
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

COMPOSING SIMULATIONS FROM XML-SPECIFIED MODEL COMPONENTS

Mathias Röhl

Adelinde M. Uhrmacher

University of Rostock

Department of Computer Science

Albert-Einstein-Str. 21, D-18059 Rostock, GERMANY
ABSTRACT

This paper is about the flexible composition of efficient sim-

ulation models. It presents the realization of a component

framework that can be added as an additional layer on top

of simulation systems. It builds upon platform independent

specifications of components in XML to evaluate depen-

dency relationships and parameters during composition. The

process of composition is split up into four stages. Starting

from XML documents component instances are created.

These can be customized and arranged to form a composi-

tion. Finally, a composition is transformed to an executable

simulation model. The first three stages are general appli-

cable to simulation systems; the last one depends on the

Parallel DEVS formalism and the simulation system James

II.

1 INTRODUCTION

The deficiencies of low-level interoperability approaches like

HLA have motivated research on component-based simu-

lation and shifted focus to higher levels of interoperability

(Tolk and Muguira 2003). Semantic consistency checks are

recognized to play an important role for composing sim-

ulation models (Petty, Weisel, and Mielke 2005), e.g., to

account for the context of use and the level of abstraction

of a model (Davis and Anderson 2004, Yilmaz 2004).

However, the use of programming languages

is the predominant way to specify simulation

model components today (Chen and Szymanski 2002,

MacSween and Wainer 2004). Concepts for composability

infrastructure (Kasputis and Ng 2000) and discussion on

composability (Davis and Anderson 2004) underline the

need for model component repositories in general and

XML-based solutions in particular (Brutzman et al. 2002).

Based on the concepts discussed in (Röhl 2006) we

present a framework for composing simulation models from

XML specifications. In a first step, consistency of compo-

sitions is checked on a syntactical level.
1081-4244-0501-7/06/$20.00 ©2006 IEEE
The paper is structured as follows. The next section

introduces the conceptual and architectural cornerstones

of the framework. Afterwards, the implementation of the

framework is sketched. The composition of a simulation

model and the interplay between basic entitiesis of the

framework is exemplified on the composition of a network

model. The paper concludes with a discussion of related

work.

2 TOWARDS A MODEL COMPONENT

FRAMEWORK

Figure 1 shows the four stages that make up the con-

ceptual “cornerstones” for composing simulation models

(Röhl 2006).

Component
Component

Component

Interfaces

1 XML Representation 4 Simulation Model

3 Composition2 Model Components

Figure 1: Stages for Composing Simulations

As much as possible of compositions should be speci-

fiable by XML Documents. Declarative specifications ease

database integration, readability by users, and the devel-

opment of graphical user interfaces. XML-based solutions

are well suited to specify meta data. Furthermore, standard
3

Röhl and Uhrmacher
exchange formats based on XML ease the import and export

of model definitions.

As regards contents, the Component Definitions orien-

tate on the Unified Modeling Language 2.0 (OMG 2005).

Most notably published and required interfaces of each

component have to be explicitly specified. Thereby internal

details of a component, i.e., the implementation of model

behavior, can be hidden and direct dependencies between

models eliminated.

A set of components may become customized and

arranged to form a Composition according to the aim of a

simulation study. Parameters set on component instances are

evaluated and dependencies between components resolved.

Specification of compositions and connections is also based

on the UML 2.0.

Execution of experiments needs a Simulation Model

specified in a certain modeling formalism. The Paral-

lel DEVS formalism (Zeigler, Praehofer, and Kim 2000) is

used for representing the executable model. The simulation

system James II (Uhrmacher 2006) provides the simula-

tion engine for executing Parallel DEVS simulation models

efficiently.

The challenge for realizing a framework according to

these concepts stems from the different characteristics of

declarative and imperative representations. While declara-

tive representations of components work well for data base

activities like storing, querying, and retrieving of compo-

nents, they bear a significant execution overhead. In contrast,

imperative implementations of models are generally more

efficient to execute but less eligible for data base integration.

Ideally one wants to combine the advantages of both

”worlds”, i.e., to compose efficient simulation models flex-

ibly. To this end, the realization of our framework is based

on the strict separation between composition and execu-

tion phase. All activities that account for the composition

of models work on XML data and are kept strictly pre-

executive.

The production of a simulation model is deferred after

the composition phase is completed. Simulation solely

works with pure model implementations. All XML data and

component instances are disposed. The resulting simulation

model does neither bear an XML nor a component overhead.

During the composition phase, the use of a programming

language is only allowed within a very restricted scope of

a component definition. It may be used locally to specify

model behavior and parameter mapping. This leads to the

distinction between public and private part of a component.

XML is enforced to be used for the entire public part

of component definitions. Thereby, the public part of a

component is kept independent from a concrete modeling

system and a programming language. Specification of model

behavior may be done in XML, in a programming language,

or a combination thereof. For reasons of simplicity, we

restrict the use of programming languages to Java.
1084
2.1 Instantiation of Components

XML documents are the entry points for the framework.

Each model component requires at least one XML instance

document holding the public (interface) of a component

and optionally a second XML document accounting for

the private (model implementation) part. For using XML

specifications in a tool they have to be transformed to objects

accessible via a programming language.

In the framework, XML handling is based solely on

entities that are bound to an XML Schema Definition

(Röhl and Uhrmacher 2005). Schema Definitions mainly

define the syntax of an XML document and thereby pro-

vide the means for rendering XML documents valid or

invalid. The entity that provides access to XML documents

holding component data is bound to the XML Schema given

in Röhl (2006). As such it comprises accessors to a set of

parameters, a reference to a parameter mapper, a set of ports,

a set of sub components, a set of connections (between sub

components), and a reference to a model definition.

Bound entities for component and model data al-

low transparent unmarshaling of XML documents to Java

objects and marshaling of Java objects back to XML

(Röhl and Uhrmacher 2005).

In contrast to software components, XML is a good

choice for defining model behavior. However, for the simu-

lation system James II it showed especially useful to integrate

Java specifications of models that use XML merely for the

public part of a component. As long as no standard XML

format exists for a modeling formalism, as it is the case with

atomic DEVS models, tool specific model implementation

provide a proper workaround (Röhl and Uhrmacher 2005).

Furthermore, this allows to combine new model components

with legacy models, as for the latter only an XML wrapper

document has to be specified.

To put XML data objects to real use we adopt the idea

of component homes as introduced by Enterprise Java Beans

(Sun Microsystems 2003) and also used by the Corba Com-

ponent Model (OMG 2002). A home manages creation of

component instances of a certain type according to an XML

document. For creating a component the home clones the

bound component data and initializes a component instance.

Thus, each component instance works on an individual data

object. For using a component it usually needs to be cus-

tomized with parameters, on which we will take a look

now.

2.2 Customization

For providing customizable model components we allow to

set parameters on component data. Once set, parameters

have to be evaluated and internal details of a component to be

adapted according to the parameter’s values. The difficulty

is now, that parameter evaluation cannot be done by the

Röhl and Uhrmacher
component definition itself. Our component definition is

an entirely declarative one holding only component data in

XML. Furthermore, the implementation of model behavior

is usually done within a certain modeling formalism that

does not know about parameter evaluation.

Therefor, we need an additional entity that a com-

ponent’s configuration according to parameter values. An

important constraint on the mapper is that it is only allowed

to change XML data.

XSLT(W3C 1999) would be a good choice for specify-

ing parameter mappers, as it can be specified itself in XML

and thereby preserves platform independence of component

specifications. Nevertheless, mappers may also be specified

in a programming language, as it is the case in our current

realization of the component framework, which uses Java.

2.3 Composition

Component data objects may contain references to other

component definitions and may define connections between

them. The tool has to instantiate and parametrize sub

components, to map parameters of all sub components, to

check dependencies between components, and to connect

sub component via their public ports.

Much of the difficulty for realizing compositions based

solely on XML specifications of model components stems

from the abandonment of programming languages. Today’s

general purpose programming languages like C++ and Java

provide a comfortable type system and flexible instantiation

mechanisms.

To instantiate sub component from declarative compo-

sition specifications a global entity is needed that resolves

component identifiers to home instances: a home factory.

Each component is granted access to this factory. Once in-

stantiated, parameters are set on sub components, parameter

mapping is initiated, and the public part of sub components

is taken into consideration for consistency checks.

2.4 Transformation to Simulation Model

By specifying components and compositions we are not yet

able to execute experiments. For the purpose of simulation

a twofold relation between components and models shows

up. Compositions have to be transformed to model ele-

ments of a concrete modeling formalism, which eventually

can be executed and experimented with. Furthermore, a

component’s internal definition of model behavior has to be

specified within a concrete modeling formalism. Our ap-

proach uses Parallel DEVS as the target formalism for both

transforming component specifications and for specifying

model behavior.

With respect to the transformation the target modeling

formalism has to be at least expressive as the implemen-

tation formalism. Generally, DEVS and its variants pro-
108
vide a solid basis as targets for formalism transformations

(Vangheluwe 2000). Actually, using Parallel DEVS as the

target formalism transformation of component connections

to model couplings becomes easy. Subcomponents map di-

rectly to sub models and each component connection maps

to a set of couplings. Nevertheless, when transforming

component structures to coupled Parallel DEVS models,

the models must to have ports according to the public part

of their component definition.

The actual transformation is divided into two stages.

First, components are transformed to declarative models.

In a second step the declarative models are transformed to

executable ones that can be simulated by James II. Please

refer to Röhl (2006) for the details of the first transformation

step and to Röhl and Uhrmacher (2005) for the second.

Finally, the simulation tool James II (Uhrmacher 2006)

can be used to execute the simulation model. JAMES II sup-

ports different modeling formalisms and different simulation

engines (Himmelspach and Uhrmacher 2004). Simulation

engines can be exchanged on demand and configured ac-

cording to the specific requirements of a simulation model.

3 IMPLEMENTATION

The component framework was implemented as part of the

simulation system James II. Figure 2 shows dependencies

from the component package to the XML processing package

bind and the model package pdevs.

HomeFactory forms the starting point for all composi-

tions. It provides access to a Home instance for a unique

component identifier. Home instances form the glue between

XML data definitions and component logic implemented in

Component. Each home relates to a certain component

definition that has a unique identifier. A home can be used

to create component instances, for which Component is

the generic accessor. A component provides access to its

underlying data definition IComData, on which mapping

of parameters and the transformation of components into

models will be done by an implementation of IMapper.

XmlFactory is responsible for creating bound entity ac-

cording to an XML document. Bound entities encapsulate

the transformation of string representations to Java objects

and vice versa. Furthermore bound entities provide access

to all elements and attributes of XML documents. Bound

entities for component definitions were generated by the

binding compiler of the JAXB framework as described in

(Röhl and Uhrmacher 2005). The generated classes are in-

tegrated into the framework according to the Adapter pattern

(Gamma et al. 1995). Thereby, generated implementations

are hidden behind IComData and IModelData, which allow

to access and manipulate XML data objects by convenient

methods.

The class PDevsBuilder transforms component struc-

tures to Parallel DEVS models. Finally, PDevsTransformer
5

Uhrmacher
Röhl and

simulation

component

pdevsbind

HomeFactory

+getHome(Id): Home

Home

+create(String): Component

 init(IComData,IModelData): void

XmlFactory

+createEntity(ns:String): IBoundEntity

+register(IBoundEntity): void

<<interface>>

IBoundEntity

+namespace(): String

+marshal(): String

+unmarshal(String): void

<<interface>>

IComData

<<interface>>

IModelData

Component

+data(): IComData

+model(): IModelData

+mapParameter(): void

<<interface>>

IMapper

+map(IComData,IModelData): void

PDevsBuilder

BoundPDevs

PDevsTransformer

ExecutablePDevsSimulator

Figure 2: Basic Entities and their Relations

implements the transformation to an executable model ac-

cording to Röhl and Uhrmacher (2005). Transformation

ends with an instance of ExecutableModel, which can be

simulated by James II (Uhrmacher 2006). Please note, that

entities of package simulation know nothing about XML

processing and components, i.e., they can be implemented

and executed without additional overhead.

4 EXEMPLARY COMPOSITION OF A NETWORK

SIMULATION MODEL

We will now illustrate the building of a simulation model

from model components on a concrete example. Assume we

want to build a model of a network consisting of a number

of nodes, each connected to a component that represents the

transport layer of the network. Figure 3 shows a UML 2.0

component diagram (OMG 2005) for the composition of a

network from a transport component and a number of node

components. The top level component Network should be

customizable with respect to the number of nodes it contains.

4.1 Specification of a Network Component

We abstract from the lower layers of the OSI reference model

and assume the nodes to exchange messages according to the

4th OSI layer (transport layer). Nodes expect the transport

medium to accept sent messages and to deliver messages to

nodes. This kind of interaction is expressed by the Transport

interface:

<interface>

<id name="Transport" version="1.0"/>

<port name="send" type="unihro.osi.Message"

isInput="1"/>
108
Transport

Network

<<component>>

<<component>>

<<component>>

<<component>>

...

Node1:Node

Node<num>:Node

:Transporter

Figure 3: Composition of a Network

<port name="receive"

type="unihro.osi.Message"

isInput="0"/>

</interface>

Within the network component a transporter component

and node components become connected via their transport

interfaces.

<component

xmlns="http://www.inf.../component">

<id name="Network" version="1"/>

<param name="nodes" type="int"

value="2"/>

<mapper>unihro.com.net.v1.Mapper</mapper>

<composition>

<type name="Transporter" version="1"/>

<name>trans</name>

</composition>

<composition>

<type name="Node" version="1"/>

<name>node1</name>

<parameter name="id" value="1"/>

</composition>

<connection fromComponent="trans"

fromPort="transport"

toComponent="node1"

toPort="transport"/>

</component>

For the Network component the internal details of the

transporter and node component do not matter, e.g., they

may be themselves composite components containing sub

components. Actually, it contains a protocol component

and a component that models user behavior. We omit the

definition of the node component, which can be found in

(Röhl 2006).

But, the transport component is required to have a port

indicating the provision of the transport interface (facet).

Conversely, each node component is expected to provide a

port declaring the presence of the transport interface as a

condition for proper functioning (receptacle).

The Network component takes a parameter: the number

of nodes it is intended to contain. For evaluating this

parameter, the network component is associated with a
6

Röhl and Uhrmacher
class that does mapping of parameters according to the

IMapper interface.

public class NetworkMapper implements IMapper {

public final void map(IComData data,

IModeldata md) {

String nodesStr =

data.getParameter("nodes").value();

int nodes = new Integer(nodesStr).intValue();

data.getComposition("trans").

setParameter("nodes", nodesStr);

for (short id=2; id<=nodes; id++) {

String nodeNumber = Integer.toString(id);

String nodeName = "node" + nodeNumber;

IComposition nodeComp = data.addComposition(

"Node", "1", nodeName);

nodeComp.setParameter("id", nodeNumber);

data.addConnection("trans", "transport",

nodeName, "transport");

} } }

The NetworkMapper starts with evaluating the param-

eter values. The parameter (nodes) is read and delegated to

the sub component “trans”. Furthermore, as many nodes as

specified by the node parameter are added. Therefor, the

data that represents the XML definition of the component

is changed, i.e., a sub component of type “Node” version

“1” is added in each loop cycle. In addition, it connects

the transport facet of the transporter sub component to the

according receptacle of each node.

The transporter component may be defined like:

<component

xmlns="http://www.inf...de/mosi/cosa/component"

id="Transporter" version="1">

<param name="nodes" type="int" value="0"/>

<mapper>unihro.com.trans.v1.Transporter

</mapper>

<port name="transport" isFacet="true">

<type name="Transport" version="1.0"/>

</port>

<portmapping name="transport">

<mapping declName="send"

implName="fromNodes"/>

<mapping declName="receive"

implName="toNodes"/>

</portmapping>

<id="TransporterModel" version="1">

</component>

Port names of the model and the component declaration

may differ. If this is the case, port mappings have to be

specified. The transport facet requires the network model

to have message ports named “send” and “receive”. The

port mapping assigns them to “fromNodes” and “toNodes”

respectively. The transporter component refers to a model

definition:
1087
<model

xmlns="http://www.inf...de/mosi/cosa/model/pdevs"

xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:type="CompiledModel"

name="network">

<inport type="unihro.base.Message">send</inport>

<impl>unihro.com.net.v1.Transporter</impl>

</model>

The model definition itself refers to a Java class:

public class Transporter

extends AtomicModel<TransporterState> {

public void lambda() {

TransporterState s = getState();

Message toDeliver = s.queue.first();

Integer rec = toDeliver.rec().toInt();

getOutPort(rec.toString()).write(toDeliver); }

public void deltaInternal() {

final TransporterState s = getState();

s.queue.pop();

s.queue.timeOfFirstElementPassed(); }

public void deltaExternal(double elapsedTime) {

final TransporterState s = getState();

s.queue.timePassed(elapsedTime);

IPort fromNodes = getInPort("fromNodes");

while(fromNode.hasValue()) {

Message msg = (Message) fromNode.read();

s.queue.insert(msg, routingT(8*msg.size()));

} }

public void deltaConfluent() {

deltaInternal();

deltaExternal(0.0); }

public double timeAdvance() {

TransporterState s = getState();

return s.queue.nextTime(); }

private double routingT(int msgSize) { ... }

}

4.2 Instantiation of the Simulation Model

Figure 4 illustrates the instantiation of component from

XML documents.

A Launcher requests the component specification with

the name “Network” version “1” from the HomeFactory. If a

home with this id was not already instantiated, XML data has

to be retrieved from a database as a string object. XmlFactory

creates bound entities according to the namespaces of the

XML data. Subsequently, the XML data is unmarshalled

by IComponentData and BoundPDevs respectively. A new

home is created and initialized with the component’s XML

data and its model definition. This home is now used by

the Launcher to create a component instance with the name

“net”. The home clones XML data for the new component

instance. This ensures that setting of parameters will not

take affect on other component instances of the same type.

Röhl and Uhrmacher
unmarshal()

getHome("Network", "1")

<<create>>

h

h:Home

<<create>>

:HomeFactory:Launcher

createEntity("http://www...component")

create("net")

<<create>>c

clone()

:XmlFactory d:IComData

c:Component

init(d, m)

m:BoundPDevs

createEntity("http://www...pdevs") <<create>>

clone()

Figure 4: Instantiation of the Network Component

Figure 5 shows the construction of a simulation model

from the net component. First, parameters according to an

experiment definition are set, e.g., our network component is

parametrized to contain 100 nodes. When the function map-

Parameters() becomes called, the NetworkMapper, which is

referenced in the XML document, becomes instantiated and

changes the underlying XML data of the component. After-

wards, all sub components of the network are instantiated,

i.e., the transporter component and each of the 100 node

components. Subsequently, parameters of sub components

are set and parameter mapping of them initiated. Finally,

it is checked whether the receptacles of all sub component

instances are connected to according facets.

The composition is now complete and we are free

to transform it to a simulation model. Therefore, a model

builder is created that transforms all component constructs to

elements of the Parallel DEVS formalism, see Röhl (2006)

for details. Finally, the declarative representation of the

“pure” Parallel DEVS model is transformed to a repre-

sentation that can be executed by james.core. The

realization of transformer classes was already described in

(Röhl and Uhrmacher 2005).

Figure 6 shows the outcome of the composition and

transformation process for the network component with

parameter nodes set to 100.

5 RELATED WORK

To be composable by third parties the requirements and

provisions of components have to explicitly specified in an

indirect manner by references to interfaces (Szyperski 2002).

With respect to this, the presented framework is basically in

line with software engineering approaches to composition.

The implementation of a component is hidden for others

and is not relevant for consistency checks. The syntax for

defining required and provided interfaces, for specifying

compositions, for defining connections, and for using at-

tributes to configure component instance is similar to the

UML 2.0 (OMG 2005) and the Corba Component Model

(OMG 2002).
1088
:Launcher Component

map(d, m)

mapParameters()

setParameter("nodes", "100")

<<create>>

addComposition("Node", "1", "Node2")

:NetMapper d:ComData

m:BoundPDevs

getHome("Transporter", "1")

addModel()

...

:PDEVSBuilder

<<create>>

transformComposition(...)

...

...
checkDependencies()

:HomeFactory

Figure 5: Transformation of the Component to a Simulation

Model

Node1

Transporter
Message

Network

Node100

Message

Message

...

Figure 6: Target Simulation Model

Software component approaches like the Corba Com-

ponent Model (OMG 2002) and Enterprise Java Beans

(Sun Microsystems 2003) also use declarative specifications

to enrich programming language implementations. For the

CCM the Interface Definition Language is used and for EJB

Java Annotations are employed. We developed a small but

expressive XML Schema Definition for simulation model

components that defines a component syntax tailored for

simulation purposes (Röhl 2006).

An important difference between our approach and

software components is that the latter have to be deployed

as binary units (Szyperski 2002). Software components are

usually directly executable and to be treated as black boxes.

The limited number of binary platforms allows software

components to be packaged with executable implementations

for all relevant platforms. To package simulation model

components as executables is not really sensible, as a binary

standard for simulation systems does not exist. To compose

binary representations of models their simulation engines

have to be plugged together. This is the realm of low level

interoperability protocols HLA (IEEE 2000), which support

the interoperability of entire simulation systems.

Modeling and simulation approaches that incorporate a

declarative specification layer like the SES/MB framework

(Zeigler and Sarjoughian 2002) do not currently account for

the explicit specification of provided and required interfaces.

Röhl and Uhrmacher
The presented framework builds heavily on XML de-

scriptions and defers the generation of tool-specific exe-

cutables as much as possible. The outcome of the com-

position process is a pure model according to the Parallel

DEVS formalism. This is different from most existing

approaches that weave composition and modeling facilities

(Chen and Szymanski 2002; MacSween and Wainer 2004;

Lang, Jacobs, and Verbraeck 2003).

Our approach is close to Gustavson and Chase (2004)

in exploiting the flexibility of XML together with XSD

and striving for platform independent specifications. Both

approaches suggest to transform platform independent XML

representations into platform specific models. While BOMs

focus on HLA compliance, the approach presented here puts

a strong emphasize on interface definitions close to UML.

6 SUMMARY

We propose a strictly layered approach to integrate compo-

nent facilities into modeling and simulation systems. Com-

positions are realized as an additional processing layer on top

of modeling formalisms and a concrete execution engine of

a simulation system. XML forms the basis for representing

interfaces, components, and compositions. Data binding is

used to execute transformations between XML documents,

each of which is bound to a certain XML Schema Definition,

and object instances, which can be used by the component

layer. However, component instances exist only temporarily

until the generation of the simulation model is completed.

To separate between a component’s storage format and

its executable representation has two benefits. First, the

feature to compose models can be added to existing tools

without modifying the latter. Second, component defini-

tions do not put an overhead to the execution efficiency of

simulation models. However, the simulation engine must

support a modeling formalism that is sufficiently expressive

to be generated from UML-like component definitions, e.g.,

as in our case Parallel DEVS.

The presented framework was implemented as part of

the simulation system James II (Uhrmacher 2006). It is

currently used for evaluating overlay protocols for mobile

ad-hoc networks, which requires the combination of dif-

ferent user and protocol components. Future work aims

at integrating semantically stronger concepts for checking

consistency of compositions, e.g., on base of application

domain specific meta data (Uhrmacher et al. 2005).

ACKNOWLEDGMENTS

This research is supported by the DFG (German Research

Foundation).
1089
REFERENCES

Brutzman, D., M. Zyda, M. Pullen, and K. L. Morse. 2002,

October. Extensible modeling and simulation frame-

work (XMSF) — challenges for web-based modeling

and simulation. Technical report, SAIC.

Chen, G., and B. K. Szymanski. 2002. COST: a component-

oriented discrete event simulator. In Proceedings of the

2002 Winter Simulation Conference, 776–782.

Davis, P. K., and R. H. Anderson. 2004, April. Improving the

composability of DoD models and simulations. JDMS 1

(1): 5–17.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.

Design patterns: Elements of reusable object-oriented

software. Addison-Wesley.

Gustavson, P., and T. Chase. 2004. Using XML and BOMs

to rapidly compose simulations and simulation environ-

ments. In Proceedings of the 2004 Winter Simulation

Conference, 1467–1475.

Himmelspach, J., and A. M. Uhrmacher. 2004. A

component-based simulation layer for James. In Pro-

ceedings of the Eighteenth Workshop on Parallel and

Distributed Simulation (PADS ’04), 115–122. Kufstein,

Austria: IEEE Computer Society Press.

IEEE. 2000, September. Standard for modeling and sim-

ulation (M& S) High Level Architecture (HLA) —

Framework and Rules. Document 1516-2000.

Kasputis, S., and H. C. Ng. 2000. Composable simula-

tions. In Proceedings of the 2000 Winter Simulation

Conference, 1577–1584.

Lang, N. A., P. H. Jacobs, and A. Verbraeck. 2003, Oc-

tober. Distributed open simulation model development

with DSOL services. In ESS’2003, Proceedings 15th

European Simulation Symposium 2003 - Simulation in

Industry, 210–218. Delft.

MacSween, P., and G. Wainer. 2004. On the construction

of complex models using reusable components. In Pro-

ceedings of SISO Spring Interoperability Workshop.

Arlington, VA,. USA.

OMG. 2002, June. CORBA Components version 3.0 (doc-

ument formal/02-06-65). Available online via <www.

omg.org/cgi-bin/doc?formal/02-06-65>

[accessed July 13, 2006].

OMG. 2005, July. UML superstructure specification

version 2.0 (document formal/05-07-04). Avail-

able online via <www.omg.org/cgi-bin/doc?

formal/05-07-04> [accessed July 13, 2006].

Petty, M. D., E. W. Weisel, and R. R. Mielke. 2005. Compos-

ability theory overview and update. In Proceedings of

the Spring 2005 Simulation Interoperability Workshop,

431–437.

Röhl, M. 2006. Platform independent specification of sim-

ulation model components. In ECMS 2006, 220–225.

<www.
http://www.omg.org/cgi-bin/doc?formal/02-06-65
omg.org/cgi-bin/doc?formal/02-06-65>
http://www.omg.org/cgi-bin/doc?formal/02-06-65
<www.omg.org/cgi-bin/doc?
http://www.omg.org/cgi-bin/doc?formal/05-07-04
formal/05-07-04>
http://www.omg.org/cgi-bin/doc?formal/05-07-04

Röhl and Uhrmacher
Röhl, M., and A. M. Uhrmacher. 2005. Flexible integration

of XML into modeling and simulation systems. In

Proceedings of the 2005 Winter Simulation Conference,

1813–1820.

Sun Microsystems 2003, November. Enterprise Jav-

aBeans Specification, version 2.1. Available online

via <java.sun.com/products/ejb/docs.

html> [accessed July 13, 2006].

Szyperski, C. 2002. Component software: beyond object-

oriented programming. 2nd ed. ACM Press/Addison-

Wesley Publishing Co.

Tolk, A., and J. Muguira. 2003, September. The levels of

conceptual interoperability model. In Fall Simulation

Interoperability Workshop (SISO), Orlando.

Uhrmacher, A. M. 2006. James II project description.

Available online via <wwwmosi.informatik

uni-rostock.de/mosi/projects/cosa/

james-ii> [accessed July 13, 2006].

Uhrmacher, A. M., D. Degenring, J. Lemcke, and M. Krah-

mer. 2005. Towards re-using model components in sys-

tems biology. In CMSB 2004, Volume 3082 of LNBI,

192–206: Springer.

Vangheluwe, H. 2000, September. DEVS as a common de-

nominator for multi-formalism hybrid system modeling.

In Proceedings of the IEEE International Symposium

on Computer Aided Control System Design, 129–134.

Anchorage, Alaska.

W3C 1999, November. XSL transformations (XSLT) version

1.0. Available online via <www.w3.org/TR/xslt>

[accessed July 13, 2006].

Yilmaz, L. 2004, August. On the need for contextualized in-

trospective models to improve reuse and composability

of defense simulations. JDMS 1 (3): 141–151.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of

modeling and simulation. 2nd ed. London: Academic

Press.

Zeigler, B. P., and H. S. Sarjoughian. 2002. Implications of

M& S foundations for the V& V of large scale complex

simulation models. In Proceedings of the Foundations

for V&V in the 21st Century Workshop. Laurel, MD.

AUTHOR BIOGRAPHIES

MATHIAS RÖHL holds a MSc in Computer Science

from the University of Rostock. His research interests are

on component-based modeling and agent-oriented simu-

lation. He is currently a research scientist at the Mod-

eling and Simulation Group at the University of Ros-

tock. His e-mail address is <mroehl@informatik.

uni-rostock.de> and his Web address is <www.

informatik.uni-rostock.de/˜mroehl>.
1090
ADELINDE M. UHRMACHER is an Associate Profes-

sor at the Department of Computer Science at the Univer-

sity of Rostock and head of the Modeling and Simulation

Group. Her research interests are in modeling and sim-

ulation methodologies, particularly agent-oriented model-

ing and simulation and their applications. Her e-mail ad-

dress is <lin@informatik.uni-rostock.de> and

her Web page is <www.informatik.uni-rostock.

de/˜lin>.

<java.sun.com/products/ejb/docs.
http://java.sun.com/products/ejb/docs.html
html>
http://java.sun.com/products/ejb/docs.html
<wwwmosi.informatik
http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii
uni-rostock.de/mosi/projects/cosa/
http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii
james-ii>
http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii
<www.w3.org/TR/xslt>
http://www.w3.org/TR/xslt
<mroehl@informatik.
mailto:mroehl@informatik.uni-rostock.de
uni-rostock.de>
mailto:mroehl@informatik.uni-rostock.de
<www.
http://www.informatik.uni-rostock.de/~mroehl
informatik.uni-rostock.de/~mroehl>
http://www.informatik.uni-rostock.de/~mroehl
<lin@informatik.uni-rostock.de>
mailto:lin@informatik.uni-rostock.de
<www.informatik.uni-rostock.
http://www.informatik.uni-rostock.de/~lin
de/~lin>
http://www.informatik.uni-rostock.de/~lin

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

