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ABSTRACT 

With the development of distributed modeling and simula-
tion, it is necessary for the RTI to support large-scale ap-
plications. However, many RTIs can not support large-
scale distributed simulations with more than 100 federates 
very well nowadays. StarLink+ is an RTI developed ac-
cording to the IEEE 1516 standard, which can be used for 
large-scale simulations with thousands of federates. Great 
innovations are made in StarLink+, such as its architecture 
and inner implementation technologies. This paper pre-
sents the two-level architecture in StarLink+. The unique 
architecture has the advantages of both central architecture 
and distributed architecture. To improve the performance 
much more for large-scale simulations, two important 
technologies, i.e. multiple threads and data packing, are 
adopted in StarLink+. In addition, this paper explains the 
efficient advancing mechanism in time management and 
discusses the large-scale experiments with thousands of 
federates in StarLink+. 

1 INTRODUCTION 

The High Level Architecture (HLA) has been developed to 
provide a general framework for distributed modeling and 
simulation. The objective of HLA is to provide a common 
architecture applicable across a variety of simulations for 
interoperability and reuse. The Runtime Infrastructure (RTI) 
is the software that provides common interface services dur-
ing a HLA federation execution for synchronization and data 
exchange. In September 2000, HLA was accepted as the 
IEEE 1516 standard. 
 Continuously supported by multiple National High-
Tech Research and Development Programs, we have im-
plemented an RTI named StarLink which supports the  IEEE 
1516 standard and which is based on CORBA (Liu, Wang 
and Yao 2004). StarLink is an RTI with central architecture, 
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and it can be well applied from small to moderate applica-
tions. On the basis of StarLink, we have also successfully 
developed StarLink+ (Liu, Wang, and Yao 2005), which is a 
hierarchical RTI with two-level servers to meet the require-
ment of large-scale distributed simulations. 
 Presently, it is not very efficient for an RTI to support 
more than 100 federates, and the HLA time management is 
also a factor confining the scale of simulations. The HLA 
time management provides varieties of time synchronization 
mechanisms and can meet all kinds of distributed simula-
tions theoretically. However, few large-scale applications 
with more than 100 federates in the HLA time management 
have been implemented efficiently in reality. The time man-
agement in RTI is meeting tremendous challenges for large-
scale and efficient simulations. We have, however, success-
fully made a few large-scale experiments with thousands of 
federates which are time regulating and time constrained by 
calling the enableTimeRegulation and enableTimeCon-
strained services in StarLink+. 
 StarLink+ adopts a unique architecture and has particu-
lar characteristics, which this paper discusses in detail. In the 
Section 2, the two-level hierarchical architecture is presented 
and compared with other architectures. The unique architec-
ture can greatly decrease the number of messages between 
RTI servers, and suitable for large-scale applications. In Sec-
tion 3, two important technologies are described: multiple 
threads and data packing. The multiple threads approach can 
improve the RTI's parallel performance and the data packing 
method can resolve the bottleneck problem caused by large 
numbers of messages in StarLink+. In Section 4, the basic 
execution process in StarLink+ is introduced. From this sec-
tion, we know that StarLink+ can greatly decrease network 
data and increase system efficiency. Section 5,  explains the 
efficient implementation mechanism of time management in 
StarLink+, which can support large-scale applications. Fi-
nally, the large-scale experiments are also demonstrated. 
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2 TWO-LEVEL ARCHITECTURE 

To support large-scale simulations, StarLink+ adopts the 
two-level architecture shown in Figure 1. The whole system 
is composed of a Central RTI server (CRTI), multiple Local 
RTI servers (LRTIs) and federates. The CRTI manages mul-
tiple LRTIs and each LRTI manages multiple federates. In 
addition, each federate belongs to one LRTI and each LRTI 
is also a federate of all other LRTIs. 
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Figure 1: Architecture of StarLink+ 

2.1 Characteristics 

The hierarchical architecture in StarLink+ has many 
unique characteristics. 
 

1. The two-level other than multi-level architecture 
is adopted. In fact, we think that the multi-level 
architecture shown in Figure 2 is not efficient. In 
such an architecture, the communication between 
federates can only travel via ancestor nodes. For 
example, the communication between two feder-
ates F1 and F4 should at least cross multiple RTI 
servers which are R3, R1, R2 and R6. Thus, the 
time delay between F1 and F4 is great. The archi-
tecture shown in Figure 2 also makes it difficult 
for time management to determine the time stamp 
order (TSO) message with least logical time when 
federates call the nextMessageRequest, nextMes-
sageRequestAvailable and flushQueueRequest 
services to advance. In addition, the bottleneck 
phenomenon for transmitting a great deal of data 
shall not be avoided. The closer a node is to the 
central RTI server, the more disastrous the phe-
nomenon is. However, Figure 2 is equivalent to 
Figure 1 if the CRTI and all LRTIs are allowed to 
communicate with each other. Therefore, F1 shall 
communicate with F4 via R3 and R6. This shall 
greatly decrease the time delay between them. 

2. There is no traditional Local RTI Component 
(LRC). In DMSO RTI1.3-NG (DMSO 2000), fed-
erates communicate with each other via their 
LRCs. But in StarLink+, a federate can only 
communicate with other federates via LRTIs. A 
federate is separated from its LRTI and their 
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communication is automatically accomplished by 
the underlying CORBA middleware. 

3. It only supports single federation. To simplify the 
implementation of StarLink+, we only support a 
single federation. Multiple federations can be exe-
cuted by starting multiple CRTIs. Of course, we 
can also adopt the rtiexec process similar as 
RTI1.3-NG to start multiple CRTIs. 

4. Compatible with a central RTI. StarLink+ is de-
veloped on the basis of StarLink with central ar-
chitecture shown in Figure 3. StarLink+ can be 
degraded into StarLink by configuring an initiali-
zation file. 

5. Compatible with a distributed RTI. Figure 4 
shows a distributed architecture which is used by 
many RTIs such as RTI1.3-NG, MÄK RTI (MÄK 
Technologies 2006) and pRTI (Pitch Technolo-
gies 2006). However, Figure 5 is similar to Figure 
4 and StarLink+ is degraded into a distributed RTI 
if each LRTI only manages a single federate. 
Then the CRTI is approximately equal to the CRC 
and a LRTI is approximately equal to a LRC. But 
there still exist some differences between them. In 
Figure 5, a federate and its LRTI are two inde-
pendent processes; but in Figure 4, a LRC is 
bound to a federate in the form of a library. 

6. A LRTI joins to another LRTI as a federate. 
When a federate joins to a LRTI, we say that this 
federate belongs to the LRTI. One federate can 
only join to one LRTI. In StarLink+, a LRTI can 
only know CRTI, other LRTIs and its federates. A 
LRTI doesn’t see any federates that belong to 
other LRTIs. Of course, a federate can only see its 
LRTI, and it doesn’t know CRTI and other 
LRTIs. 

7. A large amount of messages are decreased. In Fig-
ure 1, the Local RTI server R1 only sends a mes-
sage to R2 once rather than three times if the mes-
sage sent by federate F1 is subscribed by three 
federates F4, F5 and F6. 

8. Time management is suitable for large-scale 
simulations. In StarLink+, a federate has no its 
LRC. Only all LRTIs make decisions in time 
management rather than all federates in a federa-
tion. 
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Figure 2: Architecture with Multiple Levels 
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Figure 4: Architecture of Distributed RTI 
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Figure 5: StarLink+ Used as a Distributed RTI 

.2 Typical Cases 

tarLink+ has outstanding advantages. In StarLink+, the 
entral RTI server is similar to the naming server in CORBA. 
ll LRTIs can interconnect with each other by CRTI. The 
RTI can only be used for synchronization point as well as 

ave-and-restore in the HLA federation management. CRTI 
s useless for any other services. We ignore CRTI in the rest 
f this paper. We define the following symbols: 

 
Definition 1    T(FR) is the network time that a federate 

ends a message to its LRTI, or a LRTI sends a callback 
essage to its federate. 

Definition 2    T(RR) is the network time that a LRTI 
ends a message to another LRTI. 

Definition 3    T(FL) is the network time that a feder-
te sends a message to its LRC, or a LRC sends a callback 
essage to its federate. T(FL) is approximately equal to 

ero because a LRC is always bound to its federate. 
Definition 4    T(LL) is the network time that a LRC 

ends a message to another LRC. 
Definition 5    T(FF) is the network time that a mes-

age sent by a federate arrives to another federate. 
 
In Figure 1, we have 
 

).26()21()11()61( RFTRRTRFTFFT ++=  (1) 
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In Figure 4, we also have 
 
 ).61()66()61()11()61( LLTLFTLLTLFTFFT ≈++= (2) 
 
From the above formulas, we know the following conclu-
sions shall be true if we only consider the delay time of a 
message and ignore the time that an RTI maintains global 
data consistency. 
 

1. Assume that T(FR) ≈ T(RR) ≈ T(LL), (1) should 
be three times of (2). Hence the performance of 
StarLink+ is worse than the distributed RTI in 
Figure 4; we should avoid this configuration when 
LRTIs in StarLink+ are deployed. 

2. Suppose that T(FR) << T(RR) and T(RR) ≈ T(LL). 
From (1), we have 

 
 ).21()61( RRTFFT ≈  (3) 
 
From (3), we know that a message’s delay time in StarLink+ 
is nearly equal to that in a distributed RTI. 
 On the other hand, assume that only the time about 
global data consistency is considered, StarLink+ is superior 
to a distributed RTI because only LRTIs are useful for deci-
sion-making in StarLink+, but all LRCs should take part in 
decision in a distributed RTI. 
 We conclude that the two deployments shown in Figure 
6 are preponderant for StarLink+: 

 
1. LRTIs connect with each other via Wide Area 

Network (WAN), while each LRTI and all its fed-
erates connect via Local Area Network (LAN) or 
Ethernet. 

2. LRTIs connect with each other via Local Area 
Network or Ethernet, while each LRTI and all its 
federates run on the same machine. A cluster sys-
tem is such an example. 

 
 The above deployments sound most reasonable for the 
federation with thousands of federates. On the other hand, 
we shall not deploy those federates into thousands of ma-
chines connected either by WAN, LAN or Ethernet. 
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Figure 6: Two Typical Cases of StarLink+ 
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3 KEY TECHNOLOGIES 

Besides the unique architecture, StarLink+ has also adopted 
two important technologies to support large-scale simula-
tions, i.e. the multiple threads approach and the data packing 
method. The former increases the parallel performance in 
StarLink+ and the tick service in HLA 1.3 does not appear in 
a federate of StarLink+, while the latter resolves the bottle-
neck of LRTIs for transferring a large amount of data. 

3.1 Multiple Threads 

The multiple threads approach can bring the following ad-
vantages. 
 

1. Avoid deadlock. Single thread adopted in Star-
Link+ may lead to the deadlock. The basic cli-
ent/server mode is used in CORBA. In StarLink+, 
either a LRTI or a federate is not only a server but 
also a client. When a federate calls its LRTI, the 
federate is in state of waiting before its LRTI re-
turns. On the other hand, when a LRTI calls back 
its federate, the LRTI shall wait for what the fed-
erate returns. Thus, one or more federates and 
their LRTIs may wait for each other and the dead-
lock occurs. Another advantage brought by the 
multiple threads method is that the tick service de-
fined in HLA 1.3 shall not be implemented. For 
one service call, a federate shall waste abundant 
of CPU time because it would call the tick service 
for many times in using those RTIs.  

2. Substitute multicast. The multicast technology is 
used in many RTIs. As many HLA services are 
reliable including ownership and time manage-
ment services, but multicast is an unreliable 
mechanism based on the UDP protocol. It shall 
make the development of an RTI more difficult 
and complicated when an unreliable mechanism is 
used to resolve reliable problems. 

3. Improve parallelism. Different data can simulta-
neously be sent and received by multiple LRTIs 
and federates. In StarLink+, when a federate joins 
to a LRTI, the LRTI creates two threads for the 
joining federate. One thread is responsible for re-
ceiving data and the other is responsible for send-
ing data. This is true for a LRTI to join to the 
CRTI and to another LRTI. 

3.2 Data Packing 

Multiple threads shall exist in a LRTI, but the scheduling 
time of a thread assigned by the operating system is limited. 
If a callback thread can not send data to a federate in time, 
numerous messages will pile up in the LRTI. The memory 
may be not enough and a LRTI shall collapse if excessive 
103
messages store in the LRTI. To resolve the bottleneck phe-
nomenon, the data-packing method is brought forth. Data-
packing means that all messages storing in a thread are 
bound into a single packet and the thread only sends one 
packet to a receiver when the thread is invoked by the oper-
ating system. According to our experimental results, the ap-
proach can greatly improve the efficiency of StarLink+. 
 Suppose that the size of a message is 100 bytes. Figure 
7 shows the delay time for message transmitting between 
two LRTIs in different machines in 100M network. In the 
experiment, the delay time is 0.31ms for one message with 
100 bytes sent from one LRTI to another LRTI. From Figure 
7, we know that sending one packet with multiple messages 
is more efficient than sending these messages in sequence. 
For example, sending 100 messages will take 31.60ms, but 
one packet covering these 100 messages will only take 
1.440ms. The efficiency ratio is 31.60/1.440=21.93. 
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Figure 7: Message Transmitting Time between Two LRTIs 

4 DATA EXCHANGE PROCEDURE 

One of the basic concepts in the HLA is the publication 
and the subscription mechanisms for data transmissions. 
To better comprehend the rationale of StarLink+, we pre-
sent the process of data exchange for object class attributes. 
During the process of developing StarLink+, a number of 
services extended from normal HLA services are adopted 
in StarLink+ for the internal communication between 
CRTI and LRTI. These services are user transparent. 

4.1 Create Federation Execution 

The central RTI server is always started firstly, and all Lo-
cal RTI servers started afterwards. During a federation is 
created, the CRTI is similar to the naming server in 
CORBA. When a LRTI starts, the LRTI firstly joins to the 
CRTI by calling the extended HLA service joinCentral-
FederationExecution, then the CRTI calls the lRTIjoinAn-
otherLRTI service to make the LRTI join to all other 
LRTIs which have joined the CRTI. Finally, the CRTI also 
9
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calls the lRTIjoinAnotherLRTI service to make all other 
LRTIs which have joined CRTI join to the LRTI. Thus, 
CRTI and all LRTIs can communicate with each other. 
 

4.2 Publish and Subscribe 

When a federate publishes or subscribes object class attrib-
utes, its LRTI performs two things. 

 
1. Recording the publication and subscription infor-

mation from the federate. 
2. If there exists at least one attribute which was not 

published or subscribed by local federates before, 
the LRTI forwards the publishing or subscribing 
service to any other LRTIs, and these LRTIs then 
record the publication and subscription informa-
tion from the LRTI. 

 
 Suppose that all three federates F1, F2 and F3 publish 
the same attributes of an object class in Figure 1, the LRTI 
R1 only informs R2 once and R2 records the publication. 

4.3 Register Object Instance 

When a federate calls the registerObjectInstance service to 
register an object instance, its LRTI does the following 
things. 

 
1. If there exist any local federates which have sub-

scribed any attributes of corresponding object 
class, the LRTI informs these federates to dis-
cover an object instance.  

2. The LRTI calls the extended lRTIregisterOb-
jectInstance service to inform those remote LRTIs 
which have subscribed any attributes of the object 
class, and these LRTIs inform their federates 
which have subscribed any attributes of the object 
class to discover an object instance. The object in-
stance is successfully registered in remote LRTIs. 

 
 From the above procedure, we know that multiple fed-
erates from different LRTIs can register object instances 
simultaneously. 

4.4 Update Attribute Values 

This is similar to the registration process of an object in-
stance. When a federate calls the updateAttributeValues 
service, its LRTI does the following steps. 
 

1. If there exist any federates which have subscribed 
corresponding information, the LRTI calls the re-
flectAttributeValues service to inform these fed-
erates to receive information. 
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2. If there exist any remote LRTIs which have sub-
scribed corresponding information, the LRTI for-
wards the updateAttributeValues service to these 
LRTIs, and these remote LRTIs call the reflectAt-
tributeValues service to inform their subscription 
federates to receive information. 

 
 We emphasize that even if multiple remote federates 
belonging to a LRTI R2 have subscribed corresponding in-
formation, a LRTI R1 should only send the updateAttrib-
uteValues service once to the remote LRTI R2. Therefore, 
StarLink+ is able to decrease the messages among LRTIs 
greatly. 

5 TIME MANAGEMENT 

Time management in HLA is virtually the time synchroni-
zation for federates. The hierarchical architecture in Star-
Link+ improves the decision-making efficiency in time 
management. Here the decision-making means the compu-
tation of Greatest Available Logical Time (GALT). GALT 
is the term in the IEEE 1516 standard which is also called 
Lower Bound Time Stamp (LBTS) in HLA 1.3. In a dis-
tributed RTI, all LRCs shall participate in the computation 
of GALT. While in StarLink+, only all LRTIs participate 
in the computation. As an example of a federation with 
1,024 federates, we deploy 64 LRTIs and each LRTI sees 
after 16 federates. In such a federation, only 64 LRTIs 
rather than 1,024 federates participate in the computation. 
But for RTI1.3-NG with the same federation, 1,024 LRCs 
shall take part in the computation. 
 The computation of GALT is a complicated problem 
as discussed in the papers (Fujimoto 1996; Kuhl, Weath-
erly and Dahmann 1999; Riley, Fujimoto and Ammar 
1999). The detailed introduction about the algorithm is out 
scope of this paper. We only simply discuss an example in 
Figure 8 about the timeAdvanceRequest (TAR) service, 
and other time advance services have similar results be-
cause of our GALT algorithm. The example includes two 
LRTIs, i.e. R1 and R2. In the federation, each LRTI in-
cludes 16 federates. CRTI doesn’t appear in the figure be-
cause it is useless for GALT computing. Suppose that the 
initial logical time of each federate is T and lookahead (Fu-
jimoto 1988; Fujimoto 2000) is 0.1. For any federate Fi, 
S(Fi)=T+0.1. The symbol S is the value of one federate or 
one LRTI server described in our GALT algorithm (Liu, 
Wang and Yao 2005). Now we have S(R1) = S(R2) = 
T+0.1. The example is nearly same as the model that intro-
duced in the next section. 
 The advance procedure of the federation is described 
as follows. 
 

1. When F1 calls the TAR service to advance to T+1, 
the LRTI R1 computes F1’s GALT. 
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2. F1 shall be in time advancing state and wait for 

R1 to grant its request. Similarly, when F2, 
F3, … , F15 call the TAR service to advance to 
T+1, they shall also be in waiting state. Now we 
have  

 
( ) ( ) ( ) ( ) .1.11.0115...21 +=++==== TTFSFSFS  

 
When F16 requests to advance to T+1, F16 shall 
be in waiting state. But now S(F16) and S(R1) are 
changed into T+1.1. Thus R1 must send S(R1) to 
the LRTI R2 to modify the value. 
 

3. When F17, F18, … , F31 call the TAR service to 
advance to T+1, they shall be in waiting state as 
their GALTs are T+0.1. Now we have  

 
( ) ( ) ( ) ( ) .1.11.0131...1817 +=++==== TTFSFSFS  

 
When F32 wants to advance to T+1, S(F32) and 
S(R2) are changed into T+1.1. Thus R2 sends 
S(R2) to R1 to inform its new value. Now each 
federate’s GALT is changed into T+1.1 which is 
larger than the federate’s request time T+1. There-
fore, R1 and R2 call the timeAdvanceGrant (TAG) 
service to grant their federates to logical time T+1 
respectively. Note that each federate is informed 
by a thread in its LRTI. Now all federates have 
advanced to T+1. If the 32 federates request to 
advance simultaneously step by step, the federa-
tion can advance simultaneously step by step. 
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Figure 8: TAR Parallel Advancing Mechanism 

In Figure 8, only two calls occur between two LRTIs 
hen 32 federates advance one step. If each LRTI and its 
6 federates run in the same machine, the HLA time man-
gement can be implemented efficiently because there is 
ather a little communication about GALT computation 
mong different machines. 
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6 EXPERIMENTS 

To compare the capability of national RTIs to integrate 
countrywide military simulations which may consist of 
hundreds of programs in the future in China, a famous 
modeling and simulation expert brought forward a well-
known population problem for voting. Suppose that there 
are 20,000,000 populations in a kingdom. Each person can 
select one from three choices to decide whether or not to 
support the king's new policy. The three choices are “yes”, 
“no” and “neutral”. But each person is affected by all other 
persons and this means that each person will send a mes-
sage to the others. The voting example can be used to ana-
lyze and make political decisions on some sensitive and 
hot spots in the world. In this system, the activity of an in-
dividual is useless and the aggregate activity is what we 
care about. The example is a typical complex system, 
which features a large number of interacting components 
(agents, processes, etc.) whose aggregate activity is nonlin-
ear (not derivable from the summations of the activity of 
individual components) and typically exhibits hierarchical 
self-organization (Rocha 2003). The research area can be 
applied to social networks, gene and protein networks, 
knowledge networks, infrastructure networks, etc. 

The population voting question is also an example 
closely relating to network communication. Highly fre-
quent network communication is one important character-
istic for many simulation applications. Network bandwidth 
has great effects on those simulations and their underlying 
runtime infrastructure. For example, many experimental 
results are given in Clark, Capella, Bailey and Steinman 
(2002). The HPC-RTI based on SPEEDES is designed for 
high performance computers, and it is not strange for large 
amount of objects over the RTI to take more than 100 sec-
onds to advance one step for some experiments. 

In the voting example, the whole federation shall be 
composed of 2,000 federates if 10,000 persons are modeled 
as a federate. The computational process for each federate 
is complicated and this is out scope of this paper. Besides 
these voting federates, the simulation consists of three fed-
erates, i.e. a control federate, a situation display federate, 
and an environment federate. The control federate is used 
to control the start and end of the simulation. The situation 
display federate supports various results in the forms of 
figures, curves, and cylinders. The environment federate 
issues some particular events subscribed by all voting fed-
erates. An event is a stimulus which has effects on the re-
sult of voting. For instance, more people shall no longer 
support their king if the news about the king’s scandal is 
disseminated. In the federation with 2,000 federates, each 
federate is modeled to use the TAR service to advance 
logical time, then call the updateAttributeValues service to 
send a reliable TSO message subscribed by all other feder-
ates. The logical time interval for each step is 40 and each 
federate's lookahead is 1 (1 is far less than 40). The time-
1
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stamp of each TSO message is the logical time of next step. 
However, as far as the voting example and the TAR ser-
vice, the exact value of interval logical time is not impor-
tant and it can be equal to any value so far as the lookahead 
is less than it. Virtually, the lookahead can also be set to 
zero if we use the timeAdvanceRequestAvailable (TARA) 
service. Thus, a federate can not advance beyond all other 
federates, and they must simultaneously advance to the 
same logical time together step by step. 

In the example, suppose that the variable n denotes the 
number of federates, and also suppose that each federate 
sends a TSO message to all other federates. If the size of 
one message is 100 bytes, the size of total TSO messages 
for one step is (n-1) * n* 100 * 8 bits. Over the 1,000Mbps 
network, the theoretically minimal execution time for n 
federates to advance one step is 
 

 ( )( ) ( )1024*1024*10248*100**1 nn −  
 
seconds. For 1,024 federates, the minimal time is 0.78 sec-
onds. Figure 9 and Figure 10 are the experimental results 
of StarLink+ for one step, Figure 9 is the average execu-
tion time for 128 to 1,024 federates, and Figure 10 is for 
1,024 to 5,120 federates. For 1,024 federates, the average 
execution time is 1.798 seconds. These experiments were 
made in a cluster system with 128 CPUs, which was com-
posed of 64 independent nodes connected by two 
1,000Mbps switches. In fact, the experiments were equiva-
lent to perform in 64 independent personal computers con-
nected by 1,000Mbps Ethernet. Here is the configuration of 
each node. 
 

• CPU: Intel(R) Xeon(TM) CPU 3.40GHz (Dual 
Core). 

• Memory: 4GB. 
• Network: 1,000Mbps. 
• Operating system: Linux server2 2.4.21-32.EL. 
• Programming language: GNU C++. 

 
 In our experiments with Figure 9 and Figure 10, we did 
not start the graphical situation display federate and the envi-
ronment federate, which should bring on inaccurate results. 
The whole process of starting the voting simulation was as 
follows. 
 

1. Start the central RTI server in the first node of the 
cluster system. 

2. Start 64 local RTI servers and each local RTI 
server ran in one node. 

3. Start the control federate in the first node of the 
cluster system. 

4. Start the voting federates in all nodes. All feder-
ates were averagely deployed into each node. As 
far as the simulation of 1,024 federates, each node 
consisted of 16 (1024/64) federates. During the 
1042
federation execution, only the first joined federate 
outputted and recorded its execution time for each 
step in each node. 

5. The control federate issued the start and end 
commands of federation execution. 
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Figure 9: Large-Scale Experimental Results 
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Figure 10: Ultra Large-Scale Experimental Results 

7 CONCLUSION 

StarLink+ is a unique RTI with two-level hierarchical ar-
chitecture, which possesses the advantages of the central 
architecture and distributed architecture. To promote the 
ability for large-scale simulations, two key technologies 
are applied into StarLink+. The multiple threads approach 
is used to increase the parallel performance and the data 
packing method is used to improve the efficiency of mes-
sage transferring in StarLink+. This paper also explains the 
efficient time management in StarLink+. The HLA time 
management is virtually the synchronization mechanism 
for messages which makes large-scale distributed simula-
tions more challengeable. In StarLink+, a federate has no 
LRC and it communicates with its LRTI server via under-
lying CORBA middleware; accordingly, time synchroniza-
tion is efficiently coordinated only by all Local RTI serv-
ers. Finally, large-scale experiments with thousands of 
federates in StarLink+ are introduced. 
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