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ABSTRACT 

The High Level Architecture (HLA) time management is 
concerned with mechanisms for guaranteeing message or-
der, process synchronization and execution correctness in 
distributed simulations. Time management greatly influ-
ences on the scales of applications, especially for the com-
putation of Greatest Available Logical Time (GALT) and 
the implementation of optimistic services. StarLink is an 
RTI with central architecture, which is compliant with the 
IEEE 1516 standard. This paper systematically describes 
the implementation algorithms for main time management 
services in StarLink. Two smart and efficient algorithms 
about GALT computation and optimistic services are also 
introduced, which are suitable for many RTIs such as 
RTI1.3-NG, pRTI and DRTI. For the GALT algorithm, it 
is not necessary for an RTI to resolve the recursion nor any 
deadlock. For optimistic services, a simple mechanism 
without rollback in an RTI is also introduced; therefore, it 
can greatly simplify the development of an RTI. 

1 INTRODUCTION 

The High Level Architecture (HLA) has been developed to 
provide a common architecture for distributed modeling and 
simulation. In September 2000, HLA was adopted as the 
IEEE 1516 standard. The Runtime Infrastructure (RTI) is the 
software as an implementation of the HLA interface specifi-
cation.  
 Time management is a great challenge for large-scale 
simulations in various RTIs, especially for those with a large 
amount of data communication. In those applications, an 
RTI may order a large amount of Time Stamp Order (TSO) 
messages. For example, suppose that a simulation has 1,024 
federates with the same execution code. All federates call 
the timeAdvanceRequest (TAR) service to advance logical 
time step by step. For each step, everyone sends a TSO mes-
sage subscribed by all other federates. Thus, the RTI in the 
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simulation has to order 1,023*1,024 TSO messages. In an 
RTI with the same architecture as RTI1.3-NG (DMSO 
2000), each federate has its own Local RTI Component 
(LRC). Therefore, 1,024 LRCs shall cooperate to order those 
1,023*1,024 messages. 
 The HLA time management contains the conservative 
and optimistic mechanisms. In HLA, a federate can call the 
enableTimeRegulation service to determine if it regulates 
other federates' advancement, or call the enableTimeCon-
strained service to be constrained by other federates. In this 
paper, we call those services as policy-setting services. 
Greatest Available Logical Time (GALT) is the maximum 
logical time that a federate may advance securely. GALT is 
also called Lower Bound Time Stamp (LBTS) in HLA 1.3. 
The computation of GALT is a key problem for efficiently 
implementing HLA time management, and it is virtually dif-
ferent from those LBTS algorithms in traditional area of 
Parallel Discrete Event Simulation (PDES). For example, 
the important concepts of  Local Virtual Time (LVT) and 
Global Virtual Time (GVT) in PDES have disappeared in 
the HLA time management. 

By far, we have not yet found any RTI developers to 
publish the detail implementation of the HLA time man-
agement. This paper will introduce the implementation 
mechanisms of time management services in StarLink, 
which is an RTI with central architecture. StarLink only 
comprises a unique central RTI server, and the communi-
cation between a federate and the server is accomplished 
by underlying CORBA middleware (Liu, Wang and Yao 
2004a). Two issues are very important when implementing 
time management, i.e. the algorithm of GALT computation 
and implementation of optimistic services. Complicated 
algorithms may result in an RTI's low efficiency and re-
duction of the RTI's application scales. However, such 
questions are resolved in StarLink easily and smartly. Al-
though StarLink is an RTI with central architecture, its 
ideas may be general and can be reused into other RTIs 
with different architectures such as RTI1.3-NG, pRTI 
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(Pitch Technologies 2006), MÄK RTI (MÄK Technolo-
gies 2006), DRTI (FDK 2006), etc. In the next section, the 
GALT algorithm in StarLink is introduced. An important 
characteristic is that there is no recursion in the simple al-
gorithm, and it doesn't resolve any deadlock caused by re-
cursion. The implementation of policy-making services is 
described in the third section. Then the implementation al-
gorithms of conservative time management services are 
presented. In the fifth section, the principles of optimistic 
time management services are introduced and especially 
the zero-saving mechanism is also discussed. The mecha-
nism doesn't require an RTI to save or restore any data at 
all when a message is sent or retracted; therefore, this can 
greatly simplify the development of an RTI. We believe 
that those algorithms in the paper are rather useful for RTI 
developers to implement the HLA time management. 

2 COMPUTING GALT 

GALT expresses the greatest logical time to which an RTI 
can grant a federate's advance without having to wait for 
other joined federates. That is to say, GALT is the maxi-
mum logical time a federate can advance to. An RTI must 
compute each federate's GALT correctly and efficiently. 
The computation of GALT is the basic issue to implement 
time management services. It is rather complicated to 
compute GALT as stated in these papers (Fujimoto 2000; 
Kuhl, Weatherly and Dahmann 1999; Riley, Fujimoto and 
Ammar 2000). An RTI must consider each federate's time 
advance services, status, lookahead (Fujimoto 1988; Fuji-
moto 1997) and TSO messages, etc. 

The message sent firstly must arrive firstly within 
StarLink, and the FIFO queuing mechanism is insured by 
underlying CORBA middleware. The following algorithm 
named stature-measuring is used to compute GALT. In the 
algorithm, a federate's stature is represented by the symbol 
S. A federate's stature is correlative with its time advancing 
status. In this paper, five states are defined for a federate, 
i.e. Grant, TAR, TARA, NMR and NMRA. The Grant 
state means a federate is not in time advancing state. The 
rest states mean a federate is in time advancing state by 
calling the timeAdvanceRequest, timeAdvanceRequestA-
vailable (TARA), nextMessageRequest (NMR) or 
nextMessageRequestAvailable (NMRA) service. However, 
a federate can also call the flushQueueRequest (FQR) ser-
vice to advance logical time. As the FQR service is always 
granted by RTI, the service is not considered on computing 
GALT in StarLink though the computation for this service 
is nearly same as the NMRA service. 

Definition 1    A federate's stature S(i) is defined as 
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Where S(i) means the stature of federate i. When federate i 
is in the Grant state, T(i) is its current logical time and L(i) 
means its actual lookahead; when federate i is in time ad-
vancing state, T(i) is the logical time to which the federate 
requests to advance and L(i) is the actual lookahead after 
its request is granted and its computation was presented in 
Carothers, Weatherly, Fujimoto, and Wilson (1997). 
LETS(i) is the least time stamp in federate i's TSO queue. 

Algorithm 1    For any federate i, its GALT is deter-
mined by other federates’ statures in the federation. 
GALT(i) is computed by 

 
 { } .;)(min)( jijSiGALT ≠=  
 
From the GALT algorithm, we know that only two 

federates with least statures are significant for computing 
GALT. 

Definition 2    The minimal federate is that with least 
stature in the federation. 

Definition 3    The penultimate federate is that with 
least stature except the minimal federate in the federation. 

At any moment, only one minimal federate and one 
penultimate federate are designated in the federation. If 
there exist any other federates which have the same stature 
as the minimal federate or the penultimate federate, these 
federates are no longer called the minimal or the penulti-
mate. In addition, the penultimate federate’s stature may be 
equal to that of the minimal federate. From algorithm 1 and 
these definitions, we know that the following two theorems 
are correct apparently. 

Theorem 1    Anyone except the minimal federate has 
the GALT which is equal to the minimal federate’s stature. 

Theorem 2    The minimal federate’s GALT is equal to 
the penultimate federate’s stature. 
 Any other federate’s stature except the minimal feder-
ate may decrease because of TSO messages with less time 
stamp. Consider a simulation with federates i and j. Sup-
pose that both federates are in time granted states, their 
logical time is T, their lookahead is 1, and their TSO mes-
sage queues are empty. When federate i calls the NMR ser-
vice to request to advance to T+3, the federate shall be 
suspended because i’s GALT is T+1, which is smaller than 
its request time T+3. Now we know that S(i) = min{T+3, +
∞ }+1=T+4 from definition 1. If federate j sends a TSO 
message with logical time T+2 to federate i, S(i) = 
min{T+3, T+2}+1=T+3. Thus, the stature of federate i de-
creases from T+4 to T+3. However, it is provable that the 
penultimate federate’s stature must not decrease to be less 
than the minimal federate’s. In addition, the accurate stat-
ure of the penultimate federate is not important for the 
minimal federate’s advance at all. The penultimate federate 
shall not hold back the advance of the minimal federate so 
far as the penultimate federate has larger stature. The 
GALT algorithm can ensure the minimal federate to ad-
vance its logical time correctly. Although there may exist 



Liu, Yao, Tao, and Wang 

 
any federate whose stature decreases during the federation 
execution, the algorithm can compute the minimal feder-
ate’s stature correctly so that it can compute any other fed-
erates’ GALTs correctly according to theorem 1. Thus, the 
algorithm can ensure federates to advance their logical 
time correctly. 

3 POLICY-SETTING SERVICES 

According to the IEEE 1516 standard, a federate can use 
enableTimeRegulation, disableTimeRegulation, en-
ableTimeConstrained and disableTimeConstrained to de-
termine its time management modes. We call them policy-
setting services in this paper. To send TSO messages, a 
federate shall call the enableTimeRegulation service to be-
come a time regulating federate. A time regulating federate 
may call the disableTimeRegulation service to avoid send-
ing TSO messages. To receive TSO messages, a federate 
shall call the enableTimeConstrained service to be a time 
constrained federate. A time constrained federate may call 
the disableTimeConstrained service to avoid receiving 
TSO messages. A time regulating federate influences the 
advance of a time constrained federate. This paper de-
scribes the algorithms of the enableTimeRegulation and 
enableTimeConstrained services. The other two services 
are relatively easier to implement. The enableTimeRegula-
tion service has the following prototype. 
 

void enableTimeRegulation (RTI::LogicalTime 
theLookahead); 

 
Algorithm 2 is the implementation of the service. 
Algorithm 2    enableTimeRegulation 
 
1. Process exceptions. 

(a) If the calling federate has not joined the fed-
eration execution, the 
RTI::FederateNotExecutionMember excep-
tion is thrown.  

(b) If the calling federate is a time regulating 
federate (The bTimeRegulating flag is equal 
to the enumeration constant ENABLED), the 
RTI::TimeRegulationAlreadyEnabled excep-
tion is thrown.  

(c) If the calling federate is in pending on calling 
the enableTimeRegulation service (The 
bTimeRegulating flag is equal to the enu-
meration constant PENDING), the 
RTI::RequestForTimeRegulationPending ex-
ception is thrown.  

(d) If the parameter thelookahead is less than 
zero, the RTI::InvalidLookahead exception is 
thrown.  

(e) If the calling federate is in time advancing 
state, the RTI::InTimeAdvancingState excep-
tion is thrown.  
1046
2. Compute logical time. 
 

/* currentTime is a federate’s actual logical 
time, which is initialized to zero. */ 
maxTime = currentTime + theLookahead; 
for(i = first constrained federate; all con-
strained federates; i is not the calling fed-
erate, i++) { 

 if(federate i's logical time ≥  maxTime) { 

  maxTime = federate i's logical time; 
  if(federate i is in the Grant state 
which is granted by calling the TAR/NMR ser-
vice at least once) { 
   /* EPSILON can be set as the mini-
mal double number which a complier can iden-
tify. But a better way is to set a Boolean 
flag rather than using such a constant. */ 
   maxTime = maxTime + EPSILON;  
   // 0<EPSILON<<1 
  } 
 } 
} 
pendingTime = maxTime - theLookahead; 

 

3. Set lookahead and pending flag. 
 

lookahead = theLookahead; 
bTimeRegulating = PENDING; 

 

4. Send Receive Order (RO) messages. 
 Send all RO messages to the calling federate. 
5. Judge whether the calling federate is granted to be 

regulating. 
 
if(the calling federate is time constrained){ 
  /* The invocation of this service shall be 
considered an implicit TARA service invoca-
tion. */ 
 bTimeAdvanceRequestAvailable = PENDING; 
 Compute the calling federate's GALT; 
 if(pendingTime ≤ GALT) { 
  All messages with time stamp ≤ pend-
ingTime in the calling federate’s TSO queue 
are sent to the federate; 
  currentTime = pendingTime;  
  bTimeRegulating = ENABLED; 
  call timeRegulationEnabled(currentTime); 
  bTimeAdvanceRequestAvailable = ENABLED; 
 } else { 
  All messages with time stamp ≤ GALT 
are sent to the calling federate; 
 } 
}else{  
 currentTime = pendingTime;  
 bTimeRegulating = ENABLED; 
 call timeRegulationEnabled(currentTime); 
}; 

 
The enableTimeConstrained service has the following 

prototype. 
 
void enableTimeConstrained (RTI::LogicalTime 
theLookahead); 

 
Algorithm 3 is the implementation of the service. 
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Algorithm 3    enableTimeConstrained 
 
1. Process exceptions. 

(a) If the calling federate has not joined the fed-
eration execution, the 
RTI::FederateNotExecutionMember excep-
tion is thrown. 

(b) If the calling federate is time constrained 
(The bTimeConstrained flag is equal to the 
enumeration constant ENABLED), the 
RTI::TimeConstrainedAlreadyEnabled ex-
ception is thrown. 

(c) If the calling federate is in pending on the en-
ableTimeConstrained service (The bTime-
Constrained flag is equal to the enumeration 
constant PENDING), the 
RTI::RequestForTimeConstrainedPending 
exception is thrown. 

(d) If the calling federate is in time advancing 
state, the RTI::InTimeAdvancingState excep-
tion is thrown. 

2. Set pending flag. 
 
bTimeConstrained = PENDING; 

 

3. Compute GALT. 
4. Judge whether the calling federate is granted to be 

constrained. 
 
if(the calling federate is time regulating){ 
 if(currentTime ≤ GALT) { 
 bTimeConstrained = ENABLED; 
 call timeConstrainedEnabled(currentTime); 
 }else{ 
  /* In StarLink, a regulating but not 
constrained federate can advance without be-
ing regulated by any other federates. If the 
regulating federate goes farther from other 
federates and now it wants to be a con-
strained federate by calling this service, we 
suspend the federate and don’t allow it to 
call TAR/TARA/NMR/NMRA/FQR to advance again. 
But we think the method is optional and it is 
still reasonable if we allow the federate to 
advance further. */ 
 bTimeAdvanceRequestAvailable = PENDING; 
 pendingTime = currentTime; 
 } 
}else{ 
 if(GALT != +∞){ // GALT’s original value 
  if(currentTime ≤ GALT) { 
   currentTime = GALT; 
   bTimeConstrained = ENABLED; 
   call timeConstrainedEnabled (cur-
rentTime); 
  } 
 }else{ 
  bTimeConstrained = ENABLED; 
  call timeConstrainedEnabled (current-
Time); 
 } 
}; 
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4 CONSERVATIVE ADVANCE SERVICES 

The conservative mechanism in the HLA time manage-
ment ensures that each federate can receive TSO messages 
in time stamp order, which guarantees the federation to be 
executed correctly. The conservative advance services in 
IEEE 1516 are TAR, TARA, NMR and NMRA. When a 
federate call any conservative services to advance logical 
time, an RTI shall call the timeAdvanceGrant (TAG) ser-
vice to grant the federate’s advance if the requested logical 
time is secure. Otherwise, the request shall be suspended 
and the federate shall be in time advancing state. 
 In addition, when a federate’s request is granted, the 
RTI shall look up other federates to be suspended because 
of calling the TAR, TARA, NMR, NMRA, en-
ableTimeRegulation and enableTimeConstrained services. 
The RTI shall recomputed these federates’ GALTs and de-
termine if they can resume and go on execution. This paper 
uses the pushFederates function to express this procedure. 
The algorithms of the TAR and NMR services are de-
scribed in this section. The other two services TARA and 
NMRA have similar results. 
 The TAR service has the following prototype. 
 

void timeAdvanceRequest (RTI::LogicalTime 
theTime); 

 
 Algorithm 4 is the implementation of the service. 

Algorithm 4    timeAdvanceRequest 
 
1. Process exceptions. 

(a) If the calling federate has not joined the fed-
eration execution, the 
RTI::FederateNotExecutionMember excep-
tion is thrown.  

(b) If the parameter theTime is not correct, the 
RTI::InvalidLogicalTime exception is 
thrown.  

(c) If the calling federate is in time advancing 
state, the RTI::InTimeAdvancingState excep-
tion is thrown. 

(d) If the parameter theTime is less than the call-
ing federate's current logical time, the 
RTI::LogicalTimeAlreadyPassed exception is 
thrown. 

(e) If the calling federate is in pending on calling 
the enableTimeRegulation service (The 
bTimeRegulating flag is equal to the enu-
meration constant PENDING), the 
RTI::RequestForTimeRegulationPending ex-
ception is thrown.  

(f) If the calling federate is in pending on calling 
the enableTimeConstrained service (The 
bTimeConstrained flag is equal to the enu-
meration constant PENDING), the 
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RTI::RequestForTimeConstrainedPending 
exception is thrown. 

2. Set pending flag and pending time. 
 
bTimeAdvanceRequest = PENDING; 
pendingTime = theTime; 

3. Send RO messages. 
 Send all RO messages to the calling federate. 
4. Judge whether the TAR request is granted. 
 
if(the calling federate is time constrained){ 
 Compute the calling federate's GALT; 
 if(theTime < GALT) { 
  call grantFederateAdvancing(theTime) 
to grant the calling federate to theTime.  
 }else{ 
  All messages with time stamp ≤ GALT 
are sent to the calling federate; 
 } 
}else{  
 call grantFederateAdvancing(theTime) to 
grant the calling federate to theTime.  
} 

5. Call the pushFederates function to advance other 
pending federates. 

 
In algorithms 4 and 5, the grantFederateAdvancing 

nction mainly does following things. 
 
1. Look up if the calling federate is in lookahead-

pending state. When a federate calls the modify-
Lookahead service to decrease its lookahead, the 
actual lookahead can not be decreased immedi-
ately and it must be decreased gradually during 
the federation. If the calling federate is in looka-
head-pending state, the actual lookahead should 
be recomputed as stated in Carothers, Weatherly, 
Fujimoto, and Wilson (1997). 

2. Send all TSO messages with time stamp less than 
or equal to the granted time to the calling federate.  

3. Call the TAG service to grant the federate to ad-
vance its logical time. The bTimeAdvanceRequest 
or bNextMessageRequest flag is set to be 
ENABLED. 

 
The NMR service has the following prototype. 

void nextMessageRequest (RTI::LogicalTime 
theTime); 

Algorithm 5 does the implementation of the service. 
Algorithm 5    nextMessageRequest 
 
1. Process exceptions. 
 This is the same as algorithm 4. 
2. Set pending flag and pending time. 
10
 
bNextMessageRequest = PENDING; 
pendingTime = theTime; 

 
3. Send RO messages. 

  Send all RO messages to the calling federate. 
4. Judge whether the NMR request is granted. 
 
if(the calling federate is time constrained){ 
 Compute the calling federate's GALT; 
 //LETS is +∞ for an empty TSO queue. 
 LETS = min{TSO}; // the minimal time stamp 
in the federate's TSO queue. 
 if(LETS ≤ theTime && LETS < GALT) { 
  call grantFederateAdvancing(LETS) to 
grant the federate to LETS.  
 }else if(theTime < GALT) { 
  call grantFederateAdvancing(theTime) 
to grant the federate to theTime.  
 } 
}else{ 
 call grantFederateAdvancing(theTime) to 
grant the federate to theTime. 
} 

 
5. Call pushFederates to advance other pending fed-

erates. 

5 OPTIMISTIC ADVANCE SERVICES 

The optimistic advance services in IEEE 1516 are FQR, 
retract and requestRetraction. The former two services are 
implemented within RTI, and the latter callback service is 
supplied by federate. 
 The optimistic mechanism in HLA is different from 
that in PDES. In PDES, there exists the typical domino 
phenomenon, i.e. an optimistic process may roll back its 
start. But a federate mustn’t roll back its logical time and 
there doesn’t exist the phenomenon during the HLA fed-
eration execution. As an HLA federate can only advance 
its logical time by calling the TAR, TARA, NMR, NMRA 
and FQR services, it cannot call any other services to roll 
back logical time. Otherwise, the federate shall receive the 
exception ‘RTI::LogicalTimeAlreadyPassed’ from its RTI. 
In addition, an RTI doesn’t allow a federate to advance its 
logical time beyond GALT and the federate’s logical time 
is always secure according to HLA standards; otherwise, 
the RTI shall not guarantee that a conservative federate can 
coexist with an optimistic federate. However, the received 
TSO messages for a federate may not secure. Some mes-
sages’ time stamps may be larger than GALT. A federate 
may receive a message with larger time stamp during a re-
quest, and it may receive a message with smaller time 
stamp later. If the smaller message results in the confliction 
of states, the federate may roll back its states but not logi-
cal time, and it may retract its TSO messages sent by itself 
before. When its RTI receives the retract service, it calls 
the requestRetraction service to notify any federates that 
48
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have received the message to retract it. Thus, there are two 
important rules in the HLA optimistic advance mechanism. 

Rule 1    The logical time of a federate must not be 
rolled back. 

Rule 2    The rollback occurs in a federate but not in 
an RTI. 

Here is another interesting phenomenon. A TSO mes-
sage sent by a federate may be received by multiple feder-
ates. Some federates may receive it as a TSO message and 
some federates may receive it as an RO message. More-
over, a TSO message may be split into multiple messages 
and sent to one federate. Therefore, a federate may receive 
it not only as a TSO message but also an RO message in 
StarLink. 

We think that an RTI should call the requestRetraction 
service to notify all receivers when a federate retracts a 
TSO message. If a federate receives more than one split 
message, the RTI only notifies the federate once. Of 
course, it is the federate’s responsibility to determine if the 
requestRetraction service is responded. 

The key issue in implementing optimistic services is to 
correctly notify all receivers to retract messages. This pa-
per introduces the zero-saving mechanism that doesn’t re-
quire an RTI to save anything, and more detailed discus-
sion can be found in Liu, Wang and Yao (2004b). Of course, 
an RTI may save any states correlative with optimistic ser-
vices, but this will make the development of the RTI much 
more complicated. 

5.1 Complexity of Saving in RTI 

Next we discuss two available methods for an RTI to save 
and restore information about message retraction. 

 
1. To create a list for each federate in the RTI. An 

item of the list includes a TSO message handle 
and the message’s receivers. When a federate re-
tracts a message, the RTI can know which feder-
ates shall be notified. This method has nothing to 
do with the HLA declaration management. 

2. To create two lists for each federate in the RTI. 
One list represents the publication and subscrip-
tion relations of a federate, and an item of another 
list includes a TSO message handle and the index 
of publication and subscription relation in the first 
list. When a federate retracts a message, the RTI 
can also know which federates shall be notified by 
looking up and matching two lists. This method is 
correlative with the HLA declaration management 
and data distribution management. 

 
However, an RTI shall do a lot of work for both meth-

ods to save and restore retraction information, and corre-
sponding processing code will inevitably spread into many 
HLA services such as time management, federation man-
104
agement, ownership management, object management, 
data distribution management, and even declaration man-
agement. In addition, these approaches may result in a few 
hard nuts to crack. For example, a federate shall not be 
time regulating thus it can no longer retract messages if the 
disableTimeRegulation service is successfully called. But 
the federate is able to retract messages again after it recalls 
the enableTimeRegulation service successfully. Now the 
annoying question is however an RTI should maintain 
these lists when a federate calls both services. This is simi-
lar for the ownership transferring of object instance attrib-
utes. But these problems do not exist in the zero-saving 
mechanism. 

5.2 Zero-Saving Mechanism 

In StarLink, the message handle type 
RTI::MessageRetractionHandle is defined as follows. 

 
struct MessageRetractionHandle { 
  UniqueID    theSerialNumber; 
  FederateHandle  sendingFederate; 
  LogicalTime   theTime; 
  FederateHandleSeq receivingFederates; 
}; 

 
According to the IEEE 1516 standard, when federate i 

sends a TSO message, an RTI should return the federate a 
message handle with the RTI::MessageRetractionHandle 
type. In StarLink, the variable theSerialNumber in the mes-
sage handle is a counter, which is used to distinguish be-
tween different messages; the variable sendingFederate 
means the sending federate; theTime is the time stamp of 
the TSO message. If the subscribing federate j with handle 
h receives the message as a TSO message, h is inserted into 
the variable receivingFederates. Suppose that the number 
of federates is less than 1,000,000 in the federation, 
1000000+h is inserted into the set if the subscribing feder-
ate j would receive the TSO message as an RO message. 
The assumption is reasonable because it is difficult for 
most RTIs to support more than 100 federates nowadays. 
An alternative method is to adopt two variables which rep-
resent the receiving federates for RO and TSO messages 
respectively. 

The zero-saving mechanism in StarLink means that 
the RTI returns the sending federate a message handle with 
all received federates whenever the federate sends a TSO 
message. Thus, when the sending federate calls the retract 
service to withdraw a TSO message, the RTI will call the 
requestRetraction service to correctly notify all received 
federates which are saved in the variable receivingFeder-
ates of the TSO message handle. 

The FQR service has the following prototype. 
 
void flushQueueRequest (RTI::LogicalTime 
theTime ) 

 

9
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Algorithm 6 is the implementation of the service. 
Algorithm 6    flushQueueRequest 
 
1. Process exceptions. 
 This is the same as algorithm 4. 
2. Compute the calling federate’s GALT. 
3. Compute the calling federate’s current logical 

time. 

if(the calling federate is not time con-
strained){ 
 currentTime = theTime; 
}else{ 
 currentTime = min{LETS, GALT, theTime}; 
} 

 
4. Compute the calling federate’s actual lookahead. 
5. Send messages. 
 Send all RO and TSO messages to the calling fed-

erate. 
6. Grant the FQR request. 
 Call the timeAdvanceGrant(currentTime) service 

to grant the federate to advance to currentTime. 
7. Call pushFederates to advance other pending fed-

erates. 
 
The retract service has the following prototype. 
 
void retract (const 
RTI::MessageRetractionHandle& theHandle) 

 
Algorithm 7 is the implementation of the service. 
Algorithm 7    retract 
 
1. Process exceptions. 

(a) If the calling federate has not joined the fed-
eration execution, the 
RTI::FederateNotExecutionMember excep-
tion is thrown. 

(b) If the calling federate is not regulating, the 
RTI::TimeRegulationIsNotEnabled exception 
is thrown. 

(c) If theHandle.SendingFederate is not the call-
ing federate, the 
RTI::InvalidRetractionHandle exception is 
thrown. 

(d) If  the calling federate is in the Grant state 
and theHandle.theTime ≤ (currentTime + 
lookahead) or the calling federate is in time 
advancing state and theHandle.theTime ≤ 
(pendingTime+lookahead), the 
RTI::MessageCanNoLongerBeRetracted ex-
ception is thrown. 

 
2. Define a set variable Ф. 

 

105
For each federate h in theHan-
dle.receivingFederates, do the following pro-
cedure.  
 if(h < 1000000) { // the federate receives 
a TSO message 
   if(the message is in federate h’s TSO 
queue) { 
    remove this message from federate 
h’s TSO queue; 
   }else{ 
    Ф = Ф + {h}; 
   } 
 }else{ // the federate receives an RO mes-
sage 
   h = h - 1000000;  
   if(the message is in federate h’s RO 
queue) { 
    remove this message from federate 
h’s RO queue; 
   }else{ 
    Ф = Ф + {h}; 
   } 
 } 

 
3. Empty the theHandle.receivingFederates variable. 
4. Send the requestRetraction(theHandle) service to 

all federates in Ф. 

6 CONCLUSION 

The principles and efficient implementation of the HLA 
time management have always been a hotspot for RTI de-
velopers. This paper systematically explains the principles, 
and describes the algorithms of most time management ser-
vices. On computing Greatest Available Logical Time 
(GALT), an algorithm without recursion is introduced, and 
the deadlock caused by recursion shall not be considered. 
A federate may roll back its states when using optimistic 
services. It is very complicated for an RTI to save and re-
store the information correlating to the rollback because an 
RTI shall consider many other HLA management services 
besides time management. This paper describes the zero-
saving algorithm, which can greatly simplify the imple-
mentation of an RTI. In general, we shall put the saving 
information for future retraction in an RTI. But according 
to the zero-saving mechanism, an RTI can return federates 
the retraction information and the RTI saves and restores 
nothing. Therefore, the zero-saving algorithm is essentially 
a mechanism which transfers the saving operation in an 
RTI to a federate. 
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