
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

IMPLEMENTATION OF TIME MANAGEMENT IN A RUNTIME INFRASTRUCTURE

Buquan Liu
Yiping Yao

Jing Tao
Huaimin Wang

School of Computer

National University of Defense Technology
Changsha, Hunan 410073, CHINA

ABSTRACT

The High Level Architecture (HLA) time management is
concerned with mechanisms for guaranteeing message or-
der, process synchronization and execution correctness in
distributed simulations. Time management greatly influ-
ences on the scales of applications, especially for the com-
putation of Greatest Available Logical Time (GALT) and
the implementation of optimistic services. StarLink is an
RTI with central architecture, which is compliant with the
IEEE 1516 standard. This paper systematically describes
the implementation algorithms for main time management
services in StarLink. Two smart and efficient algorithms
about GALT computation and optimistic services are also
introduced, which are suitable for many RTIs such as
RTI1.3-NG, pRTI and DRTI. For the GALT algorithm, it
is not necessary for an RTI to resolve the recursion nor any
deadlock. For optimistic services, a simple mechanism
without rollback in an RTI is also introduced; therefore, it
can greatly simplify the development of an RTI.

1 INTRODUCTION

The High Level Architecture (HLA) has been developed to
provide a common architecture for distributed modeling and
simulation. In September 2000, HLA was adopted as the
IEEE 1516 standard. The Runtime Infrastructure (RTI) is the
software as an implementation of the HLA interface specifi-
cation.
 Time management is a great challenge for large-scale
simulations in various RTIs, especially for those with a large
amount of data communication. In those applications, an
RTI may order a large amount of Time Stamp Order (TSO)
messages. For example, suppose that a simulation has 1,024
federates with the same execution code. All federates call
the timeAdvanceRequest (TAR) service to advance logical
time step by step. For each step, everyone sends a TSO mes-
sage subscribed by all other federates. Thus, the RTI in the

10441-4244-0501-7/06/$20.00 ©2006 IEEE
simulation has to order 1,023*1,024 TSO messages. In an
RTI with the same architecture as RTI1.3-NG (DMSO
2000), each federate has its own Local RTI Component
(LRC). Therefore, 1,024 LRCs shall cooperate to order those
1,023*1,024 messages.
 The HLA time management contains the conservative
and optimistic mechanisms. In HLA, a federate can call the
enableTimeRegulation service to determine if it regulates
other federates' advancement, or call the enableTimeCon-
strained service to be constrained by other federates. In this
paper, we call those services as policy-setting services.
Greatest Available Logical Time (GALT) is the maximum
logical time that a federate may advance securely. GALT is
also called Lower Bound Time Stamp (LBTS) in HLA 1.3.
The computation of GALT is a key problem for efficiently
implementing HLA time management, and it is virtually dif-
ferent from those LBTS algorithms in traditional area of
Parallel Discrete Event Simulation (PDES). For example,
the important concepts of Local Virtual Time (LVT) and
Global Virtual Time (GVT) in PDES have disappeared in
the HLA time management.

By far, we have not yet found any RTI developers to
publish the detail implementation of the HLA time man-
agement. This paper will introduce the implementation
mechanisms of time management services in StarLink,
which is an RTI with central architecture. StarLink only
comprises a unique central RTI server, and the communi-
cation between a federate and the server is accomplished
by underlying CORBA middleware (Liu, Wang and Yao
2004a). Two issues are very important when implementing
time management, i.e. the algorithm of GALT computation
and implementation of optimistic services. Complicated
algorithms may result in an RTI's low efficiency and re-
duction of the RTI's application scales. However, such
questions are resolved in StarLink easily and smartly. Al-
though StarLink is an RTI with central architecture, its
ideas may be general and can be reused into other RTIs
with different architectures such as RTI1.3-NG, pRTI

Liu, Yao, Tao, and Wang

(Pitch Technologies 2006), MÄK RTI (MÄK Technolo-
gies 2006), DRTI (FDK 2006), etc. In the next section, the
GALT algorithm in StarLink is introduced. An important
characteristic is that there is no recursion in the simple al-
gorithm, and it doesn't resolve any deadlock caused by re-
cursion. The implementation of policy-making services is
described in the third section. Then the implementation al-
gorithms of conservative time management services are
presented. In the fifth section, the principles of optimistic
time management services are introduced and especially
the zero-saving mechanism is also discussed. The mecha-
nism doesn't require an RTI to save or restore any data at
all when a message is sent or retracted; therefore, this can
greatly simplify the development of an RTI. We believe
that those algorithms in the paper are rather useful for RTI
developers to implement the HLA time management.

2 COMPUTING GALT

GALT expresses the greatest logical time to which an RTI
can grant a federate's advance without having to wait for
other joined federates. That is to say, GALT is the maxi-
mum logical time a federate can advance to. An RTI must
compute each federate's GALT correctly and efficiently.
The computation of GALT is the basic issue to implement
time management services. It is rather complicated to
compute GALT as stated in these papers (Fujimoto 2000;
Kuhl, Weatherly and Dahmann 1999; Riley, Fujimoto and
Ammar 2000). An RTI must consider each federate's time
advance services, status, lookahead (Fujimoto 1988; Fuji-
moto 1997) and TSO messages, etc.

The message sent firstly must arrive firstly within
StarLink, and the FIFO queuing mechanism is insured by
underlying CORBA middleware. The following algorithm
named stature-measuring is used to compute GALT. In the
algorithm, a federate's stature is represented by the symbol
S. A federate's stature is correlative with its time advancing
status. In this paper, five states are defined for a federate,
i.e. Grant, TAR, TARA, NMR and NMRA. The Grant
state means a federate is not in time advancing state. The
rest states mean a federate is in time advancing state by
calling the timeAdvanceRequest, timeAdvanceRequestA-
vailable (TARA), nextMessageRequest (NMR) or
nextMessageRequestAvailable (NMRA) service. However,
a federate can also call the flushQueueRequest (FQR) ser-
vice to advance logical time. As the FQR service is always
granted by RTI, the service is not considered on computing
GALT in StarLink though the computation for this service
is nearly same as the NMRA service.

Definition 1 A federate's stature S(i) is defined as

{ }⎩
⎨
⎧

+
+

=
./);()(),(min

//);()(
)(

NMRANMRforiLiLETSiT
TARATARGrantforiLiT

iS

1045
Where S(i) means the stature of federate i. When federate i
is in the Grant state, T(i) is its current logical time and L(i)
means its actual lookahead; when federate i is in time ad-
vancing state, T(i) is the logical time to which the federate
requests to advance and L(i) is the actual lookahead after
its request is granted and its computation was presented in
Carothers, Weatherly, Fujimoto, and Wilson (1997).
LETS(i) is the least time stamp in federate i's TSO queue.

Algorithm 1 For any federate i, its GALT is deter-
mined by other federates’ statures in the federation.
GALT(i) is computed by

 { } .;)(min)(jijSiGALT ≠=

From the GALT algorithm, we know that only two

federates with least statures are significant for computing
GALT.

Definition 2 The minimal federate is that with least
stature in the federation.

Definition 3 The penultimate federate is that with
least stature except the minimal federate in the federation.

At any moment, only one minimal federate and one
penultimate federate are designated in the federation. If
there exist any other federates which have the same stature
as the minimal federate or the penultimate federate, these
federates are no longer called the minimal or the penulti-
mate. In addition, the penultimate federate’s stature may be
equal to that of the minimal federate. From algorithm 1 and
these definitions, we know that the following two theorems
are correct apparently.

Theorem 1 Anyone except the minimal federate has
the GALT which is equal to the minimal federate’s stature.

Theorem 2 The minimal federate’s GALT is equal to
the penultimate federate’s stature.
 Any other federate’s stature except the minimal feder-
ate may decrease because of TSO messages with less time
stamp. Consider a simulation with federates i and j. Sup-
pose that both federates are in time granted states, their
logical time is T, their lookahead is 1, and their TSO mes-
sage queues are empty. When federate i calls the NMR ser-
vice to request to advance to T+3, the federate shall be
suspended because i’s GALT is T+1, which is smaller than
its request time T+3. Now we know that S(i) = min{T+3, +
∞ }+1=T+4 from definition 1. If federate j sends a TSO
message with logical time T+2 to federate i, S(i) =
min{T+3, T+2}+1=T+3. Thus, the stature of federate i de-
creases from T+4 to T+3. However, it is provable that the
penultimate federate’s stature must not decrease to be less
than the minimal federate’s. In addition, the accurate stat-
ure of the penultimate federate is not important for the
minimal federate’s advance at all. The penultimate federate
shall not hold back the advance of the minimal federate so
far as the penultimate federate has larger stature. The
GALT algorithm can ensure the minimal federate to ad-
vance its logical time correctly. Although there may exist

Liu, Yao, Tao, and Wang

any federate whose stature decreases during the federation
execution, the algorithm can compute the minimal feder-
ate’s stature correctly so that it can compute any other fed-
erates’ GALTs correctly according to theorem 1. Thus, the
algorithm can ensure federates to advance their logical
time correctly.

3 POLICY-SETTING SERVICES

According to the IEEE 1516 standard, a federate can use
enableTimeRegulation, disableTimeRegulation, en-
ableTimeConstrained and disableTimeConstrained to de-
termine its time management modes. We call them policy-
setting services in this paper. To send TSO messages, a
federate shall call the enableTimeRegulation service to be-
come a time regulating federate. A time regulating federate
may call the disableTimeRegulation service to avoid send-
ing TSO messages. To receive TSO messages, a federate
shall call the enableTimeConstrained service to be a time
constrained federate. A time constrained federate may call
the disableTimeConstrained service to avoid receiving
TSO messages. A time regulating federate influences the
advance of a time constrained federate. This paper de-
scribes the algorithms of the enableTimeRegulation and
enableTimeConstrained services. The other two services
are relatively easier to implement. The enableTimeRegula-
tion service has the following prototype.

void enableTimeRegulation (RTI::LogicalTime
theLookahead);

Algorithm 2 is the implementation of the service.
Algorithm 2 enableTimeRegulation

1. Process exceptions.

(a) If the calling federate has not joined the fed-
eration execution, the
RTI::FederateNotExecutionMember excep-
tion is thrown.

(b) If the calling federate is a time regulating
federate (The bTimeRegulating flag is equal
to the enumeration constant ENABLED), the
RTI::TimeRegulationAlreadyEnabled excep-
tion is thrown.

(c) If the calling federate is in pending on calling
the enableTimeRegulation service (The
bTimeRegulating flag is equal to the enu-
meration constant PENDING), the
RTI::RequestForTimeRegulationPending ex-
ception is thrown.

(d) If the parameter thelookahead is less than
zero, the RTI::InvalidLookahead exception is
thrown.

(e) If the calling federate is in time advancing
state, the RTI::InTimeAdvancingState excep-
tion is thrown.
1046
2. Compute logical time.

/* currentTime is a federate’s actual logical
time, which is initialized to zero. */
maxTime = currentTime + theLookahead;
for(i = first constrained federate; all con-
strained federates; i is not the calling fed-
erate, i++) {

 if(federate i's logical time ≥ maxTime) {

 maxTime = federate i's logical time;
 if(federate i is in the Grant state
which is granted by calling the TAR/NMR ser-
vice at least once) {
 /* EPSILON can be set as the mini-
mal double number which a complier can iden-
tify. But a better way is to set a Boolean
flag rather than using such a constant. */
 maxTime = maxTime + EPSILON;
 // 0<EPSILON<<1
 }
 }
}
pendingTime = maxTime - theLookahead;

3. Set lookahead and pending flag.

lookahead = theLookahead;
bTimeRegulating = PENDING;

4. Send Receive Order (RO) messages.
 Send all RO messages to the calling federate.
5. Judge whether the calling federate is granted to be

regulating.

if(the calling federate is time constrained){
 /* The invocation of this service shall be
considered an implicit TARA service invoca-
tion. */
 bTimeAdvanceRequestAvailable = PENDING;
 Compute the calling federate's GALT;
 if(pendingTime ≤ GALT) {
 All messages with time stamp ≤ pend-
ingTime in the calling federate’s TSO queue
are sent to the federate;
 currentTime = pendingTime;
 bTimeRegulating = ENABLED;
 call timeRegulationEnabled(currentTime);
 bTimeAdvanceRequestAvailable = ENABLED;
 } else {
 All messages with time stamp ≤ GALT
are sent to the calling federate;
 }
}else{
 currentTime = pendingTime;
 bTimeRegulating = ENABLED;
 call timeRegulationEnabled(currentTime);
};

The enableTimeConstrained service has the following

prototype.

void enableTimeConstrained (RTI::LogicalTime
theLookahead);

Algorithm 3 is the implementation of the service.

Liu, Yao, Tao, and Wang

Algorithm 3 enableTimeConstrained

1. Process exceptions.

(a) If the calling federate has not joined the fed-
eration execution, the
RTI::FederateNotExecutionMember excep-
tion is thrown.

(b) If the calling federate is time constrained
(The bTimeConstrained flag is equal to the
enumeration constant ENABLED), the
RTI::TimeConstrainedAlreadyEnabled ex-
ception is thrown.

(c) If the calling federate is in pending on the en-
ableTimeConstrained service (The bTime-
Constrained flag is equal to the enumeration
constant PENDING), the
RTI::RequestForTimeConstrainedPending
exception is thrown.

(d) If the calling federate is in time advancing
state, the RTI::InTimeAdvancingState excep-
tion is thrown.

2. Set pending flag.

bTimeConstrained = PENDING;

3. Compute GALT.
4. Judge whether the calling federate is granted to be

constrained.

if(the calling federate is time regulating){
 if(currentTime ≤ GALT) {
 bTimeConstrained = ENABLED;
 call timeConstrainedEnabled(currentTime);
 }else{
 /* In StarLink, a regulating but not
constrained federate can advance without be-
ing regulated by any other federates. If the
regulating federate goes farther from other
federates and now it wants to be a con-
strained federate by calling this service, we
suspend the federate and don’t allow it to
call TAR/TARA/NMR/NMRA/FQR to advance again.
But we think the method is optional and it is
still reasonable if we allow the federate to
advance further. */
 bTimeAdvanceRequestAvailable = PENDING;
 pendingTime = currentTime;
 }
}else{
 if(GALT != +∞){ // GALT’s original value
 if(currentTime ≤ GALT) {
 currentTime = GALT;
 bTimeConstrained = ENABLED;
 call timeConstrainedEnabled (cur-
rentTime);
 }
 }else{
 bTimeConstrained = ENABLED;
 call timeConstrainedEnabled (current-
Time);
 }
};
1047
4 CONSERVATIVE ADVANCE SERVICES

The conservative mechanism in the HLA time manage-
ment ensures that each federate can receive TSO messages
in time stamp order, which guarantees the federation to be
executed correctly. The conservative advance services in
IEEE 1516 are TAR, TARA, NMR and NMRA. When a
federate call any conservative services to advance logical
time, an RTI shall call the timeAdvanceGrant (TAG) ser-
vice to grant the federate’s advance if the requested logical
time is secure. Otherwise, the request shall be suspended
and the federate shall be in time advancing state.
 In addition, when a federate’s request is granted, the
RTI shall look up other federates to be suspended because
of calling the TAR, TARA, NMR, NMRA, en-
ableTimeRegulation and enableTimeConstrained services.
The RTI shall recomputed these federates’ GALTs and de-
termine if they can resume and go on execution. This paper
uses the pushFederates function to express this procedure.
The algorithms of the TAR and NMR services are de-
scribed in this section. The other two services TARA and
NMRA have similar results.
 The TAR service has the following prototype.

void timeAdvanceRequest (RTI::LogicalTime
theTime);

 Algorithm 4 is the implementation of the service.

Algorithm 4 timeAdvanceRequest

1. Process exceptions.

(a) If the calling federate has not joined the fed-
eration execution, the
RTI::FederateNotExecutionMember excep-
tion is thrown.

(b) If the parameter theTime is not correct, the
RTI::InvalidLogicalTime exception is
thrown.

(c) If the calling federate is in time advancing
state, the RTI::InTimeAdvancingState excep-
tion is thrown.

(d) If the parameter theTime is less than the call-
ing federate's current logical time, the
RTI::LogicalTimeAlreadyPassed exception is
thrown.

(e) If the calling federate is in pending on calling
the enableTimeRegulation service (The
bTimeRegulating flag is equal to the enu-
meration constant PENDING), the
RTI::RequestForTimeRegulationPending ex-
ception is thrown.

(f) If the calling federate is in pending on calling
the enableTimeConstrained service (The
bTimeConstrained flag is equal to the enu-
meration constant PENDING), the

Liu, Yao, Tao, and Wang

fu

RTI::RequestForTimeConstrainedPending
exception is thrown.

2. Set pending flag and pending time.

bTimeAdvanceRequest = PENDING;
pendingTime = theTime;

3. Send RO messages.
 Send all RO messages to the calling federate.
4. Judge whether the TAR request is granted.

if(the calling federate is time constrained){
 Compute the calling federate's GALT;
 if(theTime < GALT) {
 call grantFederateAdvancing(theTime)
to grant the calling federate to theTime.
 }else{
 All messages with time stamp ≤ GALT
are sent to the calling federate;
 }
}else{
 call grantFederateAdvancing(theTime) to
grant the calling federate to theTime.
}

5. Call the pushFederates function to advance other
pending federates.

In algorithms 4 and 5, the grantFederateAdvancing

nction mainly does following things.

1. Look up if the calling federate is in lookahead-

pending state. When a federate calls the modify-
Lookahead service to decrease its lookahead, the
actual lookahead can not be decreased immedi-
ately and it must be decreased gradually during
the federation. If the calling federate is in looka-
head-pending state, the actual lookahead should
be recomputed as stated in Carothers, Weatherly,
Fujimoto, and Wilson (1997).

2. Send all TSO messages with time stamp less than
or equal to the granted time to the calling federate.

3. Call the TAG service to grant the federate to ad-
vance its logical time. The bTimeAdvanceRequest
or bNextMessageRequest flag is set to be
ENABLED.

The NMR service has the following prototype.

void nextMessageRequest (RTI::LogicalTime
theTime);

Algorithm 5 does the implementation of the service.
Algorithm 5 nextMessageRequest

1. Process exceptions.
 This is the same as algorithm 4.
2. Set pending flag and pending time.
10

bNextMessageRequest = PENDING;
pendingTime = theTime;

3. Send RO messages.

 Send all RO messages to the calling federate.
4. Judge whether the NMR request is granted.

if(the calling federate is time constrained){
 Compute the calling federate's GALT;
 //LETS is +∞ for an empty TSO queue.
 LETS = min{TSO}; // the minimal time stamp
in the federate's TSO queue.
 if(LETS ≤ theTime && LETS < GALT) {
 call grantFederateAdvancing(LETS) to
grant the federate to LETS.
 }else if(theTime < GALT) {
 call grantFederateAdvancing(theTime)
to grant the federate to theTime.
 }
}else{
 call grantFederateAdvancing(theTime) to
grant the federate to theTime.
}

5. Call pushFederates to advance other pending fed-

erates.

5 OPTIMISTIC ADVANCE SERVICES

The optimistic advance services in IEEE 1516 are FQR,
retract and requestRetraction. The former two services are
implemented within RTI, and the latter callback service is
supplied by federate.
 The optimistic mechanism in HLA is different from
that in PDES. In PDES, there exists the typical domino
phenomenon, i.e. an optimistic process may roll back its
start. But a federate mustn’t roll back its logical time and
there doesn’t exist the phenomenon during the HLA fed-
eration execution. As an HLA federate can only advance
its logical time by calling the TAR, TARA, NMR, NMRA
and FQR services, it cannot call any other services to roll
back logical time. Otherwise, the federate shall receive the
exception ‘RTI::LogicalTimeAlreadyPassed’ from its RTI.
In addition, an RTI doesn’t allow a federate to advance its
logical time beyond GALT and the federate’s logical time
is always secure according to HLA standards; otherwise,
the RTI shall not guarantee that a conservative federate can
coexist with an optimistic federate. However, the received
TSO messages for a federate may not secure. Some mes-
sages’ time stamps may be larger than GALT. A federate
may receive a message with larger time stamp during a re-
quest, and it may receive a message with smaller time
stamp later. If the smaller message results in the confliction
of states, the federate may roll back its states but not logi-
cal time, and it may retract its TSO messages sent by itself
before. When its RTI receives the retract service, it calls
the requestRetraction service to notify any federates that
48

Liu, Yao, Tao, and Wang

have received the message to retract it. Thus, there are two
important rules in the HLA optimistic advance mechanism.

Rule 1 The logical time of a federate must not be
rolled back.

Rule 2 The rollback occurs in a federate but not in
an RTI.

Here is another interesting phenomenon. A TSO mes-
sage sent by a federate may be received by multiple feder-
ates. Some federates may receive it as a TSO message and
some federates may receive it as an RO message. More-
over, a TSO message may be split into multiple messages
and sent to one federate. Therefore, a federate may receive
it not only as a TSO message but also an RO message in
StarLink.

We think that an RTI should call the requestRetraction
service to notify all receivers when a federate retracts a
TSO message. If a federate receives more than one split
message, the RTI only notifies the federate once. Of
course, it is the federate’s responsibility to determine if the
requestRetraction service is responded.

The key issue in implementing optimistic services is to
correctly notify all receivers to retract messages. This pa-
per introduces the zero-saving mechanism that doesn’t re-
quire an RTI to save anything, and more detailed discus-
sion can be found in Liu, Wang and Yao (2004b). Of course,
an RTI may save any states correlative with optimistic ser-
vices, but this will make the development of the RTI much
more complicated.

5.1 Complexity of Saving in RTI

Next we discuss two available methods for an RTI to save
and restore information about message retraction.

1. To create a list for each federate in the RTI. An

item of the list includes a TSO message handle
and the message’s receivers. When a federate re-
tracts a message, the RTI can know which feder-
ates shall be notified. This method has nothing to
do with the HLA declaration management.

2. To create two lists for each federate in the RTI.
One list represents the publication and subscrip-
tion relations of a federate, and an item of another
list includes a TSO message handle and the index
of publication and subscription relation in the first
list. When a federate retracts a message, the RTI
can also know which federates shall be notified by
looking up and matching two lists. This method is
correlative with the HLA declaration management
and data distribution management.

However, an RTI shall do a lot of work for both meth-

ods to save and restore retraction information, and corre-
sponding processing code will inevitably spread into many
HLA services such as time management, federation man-
104
agement, ownership management, object management,
data distribution management, and even declaration man-
agement. In addition, these approaches may result in a few
hard nuts to crack. For example, a federate shall not be
time regulating thus it can no longer retract messages if the
disableTimeRegulation service is successfully called. But
the federate is able to retract messages again after it recalls
the enableTimeRegulation service successfully. Now the
annoying question is however an RTI should maintain
these lists when a federate calls both services. This is simi-
lar for the ownership transferring of object instance attrib-
utes. But these problems do not exist in the zero-saving
mechanism.

5.2 Zero-Saving Mechanism

In StarLink, the message handle type
RTI::MessageRetractionHandle is defined as follows.

struct MessageRetractionHandle {
 UniqueID theSerialNumber;
 FederateHandle sendingFederate;
 LogicalTime theTime;
 FederateHandleSeq receivingFederates;
};

According to the IEEE 1516 standard, when federate i

sends a TSO message, an RTI should return the federate a
message handle with the RTI::MessageRetractionHandle
type. In StarLink, the variable theSerialNumber in the mes-
sage handle is a counter, which is used to distinguish be-
tween different messages; the variable sendingFederate
means the sending federate; theTime is the time stamp of
the TSO message. If the subscribing federate j with handle
h receives the message as a TSO message, h is inserted into
the variable receivingFederates. Suppose that the number
of federates is less than 1,000,000 in the federation,
1000000+h is inserted into the set if the subscribing feder-
ate j would receive the TSO message as an RO message.
The assumption is reasonable because it is difficult for
most RTIs to support more than 100 federates nowadays.
An alternative method is to adopt two variables which rep-
resent the receiving federates for RO and TSO messages
respectively.

The zero-saving mechanism in StarLink means that
the RTI returns the sending federate a message handle with
all received federates whenever the federate sends a TSO
message. Thus, when the sending federate calls the retract
service to withdraw a TSO message, the RTI will call the
requestRetraction service to correctly notify all received
federates which are saved in the variable receivingFeder-
ates of the TSO message handle.

The FQR service has the following prototype.

void flushQueueRequest (RTI::LogicalTime
theTime)

9

Liu, Yao, Tao, and Wang

Algorithm 6 is the implementation of the service.
Algorithm 6 flushQueueRequest

1. Process exceptions.
 This is the same as algorithm 4.
2. Compute the calling federate’s GALT.
3. Compute the calling federate’s current logical

time.

if(the calling federate is not time con-
strained){
 currentTime = theTime;
}else{
 currentTime = min{LETS, GALT, theTime};
}

4. Compute the calling federate’s actual lookahead.
5. Send messages.
 Send all RO and TSO messages to the calling fed-

erate.
6. Grant the FQR request.
 Call the timeAdvanceGrant(currentTime) service

to grant the federate to advance to currentTime.
7. Call pushFederates to advance other pending fed-

erates.

The retract service has the following prototype.

void retract (const
RTI::MessageRetractionHandle& theHandle)

Algorithm 7 is the implementation of the service.
Algorithm 7 retract

1. Process exceptions.

(a) If the calling federate has not joined the fed-
eration execution, the
RTI::FederateNotExecutionMember excep-
tion is thrown.

(b) If the calling federate is not regulating, the
RTI::TimeRegulationIsNotEnabled exception
is thrown.

(c) If theHandle.SendingFederate is not the call-
ing federate, the
RTI::InvalidRetractionHandle exception is
thrown.

(d) If the calling federate is in the Grant state
and theHandle.theTime ≤ (currentTime +
lookahead) or the calling federate is in time
advancing state and theHandle.theTime ≤
(pendingTime+lookahead), the
RTI::MessageCanNoLongerBeRetracted ex-
ception is thrown.

2. Define a set variable Ф.

105
For each federate h in theHan-
dle.receivingFederates, do the following pro-
cedure.
 if(h < 1000000) { // the federate receives
a TSO message
 if(the message is in federate h’s TSO
queue) {
 remove this message from federate
h’s TSO queue;
 }else{
 Ф = Ф + {h};
 }
 }else{ // the federate receives an RO mes-
sage
 h = h - 1000000;
 if(the message is in federate h’s RO
queue) {
 remove this message from federate
h’s RO queue;
 }else{
 Ф = Ф + {h};
 }
 }

3. Empty the theHandle.receivingFederates variable.
4. Send the requestRetraction(theHandle) service to

all federates in Ф.

6 CONCLUSION

The principles and efficient implementation of the HLA
time management have always been a hotspot for RTI de-
velopers. This paper systematically explains the principles,
and describes the algorithms of most time management ser-
vices. On computing Greatest Available Logical Time
(GALT), an algorithm without recursion is introduced, and
the deadlock caused by recursion shall not be considered.
A federate may roll back its states when using optimistic
services. It is very complicated for an RTI to save and re-
store the information correlating to the rollback because an
RTI shall consider many other HLA management services
besides time management. This paper describes the zero-
saving algorithm, which can greatly simplify the imple-
mentation of an RTI. In general, we shall put the saving
information for future retraction in an RTI. But according
to the zero-saving mechanism, an RTI can return federates
the retraction information and the RTI saves and restores
nothing. Therefore, the zero-saving algorithm is essentially
a mechanism which transfers the saving operation in an
RTI to a federate.

ACKNOWLEDGMENTS

This work was supported in part by the National Grand
Fundamental Research 973 Program of China under the
grant of No. 2005CB321804 and the National Natural Sci-
ence Foundation of China under the grant of No.
60373024.
0

Liu, Yao, Tao, and Wang

REFERENCES

Carothers, C. D., R. M. Weatherly, R. M. Fujimoto, and A.
L. Wilson. Design and implementation of HLA time
management in the RTI version F.0. In Proceedings of
the 1997 Winter Simulation Conference, ed. S. An-
dradottir, D. H. Withers, and B. L. Nelson, 373-380.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers [online]. Available via
<http://www.informs-sim.org/wsc97
papers/0373.PDF> [accessed March 18, 2006].

DMSO. 2000. RTI 1.3-Next Generation Programmer's
Guide Version 6 [online]. Available via
<http://hla.dmso.mil> [accessed April 8,
2002].

FDK. 2006 [online]. Available via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 18, 2006].

Fujimoto, R. M. 1988. Lookahead in Parallel Discrete
Event Simulation. In 1988 International Conference
on Parallel Processing 3: 34-41.

Fujimoto, R. M. 1996. HLA Time Management: Design
Document. College of Computing Georgia Institute of
Technology Atlanta [online]. Available via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 18, 2006].

Fujimoto, R. M. 1997. Zero Lookahead and Repeatability
in the High Level Architecture. In 1997 Spring Simu-
lation Interoperability Workshop [online]. Available
via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 18, 2006].

Fujimoto, R. M. 2000. Parallel and distributed simulation
systems. New York: John Wiley & Sons.

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
computer simulation systems: an introduction to the
high level architecture. Prentice Hall PTR, Upper Sad-
dle River, NJ.

Liu, B. Q., H. M. Wang, and Y. P. Yao. 2004a. Key tech-
niques of a hierarchical simulation runtime infrastruc-
ture-StarLink. Journal of Software 14(1): 9-16 [online].
Available via
<http://www.jos.org.cn/paper/detail.
asp?id=1765> [accessed June 10, 2006].

Liu, B. Q., H. M. Wang, and Y. P. Yao. 2004b. Implemen-
tation of optimistic advancing mechanism in RTI.
Journal of Software 14(3): 338-347 [online]. Available
via
<http://www.jos.org.cn/paper/detail.
asp?id=1803> [accessed June 10, 2006].

MÄK Technologies. 2006 [online]. Available via
<http://www.mak.com/rti.htm> [accessed
March 18, 2006].
1051
Pitch Technologies. 2006 [online]. Available via
<http://www.pitch.se/prti> [accessed
March 18, 2006].

Riley, G. F., R. Fujimoto, and M. H. Ammar. 2000. Net-
work aware time management and event distribution,
College of Computing Georgia Institute of Technol-
ogy Atlanta [online]. Available via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 18, 2006].

AUTHOR BIOGRAPHIES

BUQUAN LIU received his B.S. degree in computer sci-
ence from Nanjing University in 1991. His M.S. and Ph.D.
degrees were received in School of Computer from Na-
tional University of Defense Technology (NUDT) in 1998
and 2004 respectively. He has achieved 2 Provincial Sci-
ence and Technology Advance Awards and 1 patent of the
design of hierarchical RTI servers based on interoperabil-
ity protocol. Now he is an associate professor of the school
and his interests are distributed simulation and high per-
formance computing. His e-mail address is
<bqliu@nudt.edu.cn>.

YIPING YAO is a professor of School of Computer in
National University of Defense Technology. In this school,
he received his M.S. and Ph.D. degrees in 1987 and 2004
respectively. He received his B.S. degree in computer sci-
ence from Huazhong University of Science and Technol-
ogy in 1985. At present, he has achieved 2 second-class
National Science and Technology Advance Awards and 8
Provincial Science and Technology Advance Awards.
More than 40 papers and 3 monographs were also pub-
lished. His research areas are distributed simulation and
virtual reality. His e-mail address is
<ypyao@nudt.edu.cn>.

JING TAO is an associate professor in the School of
Computer at the National University of Defense Technol-
ogy. She received her B.S. and M.S. degrees in the school
in 1992 and 1998 respectively. She has won 3 Provincial
Science and Technology Advance Awards. Her interests
are also distributed simulation and high performance com-
puting. Her e-mail address is <ellen5702@tom.com>.

HUAIMIN WANG is a professor in the School of Com-
puter at the National University of Defense Technology.
He received his Ph.D. degree in computer science in 1992.
He is a member of the Editorial Board of Chinese Journal
of Computers and Journal of Computer Science and Tech-
nology. Dr. Wang has served as a member of the Expert
Committee for Computer Software and Hardware of the
National High Technology Research and Development
Program of China (863 Program). In 2003, he was
awarded one 2nd class National Science and Technology

http://www.informs-sim.org/wsc97papers/0373.PDF
http://www.informs-sim.org/wsc97papers/0373.PDF
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.jos.org.cn/paper/detail.asp?id=1765
http://www.jos.org.cn/paper/detail.asp?id=1765
http://www.jos.org.cn/paper/detail.asp?id=1803
http://www.jos.org.cn/paper/detail.asp?id=1803
http://www.mak.com/rti.htm
http://www.pitch.se/prti
http://www.pitch.se/prti
http://www.pitch.se/prti
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
mailto:bqliu@nudt.edu.cn
mailto:ypyao@nudt.edu.cn
mailto:ellen5702@tom.com

Liu, Yao, Tao, and Wang

Advance Award. Up to now, he has published more than
90 papers and directed 20 graduate students. His research
focuses on distributed object, agent technology, grid com-
puting and network security. His e-mail address is
<whm_w@163.com>.
1052

mailto:whm_w@163.com

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

