federate. The method 
has to make sure that the entity is dispatched to the right 
source or entry point in the model. According to the ETS it 
can use the parameters source and destination for that. This 
code section has to be implemented by the user as it highly  
depends on his choice of modelling the factory inside SLX. 

While the “Federate” statement has to be inserted as 
the first statement to be executed, the “Transfer” statement 
can be placed anywhere you want to transfer entities to a 
different model. Typically it will occur before a “termi-
nate” statement removing an entity from the local model. 

Summarizing the case study it can be noted that by us-
ing the SLX statement concept and the entity transfer 
specification it becomes extraordinarily easy to interoper-
ate SLX models with other models using the ETS. The ef-
fort for implementing a federate in SLX is reduced to in-
troducing two statements into the code of an SLX model 
plus implementing a dispatch procedure for externally re-
ceived entities. The latter can be typically done in a single 
line of code. In terms of plug-and-play capabilities, this so-
lution is as close as it can get to this objective in a simula-
tion language. In the best case, the effort for networking a 
SLX model is changing three lines of code. 
6
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5 STANDARDIZATION RECOMMENDATIONS 

On the positive side, the experiences from the case 
study prove that the entity transfer standard can be imple-
mented on top of existing generic HLA interfaces. No 
changes of the wrapper library implementing the HLA in-
terface of SLX have been necessary. Using encapsulation 
mechanisms like the SLX statement concept can yield tre-
mendous additional simplifications for the user. 

On the other hand, during the work on the case study it 
was also observed that the current ETS specification has 
some significant drawbacks:  

 
1. Source and destination designators both operate 

on the federate level, i.e., they specify the sending 
and the receiving federate. This specification 
lacks a possibility to differentiate between multi-
ple connections between any two federates. As-
sume two sinks in factory model 1 and two entry 
points in factory model 2. The ETS in its current 
form would not allow the target federate to dis-
patch entities to the right entry point, since all it 
knew was that they were coming from factory 
model 1. The author suggests that the ETS is 
modified to allow the specification of both entry 
and exit points as additional parameters of the 
transferred entity. 

2. The ETS suggests a hierarchy of transfer interac-
tions. The main intention is to have one single su-
perclass which federates can subscribe to in order 
to receive all entities transferred to them. The idea 
behind that is tempting. However, since the ETS 
specifies the actual data to be transmitted as inter-
action parameters at the leaf level of the lowest 
subclass, a federate subscribing to the superclass 
will never receive the values transmitted in the in-
teraction parameter. This simply cannot work 
since parameters are inherited from the superclass 
to its subclass, but not vice versa. The author sug-
gests that the hierarchical structure of the transfer 
interactions be removed. Source and destination 
can be easier communicated as direct parameters 
of the transfer interaction. 

3. The specification of user defined attributes is 
placed into a complex record datatype. Although 
the motivation for this is obvious, it introduces 
new room for interoperability challenges as all 
participating federates have to be able to interpret 
all of the attributes. A definition of user defined 
attributes as individual parameters of the transfer 
interaction would allow federates to subscribe to 
only those parameters they are able to handle. 

4. The ETS leaves some room for misinterpretation 
in its definition of “Entity” and the “EntityType”. 
In the template of the interaction parameter table 
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the transfer interaction has a single parameter 
called “Entity” with the datatype “EntityType”. 
EntityType itself is defined in the fixed record 
datatype table. It is defined there with mandatory 
fields “EntityName”, “Source” and “Destination”. 
Only from the given example of how to use this 
template it becomes clear that actually the name 
of the parameter has to be changed according to 
the name of the entity. This introduces the re-
quirement of changing FOMs whenever a new en-
tity type is talked about. This is an unnecessary 
disadvantage, as the definition of the entity type 
could as well be put as a mandatory parameter ei-
ther into the fixed record for the EntityType or it 
could directly become an interaction parameter it-
self. 

 
It can be noted that different solutions to comments 3 

and 4 exist. The author suggests that the fewest possible 
changes to the FOM be required of the user. It would be 
advisable to define more properties directly as individual 
parameters of the transfer interaction. 

A better use of the hierarchy inside the interaction ta-
ble might be to actually diversify the transmitted entities in 
terms of its parameters. A superclass of “TransferEntity” 
could only have the significant parameters like source, des-
tination, entity type, and entity name. Subclasses could in-
herit from that class and add user defined attributes to it.  

In addition to the current efforts made by the CSPI 
PDG it might be useful to discuss and agree on reference 
federation object models for certain application domains. 
The could, in the simplest case, specify which attributes 
entity types in a certain modeling domain should have.  

6 SUMMARY AND FUTURE WORK 

This paper has reviewed the innovations towards 
COTS simulation package interoperability that have be-
come available through HLA. It has analyzed different so-
lutions for HLA enabling simulation systems. It can be 
noted that the general feasibility of HLA enabling such 
systems has been proven successfully in the past. A simu-
lation system with a generic HLA interface is capable of 
interoperating with other federates in all ways offered by 
HLA. 

However, this paper also has outlined the reasons why 
generic HLA capabilities are not sufficient for achieving 
true plug-and-play interoperability between different 
COTS simulation packages. The main reason is in the ef-
fort needed for the user to incorporate HLA functionality 
into his/her model. Only by encapsulating HLA functional-
ity into a user friendly form, the next step towards plug-
and-play capabilities can be made. 

The paper has further introduced and reviewed the 
CSPI-PDG initiative with its main objective of creating 
7
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standardized HLA use patters for COTS simulation pack-
age interoperability. These standardized use patterns can 
help to encapsulate HLA functionalities in a user-friendly 
form. They also prevent some of the pitfalls that can hap-
pen when applying a complex standard like HLA. 

The first proposal for such a standardized HLA use 
pattern, namely the entity transfer specification as a solu-
tion to the Type I Interoperability Reference Models has 
been commented and suggestions for its approval have 
been made. 

Future work will include the discussion of the next re-
vision of the ETS and its extension for Type II Reference 
Models. The latter imposes specific new challenges on the 
community, as its solutions require zero lookahead in any 
case. Additional problems arise from the need of dealing 
correctly with simultaneous events (e.g. two federates try-
ing to pass an entity to a queue at the same time which 
only has a remaining capacity of one). Another interesting 
area of future work will be to apply the encapsulation at-
tempts made with a simulation language like SLX to build-
ing block based tools like Extend. 
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