
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

THE ROAD TO COTS-INTEROPERABILITY: FROM GENERIC HLA-INTERFACES
TOWARDS PLUG-AND-PLAY CAPABILITIES

Steffen Strassburger

Fraunhofer Institute for Factory
Operation and Automation IFF

Sandtorstrasse 22
39106 Magdeburg, GERMANY

ABSTRACT

Interoperability between commercial-off-the-shelf (COTS)
simulation packages (CSPs) is a topic which has been dis-
cussed for many years without a solution. With the advent
of the High Level Architecture for Modeling and Simula-
tion (HLA) for the first time a real industry standard has
been made available which promises interoperability for a
wide range of simulation systems and applications. Suc-
cessful attempts to integrate HLA interfaces into different
simulation packages have been made in the past. However,
these interfaces typically place a significant overhead on
the simulation developer. Also, as often a generic HLA in-
terface is provided, different HLA interfaces for different
simulation packages are not necessarily interoperable per
se, as there are different possible ways to use HLA for the
same task. This article addresses these issues and discusses
interoperability solutions based on and beyond of HLA. It
further investigates and comments the interoperability ref-
erence solutions put forward by SISO’s COTS Simulation
Package Interoperability Product Development Group.

1 MOTIVATION

After the initial definition of the HLA it soon became
obvious that its applicability was not limited to military
simulation applications. However, it was also obvious to
all researchers involved in that area, that there would be
major differences between both military and non-military
simulation communities. One major difference is in the
way how simulations are developed. While in the military
community simulations are often developed in languages
such as C++ or Java, in the civilian simulation community,
the use of commercial-off-the-shelf simulation packages
(CSPs) (e.g. Arena, Extend, GPSS/H, Pro Model, Simul8,
SLX, etc.) is commonplace. These simulation tools satisfy
the need to develop models rapidly and cost-effectively.

These different approaches for developing simulations
also apply to HLA. While it is rather straightforward to di-

11111-4244-0501-7/06/$20.00 ©2006 IEEE
rectly access and use HLA in a simulation developed in
C++, alternative means had to be developed for allowing
HLA usage from a CSP (Strassburger 2001).

Initial solutions have integrated HLA into these simu-
lation packages by providing a simulation system specific
HLA interface for the individual systems. Some of these
interfaces (e.g., the HLA interface for SLX) were generic
in the sense of being usable almost as flexibly as the native
HLA application programming interface (API). Others
were limited to a specific HLA use patterns.

Section 2 of this paper discusses some of these solu-
tions in further detail and explains the differences and
problems associated with them.

As the general HLA-enablement of simulation pack-
ages has been proven possible, it could be assumed that the
solution to the interoperability issue of CSPs is that easy:
each vendor simply needed to provide their system with a
generic HLA interface.

Reality, however, is more difficult (Taylor et al. 2002).
The following facts indicate that more standardization ef-
forts are needed to provide true plug-and-play-like and
easy-to-use interoperability between different COTS simu-
lation packages:

1. HLA is a quite complex standard. A generic HLA

interface provides a developer with all means to
solve his/her interoperability problem, however, it
also leaves the burden of doing it on his/her side.
Also, COTS vendors tend to be reluctant to sup-
port HLA because of its complexity.

2. Approaches to hide the HLA complexity from the
user exist, however, they often introduce proprie-
tary protocols on top of HLA resulting in non-
interoperable solutions.

3. Different use patterns exist in HLA for accom-
plishing the same task. A simple matter like entity
passing from one model to another can be solved
in different ways, e.g., using HLA interactions or

Strassburger

HLA object instances plus ownership manage-
ment. The results are non-interoperable solutions.

4. Insufficiencies in the HLA specification (e.g. non-
time managed services) can lead to the usage of
proprietary protocols as workarounds.

The remainder of this paper is structured as follows.

Section 2 introduces previous solutions for HLA-enabling
COTS simulation packages and discusses their advantages
and disadvantages. Section 3 introduces the initiative of
SISO’s COTS Simulation Package Interoperability Product
Development Group (CSPI PDG). Section 4 outlines in a
case study how the interoperability reference solutions sug-
gested by the CSPI PDG can be implemented based on an
existing generic HLA interface. Based on the experience
gained in these efforts, section 5 makes recommendations
for further standardization efforts. Section 6 provides a
summary and gives directions for future research.

2 REVIEW OF EXISTING HLA INTERFACES
FOR COTS SIMULATION PACKAGES

HLA enabling a simulation package imposes the fulfill-
ment of two types of requirements:

• Requirements derived from the HLA Interface
Specification and the resulting programming
paradigm, and

• Requirements derived from being part of a dis-
tributed simulation in general (Strassburger et al.
1998). Both categories will first be discussed in
general. In the following, the properties of differ-
ent solutions for HLA-enabling SLX, Simplex3,
QUEST and IGRIP will be discussed.

The HLA Federate Interface Specification (IEEE

1516.1-2000) defines a two-part interface, which federates
are required to use for communicating with the Runtime
Infrastructure (RTI). This interface is based on an ambas-
sador paradigm. A federate communicates with the RTI us-
ing its RTI ambassador. Conversely, the RTI communi-
cates with a federate via the federate’s ambassador. From
the federate programmer’s point of view these ambassa-
dors are C++ or Java objects and the communication be-
tween the participants is performed by calling methods of
these objects.

For COTS simulation packages this means that they
must be able to create an instance of the RTI ambassador
and they must implement a federate ambassador for receiv-
ing callbacks. Neither of these tasks can be typically done
inside the COTS simulation package.

Besides conformance with the HLA programming
paradigm, being part of a distributed simulation requires
COTS simulation packages to be able to synchronize their
local simulation clocks with other simulations and to
meaningfully exchange data with them.
1112
2.1 HLA Interface for SLX

The HLA interface for SLX (Henriksen 1997) uses the dy-
namic link library (DLL) interface of SLX to access a
wrapper library providing access to the HLA functionality
(Strassburger et al. 1998). The wrapper library implements
the HLA ambassador objects discussed previously.

The wrapper furthermore converts the two directional
calling convention of HLA into an SLX-usable form. All
outgoing communication (time advance requests, attribute
updates, interaction messages) can be triggered by the SLX
model using the DLL-provided functions (e.g.,
RTI_NextEventRequest, RTI_UpdateAttributeValues,
RTI_SendInteraction). These functions are provided in
close affinity to the most important functions of the origi-
nal HLA API, but with SLX specific argument lists.

All incoming communication is received by the feder-
ate ambassador inside the wrapper library via callback
functions. The federate ambassador internally stores all re-
ceived information and provides it to the SLX model at the
appropriate time. Most commonly, this will happen during
a synchronization request issued from the SLX model.

The most interesting feature offered by the SLX wrap-
per library in that context is that attribute updates and in-
teractions are delivered directly to the associated SLX ob-
ject instances. In this way an attribute update for a remote
object instance directly modifies the SLX proxy instance of
that object. This is possible due to a special feature of SLX
which allows a DLL to dynamically determine the memory
layout of complex data objects at runtime.

Other interfaces (e.g., the HLA interface for QUEST
and IGRIP, see section 2.3) have to use a query feature for
explicitly retrieving events received by the federate ambas-
sador and then making the changes from within the simula-
tion system.

Another highlight of the HLA interface for SLX is its
good integration with SLX. This allows for a good simpli-
fication of the sometimes very complex HLA API, while
still maintaining the highest degree of flexibility which
only a generic HLA interface can offer. Let us consider an
example: For generating an attribute update for any HLA
object instance, the following native HLA function calls
are needed:

1. RTI::AttributeSetFactory::create;
2. RTI::RTIambassador::getObjectClassHandle
3. RTI::RTIambassador::getAttributeHandle
4. RTI::AttributeHandleValuePairSet::add
5. RTI::RTIambassador::updateAttributeValues

From SLX, only a single function call must be issued:

procedure RTI_UpdateAttributeValues
(int Object_ID,
string(*) AttributeList,
double TimeStamp) returning int dll="slxrti13ng";

Strassburger

The SLX model only has to pass the object ID to the
wrapper library and the name of the attributes it wishes to
update. The data encoding is performed entirely transpar-
ently inside the function implementation.

With these mechanisms, the HLA interface for SLX
provides a very good balance between being a very flexible
and generic HLA interface and maintaining a high degree
of user friendliness. The drawback of this flexibility, of
course, is that usage of the HLA functionality must be ex-
plicitly integrated into the simulation model.

The HLA interface for SLX in its native form can not
be considered as a true plug-and-play interface. This is not
a disadvantage introduced by the way the interface is im-
plemented, rather, it is caused by a lack of further stan-
dardization of top of HLA (compare section 3).

Section 4 will discuss how the SLX statement concept
can be used to add plug-and-play capabilities based on the
existing generic interface and additional standardization.

2.2 HLA Interface for Simplex3

In contrast to the HLA interface for SLX, the HLA in-
terface for Simplex3 uses an implicit approach to integrate
HLA functionality into the simulation system. “Implicit”
indicates that HLA functionality is not explicitly called
from the simulation model, rather, the simulation system
itself generates the appropriate RTI function calls when-
ever necessary. This was achieved by integrating the dis-
tributed simulation functionality with the Simplex3 model-
ing paradigm. As the source code of the simulation system
was available for this work, the HLA ambassador object
could be directly integrated into its code (Lantzsch et al.
1999), (Strassburger 2001).

Simplex3 is a simulation system for discrete, continu-
ous, and combined simulation models (Eschenbacher
2006). Simplex allows the creation of hierarchical models,
in which different subcomponents can be assembled to a
new component, which again can be part of a component
from a higher level.

Each component can be compiled and executed as an
individual simulation for itself or in conjunction with other
components. This characteristic has formed the basis for
the development of the HLA interface, since each compo-
nent already has defined interfaces with other components.
Therefore the HLA interface basically replaces the internal
connection of components by a mechanisms allowing an
arbitrary hierarchical collection of Simplex components to
interact with “components” from different simulation sys-
tems (in HLA terms federates) using the HLA.

The connectivity between components is defined
within a mapping component which indicates which inter-
nal state variables translate into which object/interaction
classes of the HLA federation object model.

From the Simplex components, the following compo-
nent types can be mapped to HLA:
1113

1. Basic Components are the basic building blocks

of a Simplex model. They define the dynamic be-
havior of a certain part of the model. The best
translation into the HLA world view is to treat a
basic component as an HLA object class. The user
can define which state variables are mapped onto
which HLA object attributes.

2. Mobile Components are responsible for modeling
moving entities within the Simplex language.
They contain the same constructs as basic compo-
nents except dynamic behavior definitions. Mo-
bile components can only exist within locations,
which need to be defined before using mobile
components within a model. For passing entities
between components, a mechanism using HLA in-
teractions has been implemented. Once a mobile
component leaves the Simplex modeling world,
an interaction is generated containing the relevant
state variables as parameters as well as the target
location.

The HLA interface for Simplex3 leaves it up to the

user to define the mapping of basic and mobile compo-
nents to HLA object classes and interactions. Some care
has to be taken, since each basic component only exists
once in the model. Therefore it is not advisable to define a
connection between an HLA object class with multiple in-
stances and one basic component. Rather, these should be
mapped with mobile components, as these can be gener-
ated dynamically.

A major advantage of the HLA interface for Simplex3
is its user-friendliness: As the user does not have to place
HLA calls into his code, the usage comes close to a plug-
and-play manner.

However, there are also some drawbacks: Due to the
integration of the HLA functionality with the simulation
kernel attribute updates and interaction messages are al-
ways sent for a single attribute instances or interaction pa-
rameters only, i.e., changes which belong together are not
sent together. The reason for that is simple: whenever a
state variable which is mapped to HLA changes, the
change has to be sent. Bundling cannot be easily imple-
mented, as it would change the Simplex modeling para-
digm.

In summary, the HLA interface for Simplex 3 is a
good example for an attempt of hiding the HLA complex-
ity from the user. The HLA interface for Simplex3 leaves
the path of being a fully generic and flexible HLA interface
and by doing this it gains user friendliness.

For creating distributed simulations which only consist
of Simplex3 models, the interface provides true plug-and-
play capabilities. For the connection with other federates
(e.g., implemented in SLX with its HLA interface), the
plug-and-play capabilities diminish, as potential other fed-

Strassburger

erates have to take into account some of the implementa-
tion details used within the HLA interface for Simplex3.

With that, the HLA interface for Simplex is a good ex-
ample to show the necessity for further standardization on
top of HLA. If all COTS simulation packages were to im-
plement the same use pattern of HLA, plug-and-play capa-
bilities can become possible.

2.3 HLA Interfaces for QUEST and IGRIP

The HLA interfaces for QUEST and IGRIP apply a
combination of both (explicit and implicit) approaches in-
troduced in the previous sections. HLA functionality is
provided for both systems using a DLL interface and a
wrapper library called universal federate adapter (UFA).
(Strassburger et al. 2003). The UFA wrapper library pro-
vides the callable HLA functions to both systems in a form
accessible to them. Inside the simulation systems, the HLA
functions are provided to the modeler in special HLA
building blocks which are ready to use. Examples for these
blocks are the HLA controller, the HLA source, and the
HLA sink.

The HLA controller encapsulates the synchronization
of the simulation clock with other federates and the exter-
nal event retrieval and dispatching. The HLA source and
sink blocks allow the passing and reception of entities be-
tween models.

Model developers can chose between two ways of us-
ing HLA. They can simply use the predefined building
blocks and place them into their models without worrying
about HLA details. This comes close to a plug-and-play,
since the modeler only needs to specify the connection be-
tween each HLA sink and source pair in different models.
Alternatively, they can use the HLA functions provided by
UFA directly in their own SCL and BCL logics. SCL and
BCL are the simulation languages which are used in
QUEST and IGRIP for defining customized behavior
(called “logics”).

The first approach provides simple plug-and-play like
capabilities but is limited to passing entities between mod-
els. The UFA function provided for this is
RTI_TRANSFER_INSTANCE. It takes the sink name and
the instance ID as parameters. Internally, the UFA imple-
ments a proprietary protocol for passing the entities
(Strassburger et al. 2002). The basic principle is that each
HLA source has a parameter telling it which HLA sink it is
receiving entities from. Entities are modeled as HLA ob-
ject instances with attributes. Passing of entities is imple-
mented using HLA ownership management. The sender-
receiver connection is communicated using the userDe-
finedTag of these services. In addition, a time stamped in-
teraction has to be used for making the entity transfer time
managed. This is necessary because ownership manage-
ment services are not time-managed – a lack of the HLA
interface specification (compare with Section 1).
111
Like in the Simplex3 approach, the UFA for QUEST
and IGRIP introduces a proprietary protocol of how to use
HLA for a certain purpose (here: entity passing). This has
allowed the creating of a plug-and-play capable interface,
but at the same time it limits its applicability to all simula-
tion systems using the same approach.

3 CSPI PDG

As outlined in the previous section, there have been vari-
ous attempts in the past to interoperate models and the
COTS simulation packages in which they have been devel-
oped. For the reasons stated above these approaches are not
fully compatible. In essence, there is no real standard “use”
pattern for the High Level Architecture within the context
of the focused application area. As an attempt to create
such a use pattern and to unify research and development
activities in this area the High Level Architecture – COTS
Simulation Package Interoperability Forum (HLA-CSPIF)
has been created (Taylor 2003), (Taylor et al. 2003a). This
has now become SISO’s COTS Simulation Package Inter-
operability Product Development Group (CSPI PDG) (note
that “product” is used in SISO to denote standards).

The ultimate goal of the Forum is to create standards
through SISO that will facilitate the interoperation of
COTS simulation packages and thus make available to us-
ers of such packages the benefits of distributed simulation
in a user-friendly and plug-and-play like manner. As a first
activity, CSPI-PDG has created standard interoperability
reference models that can be used to communicate con-
cepts and problems between researchers, users, and ven-
dors in support of the CSPI-PDG aims.

The following lists the interoperabilily reference mod-
els (IRMs) that have currently been identified. For an in-
depth discussion of these IRMs please refer to (Taylor
2003).

• Type I Interoperability Reference Model - Asyn-

chronous entity passing.
• Type II Interoperability Reference Model - Syn-

chronous entity passing.
• Type III Interoperability Reference Model -

Shared resources.
• Type IV Interoperability Reference Model -

Shared events.
• Type V Interoperability Reference Model -

Shared data structure.
• Type VI Interoperability Reference Model -

Shared conveyor.

The remainder of this article is mainly concerned with

the type I IRM with an outlook on the challenges of type II
solutions.

The Type I IRM represents models that interact on the
basis of entities, i.e. models are linked together so that one
4

Strassburger

model may pass an entity to another. The term “Entity”
here refers to the dynamically created elements that move
through a simulation. They may be called differently in dif-
ferent simulation system (e.g., transaction in GPSS/H,
widget in QUEST, “movable elements” in eM-Plant, mo-
bile components in Simplex3, etc.). The IRM is labelled
“asynchronous” as there is no direct feedback when an en-
tity is passed (Figure 1).

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2

Figure 1: Type I IRM for Asynchronous Entity Passing

The Type II IRM extends the Type I IRM by introduc-

ing the need for immediate feedback to the entity passing.
This is required in cases where the receiving simulation
may be in a state unable to accept the entity being passed,
e.g., because of a bounded queue (Figure). In this case the
entity transfer cannot succeed. One may argue that this is
an academic problem, since models could in almost any
case be partitioned to prevent this from happening. How-
ever, this IRM is an example for an entire class of prob-
lems requiring immediate communication between simula-
tions. Actually, all IRMs above the Type II RM require this
basic functionality. Therefore a solution to the Type II RM
could be the basis for standardizing solutions to the other
RMs as well.

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2
Bounded

Source 1 Queue 1 Work-
station 1 Sink 1

Factory Model 1

Source 2 Queue 2 Work-
station 2 Sink 2

Factory Model 2
Bounded

Figure 2: Type II IRM for Synchronous Entity Passing

Besides these reference models, the CSPI-PDG has
put forward a proposal for an Entity Transfer Specification
Standard as the basis for solving the Type I IRM (Taylor et
al. 2004).
1115
In a nutshell, the ETS version 1.1.1 suggests the usage
of HLA interactions for transferring entities between two
models. The sender-receiver relationship is represented by
building a special hierarchy of interaction classes and sub-
classes. As the root class, an interaction class called
“TransferEntity” is specified. It has sub-classes which cor-
respond to all potential recipient models, e.g. “TransferEn-
tityToFactoryModel1, TransferEntityToFactoryModel2,
etc.). These subclasses are meant to build a unique class
which a certain federate would have to subscribe. In our
simple example, Factory Model 2 would subscribe to
“TransferEntityToFactoryModel2” and could be sure that it
received information about all potential subclasses of this
class. The practical feasibility of this is commented on
later.

Further to this subclass identifying the target federate,
individual interaction classes are introduced for each con-
nection between a sending model and a target model. In
our example, there would be a single subclass to “Trans-
ferEntityToFactoryModel2” called “TransferEntityFac-
toryModel1ToFactoryModel2”. This interaction class
would be published by the sending model (Factory Model
1).

For transmitting the state of an transferred entity, the
interaction classes have a single parameter named “Entity“.
The type of this parameter is a complex datatype (record)
identifying the name of the entity, identifiers for the source
and destination, and any simulation dependent parameter.
The source and destination tags operate on the federate
identification level, i.e., they do not identify any
sink/source inside a model. As this article cannot repro-
duce the entire ETS the reader is referred to (Taylor et al.
2003b) and (Taylor et al. 2004) for further details. For spe-
cific comments on this specification please refer to section
5 of this article.

The following section investigates if and how a simu-
lation package with a generic HLA interface can adapt to
the so-defined standard and what benefits towards plug-
and-play interoperability it yields.

4 CASE STUDY: FROM GENERIC HLA
INTERFACES TO PLUG-AND-PLAY
CAPABILITIES

This case study has investigated, if and how the proposed
entity transfer specification (ETS) can be implemented on
top of the existing generic HLA interface for SLX and
which benefits it yields.

For performing these tasks, the SLX statement concept
has been used. SLX statements allow the extension of the
SLX language itself. Statements can be compared with
marcos known from other languages, however SLX state-
ments extend the macro concept by allowing the execution
of SLX code at compile time. In this way, a very flexible
way of extending the SLX language is provided. For im-

Strassburger

plementing the ETS specification two new statements
(“Federate” and “Transfer Entity”) have been defined in-
side SLX as follows:

statement Federate #FederateName

joining Federation #Federation
using FedFile #FedFile

 receiving entities [= {<#Recipient yes>| <#Recipient no>}]
 [@from {#SourceFederateName} ,...]
 [sending entities @to {#TargetFederateName} ,...]

[lookahead = #lookahead];

The federate statement has to be used for specifying

certain definitions like the federate name and the federation
name. Most importantly, the federate can specify if it ex-
pects to receive entities from other federates, and if it in-
tends to send entities to other federates. In the latter case,
multiple target federates can be specified.

In our example, factory models 1 and 2 would use the
following federate statements:

Federate FactoryModel1

joining Federation FactorySimulation
using FedFile Factory.fed
receiving entities = no
sending entities to FactoryModel2;

Federate FactoryModel2
 joining Federation FactorySimulation
 using FedFile Factory.fed

receiving entities from FactoryModel1;

The main benefit of the federate statement is the hid-
ing of all HLA details in its inside. From the simple argu-
ment list shown above the federate statement generates all
necessary HLA calls completely transparently to the user.
The statement automatically constructs the correct interac-
tion class names which it has to publish and subscribe ac-
cording to the ETS. It further on generates the code re-
quired for joining and synchronizing the model with other
federates. Please note that in the above example the op-
tional parameter “lookahead” is not specified. In that case,
the statement always assumes the safe option of “zero
lookehead”. Otherwise the specified lookahead value will
be used. Finally, the statement also contains code for re-
ceiving incoming entities and dispatching them to the right
location. This will be explained later.

For transferring entities to external federates, the fol-
lowing statement is defined:

statement Transfer [Entity] [#EntityPtr]

To #TargetFederateName
 [transferTime = #timeValue]

This statement internally generates the correct transfer

interaction which it has to send according to the ETS. The
optional parameter “transferTime” specifies the duration of
the transfer. If no value is specified, the transfer at the cur-
rent simulation time. The “Transfer” statement internally
111
performs runtime checking about potential user errors,
which could result from specifying a transfer time which is
smaller than the lookahead specified in the “Federate”
statement. In our example from above Federate 1 would
use the “Transfer” statement as follows:

Transfer Entity me To FactoryModel2;

The transfer statement is capable of transferring any

user defined entity. The user can specify any number of at-
tributes for the entity. This is achieved by encapsulating
the complex record data type into a single parameter of the
transfer interaction. This certainly also has drawbacks
(compare section 5), but in its current form it allows for a
very user friendly implementation. For our example factory
models, the entity class is defined as follows:

class Entity {
 string(256) EntityName; //parameter according to ETS
 string(256) Source; //parameter according to ETS
 string(256) Destination; //parameter according to ETS
 int size; //model specific parameter
 double production_time; //model specific parameter

 procedure dispatch_me {
 //Add code here to dispatch externally received

//entities within your model
 }
}

It can be noted that this interaction has a special

method called “dispatch_me”. This method only has to be
implemented in the receiving federates. The method will
be called from the synchronization algorithm, whenever a
new entity is received for the local federate. The method
has to make sure that the entity is dispatched to the right
source or entry point in the model. According to the ETS it
can use the parameters source and destination for that. This
code section has to be implemented by the user as it highly
depends on his choice of modelling the factory inside SLX.

While the “Federate” statement has to be inserted as
the first statement to be executed, the “Transfer” statement
can be placed anywhere you want to transfer entities to a
different model. Typically it will occur before a “termi-
nate” statement removing an entity from the local model.

Summarizing the case study it can be noted that by us-
ing the SLX statement concept and the entity transfer
specification it becomes extraordinarily easy to interoper-
ate SLX models with other models using the ETS. The ef-
fort for implementing a federate in SLX is reduced to in-
troducing two statements into the code of an SLX model
plus implementing a dispatch procedure for externally re-
ceived entities. The latter can be typically done in a single
line of code. In terms of plug-and-play capabilities, this so-
lution is as close as it can get to this objective in a simula-
tion language. In the best case, the effort for networking a
SLX model is changing three lines of code.
6

Strassburger

5 STANDARDIZATION RECOMMENDATIONS

On the positive side, the experiences from the case
study prove that the entity transfer standard can be imple-
mented on top of existing generic HLA interfaces. No
changes of the wrapper library implementing the HLA in-
terface of SLX have been necessary. Using encapsulation
mechanisms like the SLX statement concept can yield tre-
mendous additional simplifications for the user.

On the other hand, during the work on the case study it
was also observed that the current ETS specification has
some significant drawbacks:

1. Source and destination designators both operate

on the federate level, i.e., they specify the sending
and the receiving federate. This specification
lacks a possibility to differentiate between multi-
ple connections between any two federates. As-
sume two sinks in factory model 1 and two entry
points in factory model 2. The ETS in its current
form would not allow the target federate to dis-
patch entities to the right entry point, since all it
knew was that they were coming from factory
model 1. The author suggests that the ETS is
modified to allow the specification of both entry
and exit points as additional parameters of the
transferred entity.

2. The ETS suggests a hierarchy of transfer interac-
tions. The main intention is to have one single su-
perclass which federates can subscribe to in order
to receive all entities transferred to them. The idea
behind that is tempting. However, since the ETS
specifies the actual data to be transmitted as inter-
action parameters at the leaf level of the lowest
subclass, a federate subscribing to the superclass
will never receive the values transmitted in the in-
teraction parameter. This simply cannot work
since parameters are inherited from the superclass
to its subclass, but not vice versa. The author sug-
gests that the hierarchical structure of the transfer
interactions be removed. Source and destination
can be easier communicated as direct parameters
of the transfer interaction.

3. The specification of user defined attributes is
placed into a complex record datatype. Although
the motivation for this is obvious, it introduces
new room for interoperability challenges as all
participating federates have to be able to interpret
all of the attributes. A definition of user defined
attributes as individual parameters of the transfer
interaction would allow federates to subscribe to
only those parameters they are able to handle.

4. The ETS leaves some room for misinterpretation
in its definition of “Entity” and the “EntityType”.
In the template of the interaction parameter table
111
the transfer interaction has a single parameter
called “Entity” with the datatype “EntityType”.
EntityType itself is defined in the fixed record
datatype table. It is defined there with mandatory
fields “EntityName”, “Source” and “Destination”.
Only from the given example of how to use this
template it becomes clear that actually the name
of the parameter has to be changed according to
the name of the entity. This introduces the re-
quirement of changing FOMs whenever a new en-
tity type is talked about. This is an unnecessary
disadvantage, as the definition of the entity type
could as well be put as a mandatory parameter ei-
ther into the fixed record for the EntityType or it
could directly become an interaction parameter it-
self.

It can be noted that different solutions to comments 3

and 4 exist. The author suggests that the fewest possible
changes to the FOM be required of the user. It would be
advisable to define more properties directly as individual
parameters of the transfer interaction.

A better use of the hierarchy inside the interaction ta-
ble might be to actually diversify the transmitted entities in
terms of its parameters. A superclass of “TransferEntity”
could only have the significant parameters like source, des-
tination, entity type, and entity name. Subclasses could in-
herit from that class and add user defined attributes to it.

In addition to the current efforts made by the CSPI
PDG it might be useful to discuss and agree on reference
federation object models for certain application domains.
The could, in the simplest case, specify which attributes
entity types in a certain modeling domain should have.

6 SUMMARY AND FUTURE WORK

This paper has reviewed the innovations towards
COTS simulation package interoperability that have be-
come available through HLA. It has analyzed different so-
lutions for HLA enabling simulation systems. It can be
noted that the general feasibility of HLA enabling such
systems has been proven successfully in the past. A simu-
lation system with a generic HLA interface is capable of
interoperating with other federates in all ways offered by
HLA.

However, this paper also has outlined the reasons why
generic HLA capabilities are not sufficient for achieving
true plug-and-play interoperability between different
COTS simulation packages. The main reason is in the ef-
fort needed for the user to incorporate HLA functionality
into his/her model. Only by encapsulating HLA functional-
ity into a user friendly form, the next step towards plug-
and-play capabilities can be made.

The paper has further introduced and reviewed the
CSPI-PDG initiative with its main objective of creating
7

Strassburger

standardized HLA use patters for COTS simulation pack-
age interoperability. These standardized use patterns can
help to encapsulate HLA functionalities in a user-friendly
form. They also prevent some of the pitfalls that can hap-
pen when applying a complex standard like HLA.

The first proposal for such a standardized HLA use
pattern, namely the entity transfer specification as a solu-
tion to the Type I Interoperability Reference Models has
been commented and suggestions for its approval have
been made.

Future work will include the discussion of the next re-
vision of the ETS and its extension for Type II Reference
Models. The latter imposes specific new challenges on the
community, as its solutions require zero lookahead in any
case. Additional problems arise from the need of dealing
correctly with simultaneous events (e.g. two federates try-
ing to pass an entity to a queue at the same time which
only has a remaining capacity of one). Another interesting
area of future work will be to apply the encapsulation at-
tempts made with a simulation language like SLX to build-
ing block based tools like Extend.

REFERENCES

Eschenbacher, P. 2006. Simplex3 – The Universal Simula-
tion System. Available at <http://www.
simplex3.net>.

Henriksen, J.O. 1997. An introduction to SLX™. In Pro-
ceedings of the 1997 Winter Simulation Conference, ed.
Andradóttir, S., K. Healy, D. Withers, and B. Nelson,
559-566. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

IEEE 1516.1-2000. IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) Fed-
erate Interface Specification.

Lantzsch, G., S. Strassburger, C. Urban. 1999. HLA-
basierte Kopplung der Simulationssysteme Simplex III
und SLX. In: Proceedings Simulation und
Visualisierung '99, eds. O.Deussen, V. Hinz, P. Lorenz.
Magdeburg, March 4.-5. 1999, SCS International, pp.
153-166.

Strassburger, S., T. Schulze, U. Klein and J. O. Henriksen.
1998. Internet-based Simulation using off-the-shelf
Simulation Tools and HLA. In: Proceedings of the 1998
Winter Simulation Conference, 1669-1676. Piscataway,
New Jersey: Institute of Electrical and Electronics Engi-
neers.

Strassburger, S. 2001. Distributed Simulation Based on the
High Level Architecture in Civilian Application Do-
mains. Ghent: Society for Computer Simulation Inter-
national, ISBN 1-56555-218-0.

Strassburger, S., A. Hamm, G. Schmidgall, and S. Haasis.
2002. Using HLA Ownership Management in Distrib-
uted Material Flow Simulations. In Proceedings of the
1118
2002 European Simulation Interoperability Workshop.
June 2002. London, UK.

Strassburger, S., G. Schmidgall, and S. Haasis. 2003. Dis-
tributed Manufacturing Simulation as an Enabling
Technology for the Digital Factory. In Journal of Ad-
vanced Manufacturing Systems (JAMS). 2(1), 111-126.

Taylor, S., A. Bruzzone, R. Fujimoto, B. Gan, S. Strass-
burger, and R. Paul. 2002. Distributed Simulation and
Industry: Potentials and Pitfalls. In Proceedings of the
2002 Winter Simulation Conference, 688-694. Piscata-
way, New Jersey: Institute of Electrical and Electronics
Engineers.

Taylor, S. 2003. HLA-CSPIF. The High Level Architec-
ture COTS Simulation Package Interoperability Forum.
In: Proceedings of the 2003 Fall Simulation Interopera-
bility Workshop. September 14 – 19, 2003. Orlando,
USA.

Taylor, S., B. P. Gan, S. Strassburger, and A. Verbraeck.
2003a. HLA-CSPIF Technical Panel on Distributed
Simulation. In Proceedings of the 2003 Winter Simula-
tion Conference, 881-887. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers.

Taylor, S. et al. 2003b. HLA-CSPIF Discussion Document
Entity Transfer Specification. Version 1.1.1. Available
at <http://people.brunel.ac.uk/~csstsjt
/HLA-CSPIF/ets1_1_1.doc>

Taylor, S., S. Turner, and M. Low. 2004. A Proposal for
an Entity Transfer Specification Standard for COTS
Simulation Package Interoperation. In Proceedings of
the 2004 European Simulation Interoperability Work-
shop. June 28 - July 1, 2004. Edinburgh, Scotland.

AUTHOR BIOGRAPHIES

STEFFEN STRASSBURGER is head of the “Virtual
Development” department at the Fraunhofer Institute for
Factory Operation and Automation in Magdeburg, Ger-
many. He was previously working as researcher at the
DaimlerChrysler Research Center in Ulm, Germany, where
he was responsible for research topics in the Digital Fac-
tory and Digital Engineering context. He holds a Ph.D. and
a Master’s degree in Computer Science from the Otto-von-
Guericke University in Magdeburg, Germany. His interna-
tional experience includes a one-year stay at the University
of Wisconsin, Stevens Point and a stay at the Georgia Insti-
tute of Technology, Atlanta. The main research topics of
his department include virtual reality solutions for product
and process development, the combination of virtual reality
and discrete event simulation, and distributed and web-
based simulation. He is also the Vice Chair of SISO’s
COTS Simulation Package Interoperability Product Devel-
opment Group.

http://www.simplex3.net/
http://www.simplex3.net/
http://people.brunel.ac.uk/~csstsjt/HLA-CSPIF/ets1_1_1.doc
http://people.brunel.ac.uk/~csstsjt/HLA-CSPIF/ets1_1_1.doc

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

