
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

DEVELOPMENT OF A RUNTIME INFRASTRUCTURE
FOR LARGE-SCALE DISTRIBUTED SIMULATIONS

Buquan Liu
Yiping Yao

Jing Tao
Huaimin Wang

School of Computer

National University of Defense Technology
Changsha, Hunan 410073, CHINA

ABSTRACT

With the development of distributed modeling and simula-
tion, it is necessary for the RTI to support large-scale ap-
plications. However, many RTIs can not support large-
scale distributed simulations with more than 100 federates
very well nowadays. StarLink+ is an RTI developed ac-
cording to the IEEE 1516 standard, which can be used for
large-scale simulations with thousands of federates. Great
innovations are made in StarLink+, such as its architecture
and inner implementation technologies. This paper pre-
sents the two-level architecture in StarLink+. The unique
architecture has the advantages of both central architecture
and distributed architecture. To improve the performance
much more for large-scale simulations, two important
technologies, i.e. multiple threads and data packing, are
adopted in StarLink+. In addition, this paper explains the
efficient advancing mechanism in time management and
discusses the large-scale experiments with thousands of
federates in StarLink+.

1 INTRODUCTION

The High Level Architecture (HLA) has been developed to
provide a general framework for distributed modeling and
simulation. The objective of HLA is to provide a common
architecture applicable across a variety of simulations for
interoperability and reuse. The Runtime Infrastructure (RTI)
is the software that provides common interface services dur-
ing a HLA federation execution for synchronization and data
exchange. In September 2000, HLA was accepted as the
IEEE 1516 standard.
 Continuously supported by multiple National High-
Tech Research and Development Programs, we have im-
plemented an RTI named StarLink which supports the IEEE
1516 standard and which is based on CORBA (Liu, Wang
and Yao 2004). StarLink is an RTI with central architecture,

1031-4244-0501-7/06/$20.00 ©2006 IEEE
and it can be well applied from small to moderate applica-
tions. On the basis of StarLink, we have also successfully
developed StarLink+ (Liu, Wang, and Yao 2005), which is a
hierarchical RTI with two-level servers to meet the require-
ment of large-scale distributed simulations.
 Presently, it is not very efficient for an RTI to support
more than 100 federates, and the HLA time management is
also a factor confining the scale of simulations. The HLA
time management provides varieties of time synchronization
mechanisms and can meet all kinds of distributed simula-
tions theoretically. However, few large-scale applications
with more than 100 federates in the HLA time management
have been implemented efficiently in reality. The time man-
agement in RTI is meeting tremendous challenges for large-
scale and efficient simulations. We have, however, success-
fully made a few large-scale experiments with thousands of
federates which are time regulating and time constrained by
calling the enableTimeRegulation and enableTimeCon-
strained services in StarLink+.
 StarLink+ adopts a unique architecture and has particu-
lar characteristics, which this paper discusses in detail. In the
Section 2, the two-level hierarchical architecture is presented
and compared with other architectures. The unique architec-
ture can greatly decrease the number of messages between
RTI servers, and suitable for large-scale applications. In Sec-
tion 3, two important technologies are described: multiple
threads and data packing. The multiple threads approach can
improve the RTI's parallel performance and the data packing
method can resolve the bottleneck problem caused by large
numbers of messages in StarLink+. In Section 4, the basic
execution process in StarLink+ is introduced. From this sec-
tion, we know that StarLink+ can greatly decrease network
data and increase system efficiency. Section 5, explains the
efficient implementation mechanism of time management in
StarLink+, which can support large-scale applications. Fi-
nally, the large-scale experiments are also demonstrated.
6

Liu, Yao, Tao, and Wang

2 TWO-LEVEL ARCHITECTURE

To support large-scale simulations, StarLink+ adopts the
two-level architecture shown in Figure 1. The whole system
is composed of a Central RTI server (CRTI), multiple Local
RTI servers (LRTIs) and federates. The CRTI manages mul-
tiple LRTIs and each LRTI manages multiple federates. In
addition, each federate belongs to one LRTI and each LRTI
is also a federate of all other LRTIs.

 C

F1

R1

F3 F2 F4

R2

F6 F5

R LRTI F Federate C CRTI

Figure 1: Architecture of StarLink+

2.1 Characteristics

The hierarchical architecture in StarLink+ has many
unique characteristics.

1. The two-level other than multi-level architecture
is adopted. In fact, we think that the multi-level
architecture shown in Figure 2 is not efficient. In
such an architecture, the communication between
federates can only travel via ancestor nodes. For
example, the communication between two feder-
ates F1 and F4 should at least cross multiple RTI
servers which are R3, R1, R2 and R6. Thus, the
time delay between F1 and F4 is great. The archi-
tecture shown in Figure 2 also makes it difficult
for time management to determine the time stamp
order (TSO) message with least logical time when
federates call the nextMessageRequest, nextMes-
sageRequestAvailable and flushQueueRequest
services to advance. In addition, the bottleneck
phenomenon for transmitting a great deal of data
shall not be avoided. The closer a node is to the
central RTI server, the more disastrous the phe-
nomenon is. However, Figure 2 is equivalent to
Figure 1 if the CRTI and all LRTIs are allowed to
communicate with each other. Therefore, F1 shall
communicate with F4 via R3 and R6. This shall
greatly decrease the time delay between them.

2. There is no traditional Local RTI Component
(LRC). In DMSO RTI1.3-NG (DMSO 2000), fed-
erates communicate with each other via their
LRCs. But in StarLink+, a federate can only
communicate with other federates via LRTIs. A
federate is separated from its LRTI and their
1037
communication is automatically accomplished by
the underlying CORBA middleware.

3. It only supports single federation. To simplify the
implementation of StarLink+, we only support a
single federation. Multiple federations can be exe-
cuted by starting multiple CRTIs. Of course, we
can also adopt the rtiexec process similar as
RTI1.3-NG to start multiple CRTIs.

4. Compatible with a central RTI. StarLink+ is de-
veloped on the basis of StarLink with central ar-
chitecture shown in Figure 3. StarLink+ can be
degraded into StarLink by configuring an initiali-
zation file.

5. Compatible with a distributed RTI. Figure 4
shows a distributed architecture which is used by
many RTIs such as RTI1.3-NG, MÄK RTI (MÄK
Technologies 2006) and pRTI (Pitch Technolo-
gies 2006). However, Figure 5 is similar to Figure
4 and StarLink+ is degraded into a distributed RTI
if each LRTI only manages a single federate.
Then the CRTI is approximately equal to the CRC
and a LRTI is approximately equal to a LRC. But
there still exist some differences between them. In
Figure 5, a federate and its LRTI are two inde-
pendent processes; but in Figure 4, a LRC is
bound to a federate in the form of a library.

6. A LRTI joins to another LRTI as a federate.
When a federate joins to a LRTI, we say that this
federate belongs to the LRTI. One federate can
only join to one LRTI. In StarLink+, a LRTI can
only know CRTI, other LRTIs and its federates. A
LRTI doesn’t see any federates that belong to
other LRTIs. Of course, a federate can only see its
LRTI, and it doesn’t know CRTI and other
LRTIs.

7. A large amount of messages are decreased. In Fig-
ure 1, the Local RTI server R1 only sends a mes-
sage to R2 once rather than three times if the mes-
sage sent by federate F1 is subscribed by three
federates F4, F5 and F6.

8. Time management is suitable for large-scale
simulations. In StarLink+, a federate has no its
LRC. Only all LRTIs make decisions in time
management rather than all federates in a federa-
tion.

C

F1

R1

R LRTI

F Federate

C CRTI

R3 R4

F2 R8 F3

R2

R5 R6

R9 F5 R7 F4

Figure 2: Architecture with Multiple Levels

Liu, Yao, Tao, and Wang

2

S
c
A
C
s
i
o

s
m

s

a
m
z

s

s

F1

C

F3 F2

C F Federate CRTI

Figure 3: Architecture of StarLink

C

F1

L1 L LRC

F Federate

C CRC

F2

L2

F3

L3

F4

L4

F5

L5

F6

L6

Figure 4: Architecture of Distributed RTI

 C

R LRTI

F Federate

C CRTI

F1

R1

F2

R2

F3

R3

F4

R4

F5

R5

F6

R6

Figure 5: StarLink+ Used as a Distributed RTI

.2 Typical Cases

tarLink+ has outstanding advantages. In StarLink+, the
entral RTI server is similar to the naming server in CORBA.
ll LRTIs can interconnect with each other by CRTI. The
RTI can only be used for synchronization point as well as

ave-and-restore in the HLA federation management. CRTI
s useless for any other services. We ignore CRTI in the rest
f this paper. We define the following symbols:

Definition 1 T(FR) is the network time that a federate

ends a message to its LRTI, or a LRTI sends a callback
essage to its federate.

Definition 2 T(RR) is the network time that a LRTI
ends a message to another LRTI.

Definition 3 T(FL) is the network time that a feder-
te sends a message to its LRC, or a LRC sends a callback
essage to its federate. T(FL) is approximately equal to

ero because a LRC is always bound to its federate.
Definition 4 T(LL) is the network time that a LRC

ends a message to another LRC.
Definition 5 T(FF) is the network time that a mes-

age sent by a federate arrives to another federate.

In Figure 1, we have

).26()21()11()61(RFTRRTRFTFFT ++= (1)
103
In Figure 4, we also have

).61()66()61()11()61(LLTLFTLLTLFTFFT ≈++= (2)

From the above formulas, we know the following conclu-
sions shall be true if we only consider the delay time of a
message and ignore the time that an RTI maintains global
data consistency.

1. Assume that T(FR) ≈ T(RR) ≈ T(LL), (1) should
be three times of (2). Hence the performance of
StarLink+ is worse than the distributed RTI in
Figure 4; we should avoid this configuration when
LRTIs in StarLink+ are deployed.

2. Suppose that T(FR) << T(RR) and T(RR) ≈ T(LL).
From (1), we have

).21()61(RRTFFT ≈ (3)

From (3), we know that a message’s delay time in StarLink+
is nearly equal to that in a distributed RTI.
 On the other hand, assume that only the time about
global data consistency is considered, StarLink+ is superior
to a distributed RTI because only LRTIs are useful for deci-
sion-making in StarLink+, but all LRCs should take part in
decision in a distributed RTI.
 We conclude that the two deployments shown in Figure
6 are preponderant for StarLink+:

1. LRTIs connect with each other via Wide Area

Network (WAN), while each LRTI and all its fed-
erates connect via Local Area Network (LAN) or
Ethernet.

2. LRTIs connect with each other via Local Area
Network or Ethernet, while each LRTI and all its
federates run on the same machine. A cluster sys-
tem is such an example.

 The above deployments sound most reasonable for the
federation with thousands of federates. On the other hand,
we shall not deploy those federates into thousands of ma-
chines connected either by WAN, LAN or Ethernet.

C

F1

F3 F2 F4

R2

F6 F5

R LRTI F Federate C CRTI

LAN LAN
WAN

M0

M2 M1

C

F1

F3 F2 F4

R2

F6 F5

M Machine

R1 R1

Figure 6: Two Typical Cases of StarLink+
8

Liu, Yao, Tao, and Wang

3 KEY TECHNOLOGIES

Besides the unique architecture, StarLink+ has also adopted
two important technologies to support large-scale simula-
tions, i.e. the multiple threads approach and the data packing
method. The former increases the parallel performance in
StarLink+ and the tick service in HLA 1.3 does not appear in
a federate of StarLink+, while the latter resolves the bottle-
neck of LRTIs for transferring a large amount of data.

3.1 Multiple Threads

The multiple threads approach can bring the following ad-
vantages.

1. Avoid deadlock. Single thread adopted in Star-
Link+ may lead to the deadlock. The basic cli-
ent/server mode is used in CORBA. In StarLink+,
either a LRTI or a federate is not only a server but
also a client. When a federate calls its LRTI, the
federate is in state of waiting before its LRTI re-
turns. On the other hand, when a LRTI calls back
its federate, the LRTI shall wait for what the fed-
erate returns. Thus, one or more federates and
their LRTIs may wait for each other and the dead-
lock occurs. Another advantage brought by the
multiple threads method is that the tick service de-
fined in HLA 1.3 shall not be implemented. For
one service call, a federate shall waste abundant
of CPU time because it would call the tick service
for many times in using those RTIs.

2. Substitute multicast. The multicast technology is
used in many RTIs. As many HLA services are
reliable including ownership and time manage-
ment services, but multicast is an unreliable
mechanism based on the UDP protocol. It shall
make the development of an RTI more difficult
and complicated when an unreliable mechanism is
used to resolve reliable problems.

3. Improve parallelism. Different data can simulta-
neously be sent and received by multiple LRTIs
and federates. In StarLink+, when a federate joins
to a LRTI, the LRTI creates two threads for the
joining federate. One thread is responsible for re-
ceiving data and the other is responsible for send-
ing data. This is true for a LRTI to join to the
CRTI and to another LRTI.

3.2 Data Packing

Multiple threads shall exist in a LRTI, but the scheduling
time of a thread assigned by the operating system is limited.
If a callback thread can not send data to a federate in time,
numerous messages will pile up in the LRTI. The memory
may be not enough and a LRTI shall collapse if excessive
103
messages store in the LRTI. To resolve the bottleneck phe-
nomenon, the data-packing method is brought forth. Data-
packing means that all messages storing in a thread are
bound into a single packet and the thread only sends one
packet to a receiver when the thread is invoked by the oper-
ating system. According to our experimental results, the ap-
proach can greatly improve the efficiency of StarLink+.
 Suppose that the size of a message is 100 bytes. Figure
7 shows the delay time for message transmitting between
two LRTIs in different machines in 100M network. In the
experiment, the delay time is 0.31ms for one message with
100 bytes sent from one LRTI to another LRTI. From Figure
7, we know that sending one packet with multiple messages
is more efficient than sending these messages in sequence.
For example, sending 100 messages will take 31.60ms, but
one packet covering these 100 messages will only take
1.440ms. The efficiency ratio is 31.60/1.440=21.93.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100
Number of messages

T
ra

ns
m

itt
in

g
tim

e
in

 m
ill

is
ec

on
ds

Sequential messages Single packet

Figure 7: Message Transmitting Time between Two LRTIs

4 DATA EXCHANGE PROCEDURE

One of the basic concepts in the HLA is the publication
and the subscription mechanisms for data transmissions.
To better comprehend the rationale of StarLink+, we pre-
sent the process of data exchange for object class attributes.
During the process of developing StarLink+, a number of
services extended from normal HLA services are adopted
in StarLink+ for the internal communication between
CRTI and LRTI. These services are user transparent.

4.1 Create Federation Execution

The central RTI server is always started firstly, and all Lo-
cal RTI servers started afterwards. During a federation is
created, the CRTI is similar to the naming server in
CORBA. When a LRTI starts, the LRTI firstly joins to the
CRTI by calling the extended HLA service joinCentral-
FederationExecution, then the CRTI calls the lRTIjoinAn-
otherLRTI service to make the LRTI join to all other
LRTIs which have joined the CRTI. Finally, the CRTI also
9

Liu, Yao, Tao, and Wang

calls the lRTIjoinAnotherLRTI service to make all other
LRTIs which have joined CRTI join to the LRTI. Thus,
CRTI and all LRTIs can communicate with each other.

4.2 Publish and Subscribe

When a federate publishes or subscribes object class attrib-
utes, its LRTI performs two things.

1. Recording the publication and subscription infor-

mation from the federate.
2. If there exists at least one attribute which was not

published or subscribed by local federates before,
the LRTI forwards the publishing or subscribing
service to any other LRTIs, and these LRTIs then
record the publication and subscription informa-
tion from the LRTI.

 Suppose that all three federates F1, F2 and F3 publish
the same attributes of an object class in Figure 1, the LRTI
R1 only informs R2 once and R2 records the publication.

4.3 Register Object Instance

When a federate calls the registerObjectInstance service to
register an object instance, its LRTI does the following
things.

1. If there exist any local federates which have sub-

scribed any attributes of corresponding object
class, the LRTI informs these federates to dis-
cover an object instance.

2. The LRTI calls the extended lRTIregisterOb-
jectInstance service to inform those remote LRTIs
which have subscribed any attributes of the object
class, and these LRTIs inform their federates
which have subscribed any attributes of the object
class to discover an object instance. The object in-
stance is successfully registered in remote LRTIs.

 From the above procedure, we know that multiple fed-
erates from different LRTIs can register object instances
simultaneously.

4.4 Update Attribute Values

This is similar to the registration process of an object in-
stance. When a federate calls the updateAttributeValues
service, its LRTI does the following steps.

1. If there exist any federates which have subscribed
corresponding information, the LRTI calls the re-
flectAttributeValues service to inform these fed-
erates to receive information.
104
2. If there exist any remote LRTIs which have sub-
scribed corresponding information, the LRTI for-
wards the updateAttributeValues service to these
LRTIs, and these remote LRTIs call the reflectAt-
tributeValues service to inform their subscription
federates to receive information.

 We emphasize that even if multiple remote federates
belonging to a LRTI R2 have subscribed corresponding in-
formation, a LRTI R1 should only send the updateAttrib-
uteValues service once to the remote LRTI R2. Therefore,
StarLink+ is able to decrease the messages among LRTIs
greatly.

5 TIME MANAGEMENT

Time management in HLA is virtually the time synchroni-
zation for federates. The hierarchical architecture in Star-
Link+ improves the decision-making efficiency in time
management. Here the decision-making means the compu-
tation of Greatest Available Logical Time (GALT). GALT
is the term in the IEEE 1516 standard which is also called
Lower Bound Time Stamp (LBTS) in HLA 1.3. In a dis-
tributed RTI, all LRCs shall participate in the computation
of GALT. While in StarLink+, only all LRTIs participate
in the computation. As an example of a federation with
1,024 federates, we deploy 64 LRTIs and each LRTI sees
after 16 federates. In such a federation, only 64 LRTIs
rather than 1,024 federates participate in the computation.
But for RTI1.3-NG with the same federation, 1,024 LRCs
shall take part in the computation.
 The computation of GALT is a complicated problem
as discussed in the papers (Fujimoto 1996; Kuhl, Weath-
erly and Dahmann 1999; Riley, Fujimoto and Ammar
1999). The detailed introduction about the algorithm is out
scope of this paper. We only simply discuss an example in
Figure 8 about the timeAdvanceRequest (TAR) service,
and other time advance services have similar results be-
cause of our GALT algorithm. The example includes two
LRTIs, i.e. R1 and R2. In the federation, each LRTI in-
cludes 16 federates. CRTI doesn’t appear in the figure be-
cause it is useless for GALT computing. Suppose that the
initial logical time of each federate is T and lookahead (Fu-
jimoto 1988; Fujimoto 2000) is 0.1. For any federate Fi,
S(Fi)=T+0.1. The symbol S is the value of one federate or
one LRTI server described in our GALT algorithm (Liu,
Wang and Yao 2005). Now we have S(R1) = S(R2) =
T+0.1. The example is nearly same as the model that intro-
duced in the next section.
 The advance procedure of the federation is described
as follows.

1. When F1 calls the TAR service to advance to T+1,
the LRTI R1 computes F1’s GALT.

0

Liu, Yao, Tao, and Wang

w
1
a
r
a

 () () () () (){ }
.11.0

2,16,...,3,2min1
+<+=

=
TT

RSFSFSFSFGALT

2. F1 shall be in time advancing state and wait for

R1 to grant its request. Similarly, when F2,
F3, … , F15 call the TAR service to advance to
T+1, they shall also be in waiting state. Now we
have

() () () () .1.11.0115...21 +=++==== TTFSFSFS

When F16 requests to advance to T+1, F16 shall
be in waiting state. But now S(F16) and S(R1) are
changed into T+1.1. Thus R1 must send S(R1) to
the LRTI R2 to modify the value.

3. When F17, F18, … , F31 call the TAR service to
advance to T+1, they shall be in waiting state as
their GALTs are T+0.1. Now we have

() () () () .1.11.0131...1817 +=++==== TTFSFSFS

When F32 wants to advance to T+1, S(F32) and
S(R2) are changed into T+1.1. Thus R2 sends
S(R2) to R1 to inform its new value. Now each
federate’s GALT is changed into T+1.1 which is
larger than the federate’s request time T+1. There-
fore, R1 and R2 call the timeAdvanceGrant (TAG)
service to grant their federates to logical time T+1
respectively. Note that each federate is informed
by a thread in its LRTI. Now all federates have
advanced to T+1. If the 32 federates request to
advance simultaneously step by step, the federa-
tion can advance simultaneously step by step.

F16 R1...

TAR TAR

TAR

TAR

TAR

TAR

change S(R1)

TAG
TAG

TAG

TAG

TAG TAG

change S(R2)

F1 R2 F17 ... F32

Figure 8: TAR Parallel Advancing Mechanism

In Figure 8, only two calls occur between two LRTIs
hen 32 federates advance one step. If each LRTI and its
6 federates run in the same machine, the HLA time man-
gement can be implemented efficiently because there is
ather a little communication about GALT computation
mong different machines.
104
6 EXPERIMENTS

To compare the capability of national RTIs to integrate
countrywide military simulations which may consist of
hundreds of programs in the future in China, a famous
modeling and simulation expert brought forward a well-
known population problem for voting. Suppose that there
are 20,000,000 populations in a kingdom. Each person can
select one from three choices to decide whether or not to
support the king's new policy. The three choices are “yes”,
“no” and “neutral”. But each person is affected by all other
persons and this means that each person will send a mes-
sage to the others. The voting example can be used to ana-
lyze and make political decisions on some sensitive and
hot spots in the world. In this system, the activity of an in-
dividual is useless and the aggregate activity is what we
care about. The example is a typical complex system,
which features a large number of interacting components
(agents, processes, etc.) whose aggregate activity is nonlin-
ear (not derivable from the summations of the activity of
individual components) and typically exhibits hierarchical
self-organization (Rocha 2003). The research area can be
applied to social networks, gene and protein networks,
knowledge networks, infrastructure networks, etc.

The population voting question is also an example
closely relating to network communication. Highly fre-
quent network communication is one important character-
istic for many simulation applications. Network bandwidth
has great effects on those simulations and their underlying
runtime infrastructure. For example, many experimental
results are given in Clark, Capella, Bailey and Steinman
(2002). The HPC-RTI based on SPEEDES is designed for
high performance computers, and it is not strange for large
amount of objects over the RTI to take more than 100 sec-
onds to advance one step for some experiments.

In the voting example, the whole federation shall be
composed of 2,000 federates if 10,000 persons are modeled
as a federate. The computational process for each federate
is complicated and this is out scope of this paper. Besides
these voting federates, the simulation consists of three fed-
erates, i.e. a control federate, a situation display federate,
and an environment federate. The control federate is used
to control the start and end of the simulation. The situation
display federate supports various results in the forms of
figures, curves, and cylinders. The environment federate
issues some particular events subscribed by all voting fed-
erates. An event is a stimulus which has effects on the re-
sult of voting. For instance, more people shall no longer
support their king if the news about the king’s scandal is
disseminated. In the federation with 2,000 federates, each
federate is modeled to use the TAR service to advance
logical time, then call the updateAttributeValues service to
send a reliable TSO message subscribed by all other feder-
ates. The logical time interval for each step is 40 and each
federate's lookahead is 1 (1 is far less than 40). The time-
1

Liu, Yao, Tao, and Wang

stamp of each TSO message is the logical time of next step.
However, as far as the voting example and the TAR ser-
vice, the exact value of interval logical time is not impor-
tant and it can be equal to any value so far as the lookahead
is less than it. Virtually, the lookahead can also be set to
zero if we use the timeAdvanceRequestAvailable (TARA)
service. Thus, a federate can not advance beyond all other
federates, and they must simultaneously advance to the
same logical time together step by step.

In the example, suppose that the variable n denotes the
number of federates, and also suppose that each federate
sends a TSO message to all other federates. If the size of
one message is 100 bytes, the size of total TSO messages
for one step is (n-1) * n* 100 * 8 bits. Over the 1,000Mbps
network, the theoretically minimal execution time for n
federates to advance one step is

 ()() ()1024*1024*10248*100**1 nn −

seconds. For 1,024 federates, the minimal time is 0.78 sec-
onds. Figure 9 and Figure 10 are the experimental results
of StarLink+ for one step, Figure 9 is the average execu-
tion time for 128 to 1,024 federates, and Figure 10 is for
1,024 to 5,120 federates. For 1,024 federates, the average
execution time is 1.798 seconds. These experiments were
made in a cluster system with 128 CPUs, which was com-
posed of 64 independent nodes connected by two
1,000Mbps switches. In fact, the experiments were equiva-
lent to perform in 64 independent personal computers con-
nected by 1,000Mbps Ethernet. Here is the configuration of
each node.

• CPU: Intel(R) Xeon(TM) CPU 3.40GHz (Dual
Core).

• Memory: 4GB.
• Network: 1,000Mbps.
• Operating system: Linux server2 2.4.21-32.EL.
• Programming language: GNU C++.

 In our experiments with Figure 9 and Figure 10, we did
not start the graphical situation display federate and the envi-
ronment federate, which should bring on inaccurate results.
The whole process of starting the voting simulation was as
follows.

1. Start the central RTI server in the first node of the
cluster system.

2. Start 64 local RTI servers and each local RTI
server ran in one node.

3. Start the control federate in the first node of the
cluster system.

4. Start the voting federates in all nodes. All feder-
ates were averagely deployed into each node. As
far as the simulation of 1,024 federates, each node
consisted of 16 (1024/64) federates. During the
1042
federation execution, only the first joined federate
outputted and recorded its execution time for each
step in each node.

5. The control federate issued the start and end
commands of federation execution.

0.040 0.080
0.195

0.352

0.643

0.966

1.258

1.798

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

128 256 384 512 640 768 896 1024

Total federates

E
xe

cu
tio

n
tim

e
in

 se
co

nd
s

Figure 9: Large-Scale Experimental Results

1.79
9.64

25.30

54.83

87.64

0
10
20
30
40
50
60
70
80
90

1024 2048 3072 4096 5120

Total federates

E
xe

cu
tio

n
tim

e
in

 se
co

nd
s

Figure 10: Ultra Large-Scale Experimental Results

7 CONCLUSION

StarLink+ is a unique RTI with two-level hierarchical ar-
chitecture, which possesses the advantages of the central
architecture and distributed architecture. To promote the
ability for large-scale simulations, two key technologies
are applied into StarLink+. The multiple threads approach
is used to increase the parallel performance and the data
packing method is used to improve the efficiency of mes-
sage transferring in StarLink+. This paper also explains the
efficient time management in StarLink+. The HLA time
management is virtually the synchronization mechanism
for messages which makes large-scale distributed simula-
tions more challengeable. In StarLink+, a federate has no
LRC and it communicates with its LRTI server via under-
lying CORBA middleware; accordingly, time synchroniza-
tion is efficiently coordinated only by all Local RTI serv-
ers. Finally, large-scale experiments with thousands of
federates in StarLink+ are introduced.

Liu, Yao, Tao, and Wang

ACKNOWLEDGMENTS

This work was funded by the National Grand Fundamental
Research 973 Program of China under grant number
2005CB321804, and the National Natural Science Foun-
dation of China under the grant number 60373024.

REFERENCES

DMSO. 2000. RTI 1.3-next generation programmer's guide
version 6. Available via
<http://hla.dmso.mil> [accessed April 8,
2002].

Fujimoto, R. M. 1988. Lookahead in parallel discrete event
simulation. In Proceedings of the 1988 International
Conference on Parallel Processing 3: 34-41.

Fujimoto, R. M. 1996. HLA time management: design
document. College of Computing Georgia Institute of
Technology Atlanta. Available via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 18, 2006].

Fujimoto, R. M. 2000. Parallel and distributed simulation
systems. New York: John Wiley & Sons.

Clark, J., S. Capella, C. Bailey, and J. Steinman. 2002. The
development of an HLA compliant high performance
computing run time infrastructure. Proceedings of the
2002 Spring Simulation Interoperability Workshop,
02S-SIW-016.

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
computer simulation systems: an introduction to the
high level architecture. New Jersey: Prentice Hall
PTR.

MÄK Technologies. 2006. Available via
<http://www.mak.com/rti.htm> [accessed
March 18, 2006].

Liu, B. Q., H. M. Wang, and Y. P. Yao. 2004. Key tech-
niques of a hierarchical simulation runtime infrastruc-
ture-StarLink. Journal of Software 14 (1): 9-16. Avail-
able via <http://www.jos.org.cn/
paper/detail.asp?id=1765> [accessed June
10, 2006].

Liu, B., H. Wang, and Y. Yao. 2005. Data consistency in a
large-scale runtime infrastructure. Proceedings of the
2005 Winter Simulation Conference. Piscataway, New
Jersey: Institute of Electrical and Electronics Engi-
neers. Available via <http://www.informs-
sim.org/wsc05papers/221.pdf> [accessed
March 18, 2006].

Pitch Technologies. 2006. Available via
<http://www.pitch.se/prti> [accessed
March 18, 2006].

Riley, G. F., R. Fujimoto, and M. H. Ammar. 1999. Net-
work aware time management and event distribution,
College of Computing Georgia Institute of Technol-
ogy Atlanta [online]. Available via
104
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 18, 2006].

Rocha, L. 2003. Complex systems modeling: using meta-
phors from nature in simulation and scientific models.
Los Alamos National Laboratory. Available via
<http://informatics.indiana.edu/roch
a/complex/csm.html> [accessed June 8, 2006].

AUTHOR BIOGRAPHIES

BUQUAN LIU received his B.S. degree in computer sci-
ence from Nanjing University in 1991. His M.S. and Ph.D.
degrees were received in the School of Computer from Na-
tional University of Defense Technology (NUDT) in 1998
and 2004 respectively. He has achieved 2 Provincial Sci-
ence and Technology Advance Awards and 1 patent of the
design of hierarchical RTI servers based on interoperabil-
ity protocol. Now he is an associate professor of the school
and his interests are distributed simulation and high per-
formance computing. His e-mail address is
<bqliu@nudt.edu.cn>.

YIPING YAO is a professor of School of Computer in
National University of Defense Technology. In this school,
he received his M.S. and Ph.D. degrees in 1987 and 2004
respectively. He received his B.S. degree in computer sci-
ence from Huazhong University of Science and Technol-
ogy in 1985. At present, he has achieved 2 second-class
National Science and Technology Advance Awards and 8
Provincial Science and Technology Advance Awards. His
research areas are distributed simulation and virtual reality.
His e-mail address is <ypyao@nudt.edu.cn>.

JING TAO is an associate professor in the School of
Computer at the National University of Defense Technol-
ogy. She received her B.S. and M.S. degrees in the school
in 1992 and 1998 respectively. She has won 3 Provincial
Science and Technology Advance Awards. Her interests
are distributed simulation and high performance computing.
Her e-mail address is <ellen5702@tom.com>.

HUAIMIN WANG is a professor in the School of Com-
puter at the National University of Defense Technology.
He received his Ph.D. degree in computer science in 1992.
He is a member of the Editorial Board of Chinese Journal
of Computers and Journal of Computer Science and Tech-
nology. Dr. Wang has served as a member of the Expert
Committee for Computer Software and Hardware of the
National High Technology Research and Development
Program of China (863 Program). In 2003, he was
awarded one 2nd class National Science and Technology
Advance Award. His research focuses on distributed object,
agent technology, grid computing and network security.
His e-mail address is <whm_w@163.com>.
3

http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.mak.com/rti.htm
http://www.jos.org.cn/paper/detail.asp?id=1765
http://www.jos.org.cn/paper/detail.asp?id=1765
http://www.informs-sim.org/wsc05papers/221.pdf
http://www.informs-sim.org/wsc05papers/221.pdf
http://www.pitch.se/prti
http://www.pitch.se/prti
http://www.pitch.se/prti
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://informatics.indiana.edu/rocha/complex/csm.html
http://informatics.indiana.edu/rocha/complex/csm.html
mailto:bqliu@nudt.edu.cn
mailto:ypyao@nudt.edu.cn
mailto:ellen5702@tom.com
mailto:whm_w@163.com

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

