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ABSTRACT 

For many years discrete-event simulation has been used to 
analyze production and logistics problems in manufactur-
ing and defense.  In the early 1980s, visual interactive 
modelling environments were created that supported the 
development, experimentation and visualization of simula-
tion models.  Today these environments are termed Com-
mercial-off-the-shelf Simulation Packages (CSPs).  With 
the advent of distributed simulation and, later, the High 
Level Architecture, the possibility existed to link together 
these CSPs and their models to simulate larger problems 
within enterprises (e.g. multiple production lines) and 
across supply chains.  However, the problem of standardiz-
ing the use of the HLA and its constituent parts in this do-
main exists.  The solution of this problem is the work of 
the CSP Interoperability Product Development Group 
(CSPI PDG).  The purpose of this paper is to introduce the 
CSPI PDG and to review the suite of standards proposed 
by the group and current progress. 

1 INTRODUCTION 

Annually at the Winter Simulation Conference there are 
frequent examples of where discrete-event simulation has 
been used to analyze production and logistics problems in 
manufacturing and defense.  Many of these use software 
tools developed to support the process of simulation, are 
based on visual interactive modelling environments devel-
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oped in the early 1980s and support model development, 
experimentation and visualization.  Today, these environ-
ments are sometimes termed Commercial-off-the-shelf 
Simulation Packages (CSPs).  With the advent of distrib-
uted simulation and, later, the IEEE 1516 High Level Ar-
chitecture (HLA), the possibility existed to link together, or 
interoperate, these CSPs and their models to simulate lar-
ger problems within enterprises (e.g. multiple production 
lines) and across supply chains.  However, for two or more 
CSP/models to interact across a communications network, 
there must be some agreement as to the form of interaction 
that takes place between them.  In distributed computing, 
the need to standardize the form of interaction over a net-
work is generally accepted and has given rise to standards 
that support the Internet and the World Wide Web (respec-
tively, RFCs and Recommendations).  It seems natural 
therefore to develop communication standards to support 
interoperability between CSPs.  Further, as the HLA has 
been put forward as the general interoperabil-
ity/communication standard for distributed simulation, it 
also seems natural to develop a standard based on the HLA 
that will therefore be potentially compatible with other 
HLA work.  Combined work towards this began in 2002 
with the formation of the CSP Interoperability Forum 
(CSPIF).  However, in order for standards to be recognized 
in a community, representation has to be made to a recog-
nized standards authority (e.g. the W3C or IETF).  The 
Simulation Interoperability Standards Organization (SISO) 
has authority for the HLA and other simulation interopera-
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Figure 1: A Simple Distributed Simulation 
bility standards.  In 2004 the CSPIF formally applied to 
SISO and was granted responsibility for the development 
of CSP interoperability standards.  The result of this was 
the formation of the CSP Interoperability Product Devel-
opment Group (CSPI PDG) (www.cspi-pdg.org).  Note 
that the term “product” is used in the same sense as RFC or 
recommendation.  The purpose of this paper is to introduce 
the CSPI PDG and to report on the current status of stan-
dards proposed by the group.  The paper also assumes 
some familiarity with the HLA. 

The paper is structured as follows.  Section 2 intro-
duces the problem of CSP interoperability in more detail.  
Section 3 presents the aim and objectives of the CSPI 
PDG.  Sections 4 to 6 introduce elements of the proposed 
standards.  Section 7 concludes the paper. 

2 COTS SIMULATION PACKAGE 
INTEROPERABILITY 

Consider a federation composed of CSPs/model federates 
that exchange data via a runtime infrastructure (RTI) im-
plemented over a network in a time synchronized manner 
(figure 1).  Two factories, F1 and F2, generically interact 
as denoted by the black double-headed arrow.  Each model 
consists of an arrival source Soi, a queue Qi, a workstation 
Wi, a resource Ri, and an exit sink Sii (where i is the fac-
tory identifier).  Different types of information might be 
exchanged.  For example, entities might be passed between 
models (i.e. the two factories are linked together – entities 
leave F1 at Si1 and arrive in F2 at So2) and the resources 
R1 and R2 might be shared to reflect a shared set of ma-
chinists that can operate workstations W1 and W2.  If this 
was the case, factory F1 must publish and send information 
to the RTI in an agreed format and time synchronized 
manner and factory F2 must subscribe to and receive that 
information in the same agreed format and time synchro-
nized manner, i.e. both federates must agree on a common 
representation of data and both must use the RTI in a simi-
lar way.  Further, the “passing” of entities and the sharing 
of resources require different distributed simulation proto-
cols.  In entity passing, the departure of an entity at a sink 
and the arrival of an entity at a source is effectively the 
1102
same scheduled event in the two models – most distributed 
simulations represent this as a timestamped event message 
sent from one federate to another (with the timestamp typi-
cally equal to the time that the entity finished processing in 
the last workstation (W1 in our example) or with travel 
time. The sharing of resources cannot be handled in the 
same way.  For example, when resource (R1) is released or 
an entity arrives in queue Q1, a CSP executing the simula-
tion of F1 will determine if workstation W1 can start proc-
essing an entity.  If resources are shared, each time R1 or 
R2 changes state a timestamped communication protocol is 
required to inform and update the changes of the shared 
resource state. 

This outlines our interoperability problem.  First, what 
information can be exchanged between CSP/model feder-
ates?  Secondly, of these, what are their synchronization 
requirements and in what common format should the data 
be exchanged?  Finally, given that there is no standard on 
which these CSPs are based, how can we accommodate 
changes in interoperability requirements?  It is the answers 
to these questions that define the CSPI PDG  range of pro-
posed standards.  The next section outlines the aim and ob-
jectives of the CSPI PDG.  

3 THE CSPI PDG 

The CSPIF was created in 2002 in an attempt to unify re-
search and developments in the interoperation of CSPs.  
The main outcome of the CSPIF was the reduction of the 
interoperability problem into different interoperability re-
quirements.  For example, in the last section it was briefly 
outlined that the interoperability requirements of entity 
transfer and resource sharing were different.  In discus-
sions over two years, this was further expanded into spe-
cific interoperability requirements.  It was further identi-
fied that as new features were continually added to CSPs, it 
was likely that this list of interoperability requirements will 
grow further.  However, only by a successful combination 
of end users, CSP vendors and researchers, could these in-
teroperability requirements be solved successfully.  The 
concept of several interoperability reference models 
(IRMs) was identified.  These were meant to be under-
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Figure 2: Type I Interoperability Reference Model 
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standable by CSP user and technology provider alike, and 
form the basis of the interoperability solution (in terms of 
data exchange representation and mechanism).  Finally the 
forum identified the need for benchmarks to compare dif-
ferent solutions.  After being officially recognized by 
SISO, the CSPIF became the CSPI PDG.  The aim of the 
CSPI PDG is to create a standardized approach to CSP in-
teroperability using the IEEE 1516 High Level Architec-
ture. 

But what of the questions posed in section 2?  The 
IRMs are intended to reduce the requirements of informa-
tion exchange into solvable problems and so answer the 
first question and produce our first objective. To answer 
the second question produces the need for three objectives: 
standard data representations, standard exchange mecha-
nisms, and a set of interoperability frameworks that com-
bine these as needed by each IRM.  The final question re-
quires an open, extensible standard and the final objective.  
The objectives of the CSPI-PDG are therefore to: 

 
• Create standard reference model(s) that can be 

used to communicate concepts and problems be-
tween researchers, users, and vendors in support 
of the CSPI-PDG aim. 

• Develop standard data exchange representations. 
• Develop standard data exchange mechanisms. 
• Develop standard interoperability frameworks. 
• Create an open, extensible standard. 
 
Each of the above objectives of the standards devel-

opment process will now be discussed as they outline the 
CSPI-PDG proposed range of standards. 

4 INTEROPERABILITY REFERENCE MODELS 

Interoperability Reference Models (IRMs) are the first de-
liverable from the CSPI PDG.  It is difficult without hind-
sight to determine what information needs to be exchanged 
between CSPs and their models.  Over one year and five 
workshops the CSPIF discussed what the needs of CSP in-
teroperation would be.  What the forum came to realize 
quite quickly was that there were some major obstacles to 
overcome and major problems to be solved.  For example, 
many of CSPs are difficult to interface to – each has its 
110
own interfacing needs (time/data) and has its own particu-
lar data representation.  Additionally, some interoperability 
problems, such as shared resources, are non-trivial.  To 
make progress, the interoperability problems were divided 
into a series of problem types that were represented by 
IRMs.  A problem type is meant to capture a general class 
of interoperability problem, while an interoperability ref-
erence model is meant to promote common understanding 
between CSP vendors, simulation users and technology so-
lution providers.  These two concepts are key as (i) trying 
to solve everything at once would mean zero progress and 
(ii) distributed simulation is complex – a common frame of 
reference promotes communication between key stake-
holders.  Additionally, the existence of “types” means that 
interoperability solutions to identified problems can be first 
standardized and then certified.  Let us now review the 
currently identified IRMs. 

4.1 Type I Interoperability Reference Model 
(Asynchronous Entity Passing) 

The Type I IRM represents models that interact on the basis 
of entities, i.e. models are linked together so that one 
model may pass an entity to another.  The reason why this 
is referred to “asynchronous” is that there is no immediate 
or direct feedback when an entity is passed.  Note that 
some COTS simulation packages do not use entities.  “En-
tity” in this context is used to mean the representation of 
some physical or logical system element that undergoes 
some set of instantaneous state changes (events).  “Object” 
or “transaction” are two terms used in a similar context. 
Additionally, various comments have been made on the 
semantics of passing an entity from one model to another.  
For purposes of this discussion, “entity passing” is in-
tended to mean “the passing of timestamped information 
relating to the representation of an entity transferred from 
one model to another.”  

Let us consider the creation of such a simple distrib-
uted simulation consisting of two factory models, Mo1 and 
Mo2, shown in figure 2.  Both are identical with one ex-
ception.  The sink Si1 in Mo1 and the source So2 in Mo2 
are now logically linked together.  The combined models 
represent the combined factory as parts finishing machin-
3
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ing in W1 leave the model Mo1 at sink Si1 and enter the 
model Mo2 at So2 and are placed in queue Q2 to await 
machining in W2.  Note that the original form of this refer-
ence model replaced the sink and the source with a direct 
link between W1 and Q2.  This was modified to a logical 
link between Si1 and So2 as it encourages transparency, 
i.e. the minimum amount of technological intervention 
(model alteration) in the development of a distributed 
simulation solution.   

In terms of minimum technological support of the 
logical link between the two models, all that is required is 
the transmission of timestamped entity information be-
tween model Mo1 and model Mo2 in such a way that 
model Mo2 receives the entity information in correct order 
with its own events.  This is the reason why this IRM has 
been termed “asynchronous” – there is no synchronous 
message exchange needed to transfer the entity information 
between the two models (as will be required in the Type II 
IRM).   

Specifically, in terms of a distributed simulation, any 
solution to this Type I IRM must be able to 

 
• Transfer timestamped entity messages from one 

model to another via a timestamped message or 
such.  

• Allow a model to correctly receive timestamped 
entity messages from one or more models. 

• Correctly coordinate this information with the re-
ceiving model events being processed by the 
COTS simulation package.     

 
Note that this discussion assumes that any additional 

model detail added as a result of validating the logical link 
between two models can be rooted in the Type I IRM as 
long as it can be reduced to entity information being sent 
asynchronously between the two models in the manner de-
scribed.  A UML version of this IRM is available from the 
CSPI PDG website. 

4.2 Type II Interoperability Reference Model 
(Synchronous Entity Passing) 

The Type I IRM effectively dealt with sending timestam-
ped entity information between models with no immediate 
feedback.  The Type II IRM deals with this case.  Consider 
the problem of a bounded queue.  This represents the case 
where there is limited physical space in the system being 
represented.  In the case where model has a bounded queue 
that is full, then if a workstation that precedes the queue 
finishes work on a work item the workstation must keep 
that work item as there is nowhere to place it – the work-
station is unable to accept any new work.  When the queue 
has space then the workstation can pass on the work item 
and accept new work. 
110
Figure 3 shows version 2 of the Type II IRM (with 
sink/source added after version 1).  In this example, queue 
Q2 is a bounded queue.  When W1 in Mo1 finishes work 
on a part entity, the logical link between sink So1 and 
source Si2 dictates that the part entity must be passed to 
Q2.  However, if Q2 is full then W1 must retain that part 
entity until Q2 has space (when W2 accepts its next part 
entity).  In terms of a technological solution, the transfer of 
timestamped entity information between the models must 
be done synchronously, i.e. whenever an entity is trans-
ferred between the models some kind of synchronous ex-
change of information and agreement must take place be-
fore the entity is transferred.  The implications of this are 
that 

 
• When a distributed simulation solution seeks to 

pass timestamped entity information from one 
model to another model with a bounded queue, 
and the bounded queue to which the entity will be 
received is full, the distributed simulation solution 
must ensure that the sending model blocks the ap-
propriate workstation (the entity is still in the 
workstation) and vice versa.  This is an immediate 
synchronous interaction derived from an initial 
asynchronous timestamped entity message. 

• When the bounded queue in the receiving model 
has space, the distributed simulation solution must 
ensure that the sending model unblocks the ap-
propriate workstation and the receiving model 
places the entity blocking the workstation in the 
bounded queue.  This is an asynchronous time-
stamped message representing the unblocking of 
the workstation (and therefore must be processed 
as any other timestamped message). 

 
Technologically, many variants of the above are pos-

sible (such as when the entity is actually “sent”).  How-
ever, the same variant must be used by both packages.  
Figure 4 shows an example of this.  Model 1 and Model 2 
infer the models, the COTS simulation packages, and the 
distributed simulation technology.  The first message ex-
change represents the case where the bounded queue has 
space.  The second is representative of the other case 
where the bounded queue is full and later empties.  A UML 
version of this is available from the CSPI PDG website. 

4.3 Type III Interoperability Reference Model (Shared 
Resources) 

Figure 5 shows the case where two models share informa-
tion on the basis of resources.  In this simple scenario, re-
source R is common between the two factory models and 
represents a pool of workers.  When either workstation 
wishes to process an entity waiting in their queues, in this 
scenario they must also have a worker.  If a worker is 
4
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Figure 3: Type II Interoperability Reference Model showing Bounded Queue 
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So2 Q2 W2 Si2

Bounded
Figure 4:  Example Protocol for Type II Interoperability Reference Model 

timestamped entity message

synchronous accepted message

timestamped entity message

synchronous block message

timestamped unblock message

Bounded queue has space
and accepts the entity

Model1 Model2

When unblock message
is received, unblock the
workstation at timestamp

Workstation is ready to
pass on an entity

Confirm the acceptanceIf decision is acceptance
then immediately unblock
the workstation and carry
on simulation

Workstation is ready to
pass on an entity

Bounded queue has no
space and must block the
workstation

Send blocking messageIf decision is block then
immediately block the
workstation and carry on
simulation

When bounded queue has
space send unblock
message and receive the
entity into the queue
available in R then processing can take place.  If not then 
work must be suspended until one is available.   

There have been some suggestions that a simple solu-
tion to this problem is to convert the resources to some 
kind of entity that is passed between the two models.  This 
is not at all satisfactory as some models use resources that 
are effectively workers which have various skills and shift 
patterns, i.e. if the modeler wishes to model system ele-
ments as resources then they should not be limited by dis-
tributed simulation.   

A distributed simulation solution should therefore be 
able to make sure that the contents of R are consistent be-
tween the two models.   
1105
4.4 Type IV Interoperability Reference Model (Shared 
Event) 

Figure 6 shows the case where two models share an event 
E.  This is intended to be a shared “signal” between the 
two models.  For example when model Mo2 reaches a 
given threshold value (a quantity of production) it should 
be able to signal this fact to all models that have an interest 
in this fact.  

4.5 Type V Interoperability Reference Model (Shared 
Data Structure) 

Figure 7 shows a data structure D that is shared between 
two models.  This is intended to represent any data that 
needs to be shared between the models.  The implication of 
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Figure 5: Type III Reference Model (Shared Resources) 

Factory Model Mo2Factory Model Mo1
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Q2 W2 Si2

R
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Figure 6: Type IV Reference Model (Shared Event) 

Factory Model Mo2Factory Model Mo1

So1 Q1 W1 Q2 W2 Si2Si1 So2

E E
any distributed simulation solution to this problem is that 
any update to one copy of D has to be synchronized with 
all copies of D.    

4.6 Type VI Interoperability Reference Model (Shared 
Conveyor) 

Figure 8 shows two models sharing a conveyor, i.e. a form 
of transport that requires physical representation in a 
model.  The implication of this IRM is that the conveyor is 
shared between, for example, the production units in a fac-
1106
tory production line.  Various views have been made on 
this IRM that range from it being a necessity to it being su-
perfluous.  As the IRMs are intended to be targets for stan-
dard solutions derived from problems identified by the end 
user community, this modelling problem remains as an 
IRM as was indeed an end user who identified this as such.   

5 DATA EXCHANGE SPECIFICATION 

Each IRM represents the exchange of a particular type of 
data.  The data exchange specifications being developed by 
Figure 7: Type V Reference Model (Shared Data Structure) 

Factory Model Mo2Factory Model Mo1

So1 Q1 W1 Q2 W2 Si2Si1 So2

D D

Figure 8: Type VI Reference Model (Shared Conveyor) 
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So1 Q1 W1 Q2 W2 Si2
C C
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Figure 9: Interaction Class Hierarchy 
 

CSPI PDG are intended to specify how this data should be 
formatted in as general manner as possible in the HLA’s 
Object Model Template (OMT) notation (in its current 
IEEE 1516-2000 form).  The current focus, the Entity 
Transfer Specification (ETS), deals with the representation 
of entities in Type I and Type II IRMs.  The reason for this 
is that both IRMs deal with the transfer of entities between 
CSPs.  The difference between the IRMs is that Type II re-
quires additional synchronization to deal with the bounded 
buffer problem.  The following discussion is based on the 
current version of this emerging standard Version 1.1.1.  
We shall define a source model as being the model from 
which a timestamped entity leaves and a destination model 
as the model at which the timestamped entity arrives.  
These are necessary as there may be different possible 
routings between models (as defined by the model, not the 
RTI and Interoperability Framework) and there must be 
enough information for this to be conveyed for this model 
routing to be accomplished.  Models may also have multi-
ple sources and it is important that there must be some way 
of indicating at which source point an entity enters a 
model.  In this version of the ETS, we assume there is only 
one receiving point in the destination model for a specific 
entity type from a specific source model, i.e. for different 
entity types there are different single receiving points.  
Version 2 of this data exchange specification will address 
multiple entry/exit combinations. We shall define time as 
being the time when an entity leaves a source model and 
instantaneously arrives at the destination model (i.e. an 
event has occurred at time marking the departure of an en-
tity from one subsystem to instantly arrive at another).   

In terms of entity representation, as we are concerned 
with the transfer of a timestamped entity from a model in 
one federate to a model in another, our focus is a common 
data exchange format of the entity that has been prepared 
for transfer.  We will assume that there is some translation 
mechanism between the heterogeneous CSPs to convert to 
and from our ETS representation via the appropriate Inter-
operability Framework (IF).  We shall also assume that 
1107
time has been converted into the same units and resolution 
in both models.  As with most distributed systems, the rep-
resentation of an item must be marshaled (flat) so that it 
can be sent as a stream of bytes.  We shall therefore repre-
sent a mapped entity as a name and zero or more attributes.   
The form and type of the attributes are the result of the en-
tity-entity mapping between the heterogeneous CSPs and 
their models.   

An entity is therefore defined as entity = {entityName, 
attributes*}, e.g.  widgetEntity = {widgetEntity, 24, 
“Acme”}, which represents a widget entity with attributes 
of (integer) 24 and (string) Acme.    

When a CSP determines that an entity has left its 
model, the CSP must be able to deliver the following in-
formation to the IF: output(entity, time, source, destina-
tion). 

Similarly, when the IF is ready to pass an entity to the 
CSP, indicating that an entity has arrived, the IF must be 
able to deliver the following information: input(entity, 
time, source) where: 

 
• entity is the name of the entity entityName and 

zero or many attributes, 
• time is the time at which the entity left the model, 
• source is the name of the sending model, and 
• destination is the name of the destination model. 
 
On output the source and destination are used by the 

Interoperability Framework to select the appropriate trans-
fer mechanism.  On input, the CSP uses source to deter-
mine the appropriate entry point in a model (i.e. where the 
entity has been transferred from).  time is used to perform 
CSP time synchronization.  

In this specification HLA interactions are used to rep-
resent the passing of an entity from one model to another at 
the RTI level.  Figure 9 shows the ETS interaction class 
hierarchy.  Features of this are: 
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• transferEntity – the superclass.  This allows a fed-
erate to conveniently subscribe to all instances of 
entity transfer (for purposes of monitoring, visu-
alization, etc.)   

• transferEntityToFedDest – a single subclass per 
receiving federate where FedDest is the name or 
abbreviation of the receiving federate’s model.  It 
exists for the convenience of the FedDest federate 
to subscribe to all instances of transferEntity 
bound to the destination federate without explicit 
naming. 

• transferEntityFedSoToFedDest – subclasses for 
each entity transfer relation where FedSo is the 
name or abbreviation of the sending federate’s 
model.  It allows the source federate to send a 
timestamped interaction that represents the trans-
fer of an entity from source to destination at a 
given time.   

 
Note that in the above for an actual implementation 

FedSo and FedDest are replaced by the source and destina-
tion federate names and Entity is replaced by the name of 
the entity as appropriate.  In a federate’s SOM (Simulation 
Object Model) or the federation FOM (Federation Object 
Model) the following tables are used in our exchange for-
mat. 

 
• Interaction Class Table: This contains the interac-

tion classes used to transfer the entities.  These 
will be the interaction superclass transferEntity, 
its interaction subclasses transferEntityToFed-
Dest, and their interaction subclasses transferEnti-
tyFedSoToFedDest.   

• Parameter Table: Each transferEntityFedSoTo-
FedDest interaction will have a named parameter 
Entity with a named datatype EntityType.  In the 
table, unless otherwise stated, Available Dimen-
sions shall be NA (as data distribution manage-
ment is not used, Transportation shall be HLAre-
liable (TCP semantics) and Order shall be 
timestamp,  i.e. messages must arrive in time-
stamp order. 

• Datatype Table: A fixed record datatype table 
shall exist to represent the named EntityType and 
will consist of entityName, source, destination, 
and attributes.  The datatypes of entityName, 
source and destination will be of type HLAAS-
CIIstring.  The type of the attributes will be de-
fined using the HLA datatype types as appropriate 
to best represent the type of the attribute.   

 
The above is enough to define the representation of an 

entity transferred from one model to another via the RTI.  
The translation of the datatype of this representation and 
110
the internal type representation of the CSP must be per-
formed by the IF according to the requirements of the CSP.   

The interaction classes are meant to be used in the fol-
lowing way in an IF.  During initialization, a federate will:  
 

• Indicate that it is capable of sending entities to 
various destination federates by publishing all 
transferEntityFedSoToFedDest interactions, and 

• Indicate that it is capable of receiving entities 
from any other federate by subscribing to all 
transferEntityToFedDest interactions. 

 
During runtime, when the CSP sends the message 

equivalent to output(entity, time, source, destination). The 
IF will use destination to select the appropriate interaction 
class to use.  It will then parameterize an interaction in-
stance with the details supplied in the output message de-
tails.  When the RTI passes an interaction instance to the 
IF, the IF will use the instance’s details to pass the entity to 
the CSP in some input message with source to indicate 
which model the entity has arrived from. 

6 INTEROPERABILITY FRAMEWORKS 

Figure 10 shows the current CSPI PDG reference interop-
erability framework (IF) for the Type I IRM. The IF con-
sists of a set of functions (see Table 1) that allows a CSP to 
create/join a distributed simulation, and also to send enti-
ties to other CSPs as well as receive them. The functions 
are arranged into 4 groups: initialization, simulation execu-
tion, termination and supporting services. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
Figure 10: Reference Interoperability Framework 

 
 As part of the IF, the CSP Handler (CH) provides an 
interface consisting of a set of functions to be invoked by 
the CSP when needed. Through the interface, the CH in-
vokes the necessary calls to the RTI ambassador on behalf 

HLA Runtime Infrastructure (RTI) 

Simulation 
Model 

         CH 

CSP  

Interface to HLA-RTI 

Interface to CSP 
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of the CSP and transfers the information received from the 
federate ambassador to the CSP.  
 

Table 1: Functions in the Interoperability Framework 

 
Fig. 11 shows the reference interoperability frame-

work protocol under investigation. This consists of a CSP 
sending n entities through the CH and RTI to other CPSs 
using the IF functions such as transferEntity and re-
ceiveEntity. These two functions correspond to the ETS 
output and input to pass entities between CSPs.  

There are various different approaches to time man-
agement using a HLA RTI to support distributed discrete-
event simulation. The approach described here is based 
around NextEventRequest (others are currently under in-
vestigation as part of the work developing the Type I IF).  
When the CSP wishes to advance to the time of its next 
event, it issues an advanceTime request to the CH.  The 
CH invokes the corresponding RTI service nextEventRe-
quest.  The response from the RTI is zero or many ETS in-
teractions received via receiveInteraction and a new simu-
lation time granted via timeAdvanceGrant. The interactions 
represent the arrival of entities at the time granted by 
timeAdvanceGrant and may be less than the time initially 
requested by the CSP (i.e. entities arrive before the time of 
the original next event – the new time of next event is that 
of the arriving entities).  If no interactions appear, the time 
granted is exactly  the requested time.  Either way, this 
grant time is returned to the CSP with the entities received 
(if any) via input(entity, time, source), the CSP advances 
its local simulation time and continues execution.  If, as a 
consequence of this, any entities leave the simulation 
model, the CSP will send to CH as many output(entity, 
time, source, destination) as appropriate. CH will translate 
these into ETS interactions and then forward these to the 
RTI by invoking sendInteraction. This continues until 
some terminating condition is met.   
 

Group Name 
setSynMethod() 
setLookahead() 
registerController() 
registerModel() 
registerInEntity() 

Initialization 

registerOutEntity() 
advanceTime() 
setAttributeValue() 
transferEntity() 
receiveEntity() 
getAttributeValue() 
getExEntryStatus() 

Simulation 
Execution 

setExEntryStatus() 
Termination terminateDistributedSimulation() 

getInEntityID() 
getOutEntityID() 
getInEntityName() 

Supporting Ser-
vices 

getOutEntityName() 
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Figure 11: Reference Interoperability Framework Protocol 

 CONCLUSIONS 

his paper has presented an overview of the work being 
one by the CSPI PDG to standardize the way in which 
OTS simulation packages interoperate via the High Level 
rchitecture.  There has been substantial progress and ref-

rence implementations exist with Autosched AP, Simul8 
nd Witness.  At the time of writing we are waiting for the 
ew version of the HLA to be published in order to update 
he PDG’s work in compliance with the new version of the 
tandard.  Taylor, et al. (2006) further develops issues dis-
ussed in this paper and Wang, et al. (2006) discusses is-
ues concerning the development of a solution to the Type 
I IRM. Space prevents listing current papers associated 
ith this work.  Instead visit the CSPI PDG’s web pages at 
ww.cspi-pdg.org and at SISO (www.sisostds 
org).  The CSPI PDG invites new membership. 

EFERENCES 

aylor, S. J. E., X. Wang, S. J. Turner, and M. Y. H. Low. 
2006. Integrating Heterogeneous Distributed COTS 
Discrete-Event Simulation Packages: An Emerging 
Standards-based Approach. IEEE Transactions on 
Systems, Man and Cybernetics: Part A, 36, 1, 109-
122. 

advanceTime nextEventRequest

receiveInteraction*

CSP CH 

receiveEntity*

transferEntity sendInteraction*

timeAdvanceGrantnewSimulationTime
…

…

…
…

nEntityReceived

getAttributeValue*

setAttributeValue*

registerModel createFederationExecution
joinFederationExecution

…

registerInEntity*
subscribeInteractionClass*

registerOutEntity* publishInteractionClass*

terminateDS
resignFederationExecution
 destroyFederationExecution

RTI

…



Taylor, Strassburger, Turner, Low, Wang, and Ladbrook 

 

 
Wang, X., S. J. Turner, M. Y. H. Low, and S. J. E. Taylor, 

2006. COTS Simulation Package (CSP) Interoperabil-
ity – A Solution to Synchronous Entity Passing.  In 
Proceedings of the Twentieth ACM/IEEE.SCS Work-
shop on Principles of Advanced and Distributed Simu-
lation. 201-210. IEEE Computer Society. 

AUTHOR BIOGRAPHIES 

JOHN LADBROOK has worked for Ford Motor Com-
pany since 1968 where his current position is Simulation 
Technical Specialist. In 1998 after 4 years research into 
modelling breakdowns he gained an M.Phil (Eng.) with the 
University of Birmingham. In his time at Ford, he has 
served his apprenticeship, worked in Thames Foundry 
Quality Control before training to be an Industrial Engi-
neer. Since 1982 he has used and promoted the use of Dis-
crete Event Simulation. In this role he has been responsible 
for sponsoring many projects with various universities. For 
the past seven years, he has been Chairman of the Witness 
Automotive Special Interest Group. His e-mail address is 
<jladbroo@ford.com>. 
 
MALCOLM YOKE HEAN LOW is an Assistant Profes-
sor in the School of Computer Engineering at the Nanyang 
Technological University (NTU), Singapore. Prior to this 
he was with the Singapore Institute of Manufacturing 
Technology, Singapore (SIMTech). He received his Bache-
lor and Master of Applied Science in Computer Engineer-
ing from NTU in 1997 and 1999 respectively. In 2002, he 
received his D.Phil. degree in Computer Science from Ox-
ford University. His current research interest is in the ap-
plication of parallel/distributed simulation, grid computing 
and agent technology for the modeling, simulation, analy-
sis and optimization of complex systems. His e-mail  ad-
dress is <yhlow@ntu.edu.sg>. 

 
STEFFEN STRASSBURGER is head of the department 
“Virtual Development” at the Fraunhofer Institute for Fac-
tory Operation and Automation in Magdeburg, Germany. 
He was previously working as researcher at the Daimler-
Chrysler Research Center in Ulm, Germany, where he was 
responsible for research topics in the Digital Factory and 
Digital Engineering context, esp. in the area of simulation 
integration and distributed simulation. He holds a Ph.D. 
and a Master’s degree in Computer Science from the Otto-
von-Guericke University in Magdeburg, Germany. His in-
ternational experience includes a one-year stay at the Uni-
versity of Wisconsin, Stevens Point and a stay at the Geor-
gia Institute of Technology, Atlanta. He actively 
participates in several international conferences. The main 
research interests of his department include virtual reality 
solutions for product and process development, the combi-
nation of virtual reality and discrete event simulation, dis-
tributed and web-based simulation, and middleware tech-
111
nologies like the High Level Architecture,  CORBA, and 
Web Services. His e-mail address is <strassburger@ 
iff.fraunhofer.de>. 

 
SIMON J. E. TAYLOR is the co-founding Editor-in-
Chief of the UK Operational Research Society’s (ORS) 
Journal of Simulation and the Simulation Workshop series.  
He has served as the Chair of the ORS Simulation Study 
Group between 1996 to 2006 and was appointed Chair of 
ACM’s Special Interest Group on Simulation (SIGSIM) in 
2005.  He is also the Founder and Chair of the COTS 
Simulation Package Interoperability Product Development 
Group (CSPI-PDG) under the Simulation Interoperability 
Standards Organization.  He is a Senior Lecturer in the 
Centre for Applied Simulation Modelling in the School of 
Information Systems, Computing and Mathematics at 
Brunel University and a visiting Associate Professor at 
Nanyang Technological University.  His recent work has 
focused on the development of standards for distributed 
simulation in industry. His e-mail address is 
<simon.taylor@brunel.ac.uk>. 

 
STEPHEN JOHN TURNER joined Nanyang Techno-
logical University (Singapore) in 1999 and is currently an 
Associate Professor in the School of Computer Engineer-
ing and Director of the Parallel and Distributed Computing 
Centre. Previously, he was a Senior Lecturer in Computer 
Science at Exeter University (UK). He received his MA in 
Mathematics and Computer Science from Cambridge Uni-
versity (UK) and his MSc and PhD in Computer Science 
from Manchester University (UK). His current research in-
terests include: parallel and distributed simulation, distrib-
uted virtual environments, grid computing and multiagent 
systems. His e-mail address is <assjturner@ntu. 
edu.sg>. 

 
XIAOGUANG WANG is currently a Ph.D. student at 
School of Computer Engineering (SCE), Nanyang Techno-
logical University, Singapore. She received her B.Sc in 
Computer Science form Nanjing University of Aeronautics 
and Astronautics, China in 1997. Her research interests lie in 
Distributed Simulation and the High Level Architecture. Her 
e-mail address is <xgwang@pmail.ntu.edu.sg>. 
0

mailto:jladbroo@ford.com
mailto:yhlow@ntu.edu.sg
mailto: strassburger@iff.fraunhofer.de
mailto: strassburger@iff.fraunhofer.de
mailto:simon.taylor@brunel.ac.uk
mailto:assjturner@ntu.edu.sg
mailto:assjturner@ntu.edu.sg
mailto:xgwang@pmail.ntu.edu.sg

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



